Ionization of DNA Nucleotides in Explicit Solution
Abstract
:1. Introduction
2. Results and Discussion
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ward, J.F. DNA damage produced by ionizing radiation in mammalian cells: Identities, mechanisms of formation, and reparability. Prog. Nucleic Acid Res. Mol. Biol. 1988, 35, 95–125. [Google Scholar]
- Måsson, E.P.; Camillis, S.D.; Castrovilli, M.C.; Galli, M.; Nisoli, M.; Calegari, F.; Greenwood, J.B. Ultrafast dynamics in the DNA building blocks thymidine and thymine initiated by ionizing radiation. Phys. Chem. Chem. Phys. 2017, 19, 19815–19821. [Google Scholar] [CrossRef] [PubMed]
- Pluhařová, E.; Slavíček, P.; Jungwirth, P. Modeling photoionization of aqueous DNA and its components. Acc. Chem. Res. 2015, 48, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Russo, N.; Toscano, M.; Grand, A. Theoretical determination of electron affinity and ionization potential of DNA and RNA bases. J. Comput. Chem. 2000, 21, 1243–1250. [Google Scholar] [CrossRef]
- Kostko, O.; Bravaya, K.; Krylov, A.; Ahmed, M. Ionization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations. Phys. Chem. Chem. Phys. 2010, 12, 2860–2872. [Google Scholar] [CrossRef]
- Chakraborty, R.; Ghosh, D. The effect of sequence on the ionization of guanine in DNA. Phys. Chem. Chem. Phys. 2016, 18, 6526–6533. [Google Scholar] [CrossRef]
- Lin, J.; Yu, C.; Peng, S.; Akiyama, I.; Li, K.; Lee, L.K.; LeBreton, P.R. Ultraviolet photoelectron studies of the ground-state electronic structure and gas-phase tautomerism of purine and adenine. J. Am. Chem. Soc. 1980, 102, 4627–4631. [Google Scholar] [CrossRef]
- Choi, K.-W.; Lee, J.-H.; Kim, S.K. Ionization spectroscopy of a DNA base: Vacuum-ultraviolet mass-analyzed threshold ionization spectroscopy of jet-cooled thymine. J. Am. Chem. Soc. 2005, 127, 15674–15675. [Google Scholar] [CrossRef]
- Bravaya, K.B.; Kostko, O.; Dolgikh, S.; Landau, A.; Ahmed, M.; Krylov, A.I. Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra. J. Phys. Chem. A 2010, 114, 12305–12317. [Google Scholar] [CrossRef]
- Chen, Z.; Lau, K.-C.; Garcia, G.A.; Nahon, L.; Bozanić, D.K.; Poisson, L.; Al-Mogren, M.M.; Schwell, M.; Francisco, J.S.; Bellili, A.; et al. Identifying cytosine-specific isomers via high-accuracy single photon ionization. J. Am. Chem. Soc. 2016, 138, 16596–16599. [Google Scholar] [CrossRef]
- Cauët, E.; Valiev, M.; Weare, J.H. Vertical ionization potentials of nucleobases in a fully solvated dna environment. J. Phys. Chem. B 2010, 114, 5886–5894. [Google Scholar] [CrossRef]
- Ghosh, D.; Isayev, O.; Slipchenko, L.V.; Krylov, A.I. Effect of solvation on the vertical ionization energy of thymine: From microhydration to bulk. J. Phys. Chem. A 2011, 115, 6028–6038. [Google Scholar] [CrossRef]
- Muñoz-Losa, A.; Markovitsi, D.; Improta, R. A state-specific PCM–DFT method to include dynamic solvent effects in the calculation of ionization energies: Application to DNA bases. Chem. Phys. Lett. 2015, 634, 20–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, P.; Yang, S.; Han, K. Ionization and electron attachment for the nucleobases in water. J. Phys. Chem. B 2019, 123, 1237–11247. [Google Scholar] [CrossRef]
- Sun, L.; Bu, Y. Oxidative damage to DNA: Theoretical determination of ionization potential of deoxyriboguanosine (dG)–deoxyribocytidine (dC) and proton transfer in its cation. J. Mol. Struc. THEOCHEM 2009, 909, 25–32. [Google Scholar] [CrossRef]
- Pluhařová, E.; Jungwirth, P.; Bradforth, S.E.; Slavíček, P. Ionization of purine tautomers in nucleobases, nucleosides, and nucleotides: From the gas phase to the aqueous environment. J. Phys. Chem. B 2011, 115, 1294–1305. [Google Scholar] [CrossRef]
- Palivec, V.; Pluhařová, E.; Unger, I.; Winter, B.; Jungwirth, P. DNA lesion can facilitate base ionization: Vertical ionization energies of aqueous 8-oxoguanine and its nucleoside and nucleotide. J. Phys. Chem. B 2014, 118, 13833–13837. [Google Scholar] [CrossRef]
- Chakraborty, R.; Bose, S.; Ghosh, D. Effect of solvation on the ionization of guanine nucleotide: A hybrid QM/EFP study. J. Comput. Chem. 2017, 38, 2528–2537. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Fernandez, L.; Muñoz-Losa, A.; Esposito, L.; Improta, R. The optical properties of adenine cation in different oligonucleotides: A PCM/TD-DFT study. Theor. Chem. Acc. 2018, 137, 39. [Google Scholar] [CrossRef]
- Diamantis, P.; Tavernelli, I.; Rothlisberger, U. Vertical ionization energies and electron affinities of native and damaged DNA bases, nucleotides, and pairs from density functional theory calculations: Model assessment and implications for DNA damage recognition and repair. J. Chem. Theory Comput. 2019, 15, 2042–2052. [Google Scholar] [CrossRef]
- Uddin, I.A.; Stec, E.; Papadantonakis, G.A. Ionization patterns and chemical reactivity of cytosine-guanine watson-crick pairs. ChemPhysChem 2024, 25, e202300946. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Adhikary, A.; Sevilla, M.D.; Close, D.M. One-electron oxidation of ds(5′-GGG-3′) and ds(5′-G(8OG)G-3′) and the nature of hole distribution: A density functional theory (DFT) study. Phys. Chem. Chem. Phys. 2020, 22, 5078–5089. [Google Scholar] [CrossRef]
- Lucia-Tamudo, J.; Díaz-Tendero, S.; Nogueira, J.J. Intramolecular and intermolecular hole delocalization rules the reducer character of isolated nucleobases and homogeneous single-stranded DNA. Phys. Chem. Chem. Phys. 2023, 25, 14578–14589. [Google Scholar] [CrossRef] [PubMed]
- Diamantis, P.; Tavernelli, I.; Rothlisberger, U. Redox properties of native and damaged DNA from mixed quantum mechanical/molecular mechanics molecular dynamics simulations. J. Chem. Theory Comput. 2020, 16, 6690–6701. [Google Scholar] [CrossRef]
- Mukherjee, M.; Haldar, S.; Dutta, A.K. Solvation effect on the vertical ionization energy of adenine-thymine base pair: From microhydration to bulk. Int. J. Quantum Chem. 2019, 22, e26127. [Google Scholar] [CrossRef]
- Tóth, Z.; Kubečka1, J.; Muchová, E.; Slavíček, P. Ionization energies in solutions with QM:QM approach. Phys. Chem. Chem. Phys. 2020, 22, 10550–10560. [Google Scholar] [CrossRef]
- Slavíček, P.; Winter, B.; Faubel, M.; Bradforth, S.E.; Jungwirth, P. Ionization energies of aqueous nucleic acids: Photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations. J. Am. Chem. Soc. 2009, 131, 6460–6467. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, C.A.; Pluhařová, E.; Seidel, R.; Schroeder, W.P.; Faubel, M.; Slavíček, P.; Winter, B.; Jungwirth, P.; Bradforth, S.E. Oxidation half-reaction of aqueous nucleosides and nucleotides via photoelectron spectroscopy augmented by ab initio calculations. J. Am. Chem. Soc. 2015, 137, 201–209. [Google Scholar] [CrossRef]
- Wang, J.; Yang, S.; Zhang, Y. One-electron oxidation and redox potential of nucleobases and deoxyribonucleosides computed by QM/MM simulations. Chem. Phys. Lett. 2020, 739, 136948. [Google Scholar] [CrossRef]
- Rubio, M.; Roca-Sanjuán, D.; Merchán, M.; Serrano-Andrés, L. Determination of the lowest-energy oxidation site in nucleotides: 2′-deoxythymidine 5′-monophosphate anion. J. Phys. Chem. B 2006, 110, 10234–10235. [Google Scholar] [CrossRef]
- Rubio, M.; Roca-Sanjuán, D.; Serrano-Andrés, L.; Merchán, M. Determination of the electron-detachment energies of 2′-deoxyguanosine 5′-monophosphate anion: Influence of the conformation. J. Phys. Chem. B 2009, 113, 2451–2457. [Google Scholar] [CrossRef]
- Ma, J.; Denisov, S.A.; Marignier, J.-L.; Pernot, P.; Adhikary, A.; Seki, S.; Mostafavi, M. Ultrafast electron attachment and hole transfer following ionizing radiation of aqueous uridine monophosphate. J. Phys. Chem. Lett. 2018, 9, 5105–5109. [Google Scholar] [CrossRef] [PubMed]
- D’Annibale, V.; Nardi, A.N.; Amadei, A.; D’Abramo, M. Theoretical characterization of the reduction potentials of nucleic acids in solution. J. Chem. Theory Comput. 2021, 17, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, R.; Maity, S.; Acharya, A. Machine learning approach to vertical energy gap in redox processes. J. Chem. Theory Comput. 2024, 20, 6747–6755. [Google Scholar] [CrossRef] [PubMed]
- Brunk, E.; Rothlisberger, U. Mixed quantum mechanical/molecular mechanical molecular dynamics simulations of biological systems in ground and electronically excited states. Chem. Rev. 2015, 115, 6217–6263. [Google Scholar] [CrossRef]
- Close, D.M.; Crespo-Hernández, C.E.; Gorb, L.; Leszczynski, J. Ionization energy thresholds of microhydrated adenine and its tautomers. J. Phys. Chem. A 2008, 112, 12702–12706. [Google Scholar] [CrossRef]
- Khistyaev, K.; Bravaya, K.B.; Kamarchik, E.; Kostko, O.; Ahmed, M.; Krylov, A.I. The effect of microhydration on ionization energies of thymine. Faraday Discuss. 2011, 150, 313–330. [Google Scholar] [CrossRef]
- Brooks, B.R.; Brooks, C.L., III; Mackerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1615. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Sherwood, P.; de Vries, A.H.; Guest, M.F.; Schreckenbach, G.; Catlow, C.R.A.; French, S.A.; Sokol, A.A.; Bromley, S.T.; Thiel, W.; Turner, A.J.; et al. QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis. J. Mol. Struct.-THEOCHEM 2003, 632, 1–28. [Google Scholar] [CrossRef]
- TURBOMOLE V6.4; a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH.; TURBOMOLE GmbH; 2012. Available online: http://www.turbomole.com (accessed on 8 May 2025).
- Roca-Sanjuán, D.; Rubio, M.; Merchán, M.; Serrano-Andrés, L. Ab initio determination of the ionization potentials of DNA and RNA nucleobases. J. Chem. Phys. 2006, 125, 084302. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.C.; Kollman, P.A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 1984, 5, 129–145. [Google Scholar] [CrossRef]
- Martin, F.; Zipse, H. Charge distribution in the water molecule—A comparison of methods. J. Comput. Chem. 2005, 26, 97–105. [Google Scholar] [CrossRef]
- Jacquemin, D.; Bahers, T.L.; Adamobc, C.; Ciofini, I. What is the “best” atomic charge model to describe through-space charge-transfer excitations? Phys. Chem. Chem. Phys. 2012, 14, 5383–5388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xie, P.; He, X.; Han, K. High-efficiency microiterative optimization in QM/MM simulations of large flexible systems. J. Chem. Theory Comput. 2016, 12, 4632–4643. [Google Scholar] [CrossRef]
- Kästner, J.; Carr, J.M.; Keal, T.W.; Thiel, W.; Wander, A.; Sherwood, P. DL-FIND: An open-source geometry optimizer for atomistic simulations. J. Phys. Chem. A 2009, 113, 11856–11865. [Google Scholar] [CrossRef]
Nucleotides | Nucleosides | ||||
---|---|---|---|---|---|
QM/MM | Gas-QM | NEPCM 1 | Exp. 2 | QM/MM 3 | |
dAMP− | 7.26 ± 0.08 | 5.68 ± 0.04 | 7.53 | 7.7 | 7.99 |
dGMP− | 6.92 ± 0.07 | 5.51 ± 0.04 | 7.23 | n/a | 7.67 |
dCMP− | 7.45 ± 0.07 | 5.69 ± 0.04 | 7.82 | n/a | 8.34 |
dTMP− | 7.63 ± 0.06 | 5.95 ± 0.04 | 7.77 | n/a | 8.38 |
dRT | Bases | Ribose | Phosphate | |||||
---|---|---|---|---|---|---|---|---|
QM/MM | Gas-QM | QM/MM | Gas-QM | QM/MM | Gas-QM | QM/MM | Gas-QM | |
dAMP− | 0.73 ± 0.01 | 0.32 ± 0.02 | 0.62 ± 0.01 | 0.29 ± 0.02 | 0.08 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.01 ± 0.01 |
dGMP− | 0.75 ± 0.01 | 0.40 ± 0.02 | 0.66 ± 0.01 | 0.37 ± 0.02 | 0.05 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.01 |
dCMP− | 0.76 ± 0.01 | 0.24 ± 0.02 | 0.61 ± 0.01 | 0.20 ± 0.03 | 0.07 ± 0.01 | 0.04 ± 0.01 | 0.09 ± 0.01 | −0.01 ± 0.01 |
dTMP− | 0.75 ± 0.01 | 0.25 ± 0.02 | 0.58 ± 0.01 | 0.21 ± 0.02 | 0.05 ± 0.01 | 0.02 ± 0.01 | 0.11 ± 0.01 | 0.02 ± 0.01 |
QM/MM | pol-QM | gas-QM | PCM 1 | |
---|---|---|---|---|
dAMP− | 5.40 ± 0.08 | 5.78 ± 0.09 | 5.51 ± 0.06 | 6.19 |
dGMP− | 4.94 ± 0.11 | 5.50 ± 0.09 | 5.18 ± 0.05 | 5.82 |
dCMP− | 5.84 ± 0.06 | 6.25 ± 0.07 | 5.60 ± 0.05 | 6.51 |
dTMP− | 5.86 ± 0.07 | 6.33 ± 0.09 | 5.82 ± 0.05 | 6.43 |
dRT | Bases | Ribose | Phosphate | |
---|---|---|---|---|
dAMP− | 0.84 ± 0.02 | 0.71 ± 0.02 | 0.13 ± 0.03 | −0.00 ± 0.02 |
dGMP− | 0.86 ± 0.03 | 0.77 ± 0.03 | 0.06 ± 0.03 | 0.04 ± 0.02 |
dCMP− | 0.85 ± 0.03 | 0.76 ± 0.04 | 0.05 ± 0.04 | 0.04 ± 0.02 |
dTMP− | 0.86 ± 0.02 | 0.80 ± 0.04 | 0.04 ± 0.03 | 0.01 ± 0.02 |
QM/MM | Pol-QM | Gas-QM | |
---|---|---|---|
dAMP− | 1.86 ± 0.11 | 1.48 ± 0.10 | 0.17 ± 0.04 |
dGMP− | 1.97 ± 0.15 | 1.42 ± 0.10 | 0.33 ± 0.04 |
dCMP− | 1.62 ± 0.08 | 1.20 ± 0.08 | 0.09 ± 0.04 |
dTMP− | 1.76 ± 0.09 | 1.29 ± 0.09 | 0.12 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Zhang, Y.; Yin, S.; Che, L.; Yang, S. Ionization of DNA Nucleotides in Explicit Solution. Molecules 2025, 30, 2213. https://doi.org/10.3390/molecules30102213
Bai J, Zhang Y, Yin S, Che L, Yang S. Ionization of DNA Nucleotides in Explicit Solution. Molecules. 2025; 30(10):2213. https://doi.org/10.3390/molecules30102213
Chicago/Turabian StyleBai, Junhao, Yan Zhang, Shuhui Yin, Li Che, and Songqiu Yang. 2025. "Ionization of DNA Nucleotides in Explicit Solution" Molecules 30, no. 10: 2213. https://doi.org/10.3390/molecules30102213
APA StyleBai, J., Zhang, Y., Yin, S., Che, L., & Yang, S. (2025). Ionization of DNA Nucleotides in Explicit Solution. Molecules, 30(10), 2213. https://doi.org/10.3390/molecules30102213