Advances in Superlattice Hydrogen Storage Alloys: Preparation Method, Phase Structure Modulation, and Hydrogen Storage Performance
Abstract
:1. Introduction
2. Preparation Methods of Superlattice Hydrogen Storage Alloys
2.1. Vacuum Induction Melting Method
2.2. Arc Melting
2.3. Powder Sintering Method
2.4. Spark Plasma Sintering
2.5. Mechanical Alloying
2.6. Additive Manufacturing
2.7. Other Methods
3. Thermodynamics and Kinetics
4. Single-Phase Superlattice Hydrogen Storage Alloys
5. Effect of Rare-Earth Element Doping on the Phase Structure of Superlattice Hydrogen Storage Alloys
6. Effect of Element Substitution on the Phase Structure of Superlattice Hydrogen Storage Alloys
7. Conclusions and Perspective
- (1)
- Further research is required to understand the combined impacts of multiple rare-earth element doping and multi-element substitution. The intricate interactions among these different elements may result in synergistic effects, potentially optimizing the phase structure and enhancing the overall properties of the alloys. This comprehensive understanding could lead to the design of alloys with superior hydrogen storage capabilities. As a type of hydrogen storage alloy material with excellent performance, the development of high-entropy superlattice hydrogen storage alloys will be a key research direction in the future.
- (2)
- To gain deeper insights into the mechanisms governing the phase structure evolution during hydrogen absorption and desorption, in situ and operando characterization techniques should be more extensively employed. These advanced methodologies offer real-time monitoring, facilitating a clearer picture of the dynamic processes occurring within the alloys and aiding in the refinement of alloy design strategies.
- (3)
- Considering the practical application of hydrogen storage alloys, emphasis must be placed on cost-effective material design and scalable production processes. Balancing performance and cost is paramount to the widespread adoption of these alloys in the hydrogen economy. Innovations in material science and manufacturing techniques are essential to ensure that high-performance superlattice hydrogen storage alloys can be produced economically and in large quantities, contributing to a sustainable energy future.
- (4)
- Building upon advancements in material design and scalable synthesis, future efforts should prioritize the translation of superlattice hydrogen storage alloys into functional energy storage systems, particularly nickel–metal hydride (Ni-MH) batteries and high-pressure hydrogen storage tanks. These alloys exhibit favorable hydrogen absorption kinetics and tunable electrochemical properties, making them promising candidates for next-generation energy storage solutions. However, their commercial implementation remains constrained by unresolved challenges, including integration compatibility, operational reliability under real-world conditions, and the absence of unified engineering standards for system-level deployment. To bridge the gap between laboratory innovation and industrial application, a concerted interdisciplinary approach is required—one that combines advanced alloy development, device-level optimization, and techno-economic analysis. Establishing robust pathways from material discovery to market readiness will be essential for unlocking the full potential of superlattice hydrogen storage alloys in the future hydrogen economy.
- (5)
- Significant advancements have been achieved in the development of superlattice hydrogen storage alloys; however, several critical challenges must be addressed to facilitate their practical application and large-scale deployment.
- i.
- A primary obstacle lies in the high material costs and complexity of manufacturing processes, notably the reliance on high-purity rare-earth elements and energy-intensive synthesis methods such as arc melting. Developing cost-effective material design strategies alongside scalable manufacturing technologies is essential to produce high-performance alloys more economically. Additionally, controlling interfacial defects, hydrogen embrittlement, and corrosion phenomena during large-scale fabrication remains a significant hurdle, as these factors increase production costs and compromise the long-term stability of the alloys. Lattice distortion and phase separation occurring during repeated hydrogen absorption and desorption cycles further contribute to capacity fade and impede commercialization efforts, primarily due to insufficient long-term thermodynamic stability.
- ii.
- Advanced in situ and operando characterization techniques, including X-ray diffraction (XRD) and transmission electron microscopy (TEM), provide critical insights into the dynamic structural evolutions within these alloys under operational conditions. These tools enable real-time monitoring of processes such as hydrogen-induced crack propagation, thereby informing strategies to optimize alloy design and improve performance. Furthermore, machine learning (ML) methodologies, such as generative adversarial networks (GANs), have been employed to expedite the optimization of rare-earth element ratios, reducing development timelines and enhancing resistance to hydrogen embrittlement. By elucidating quantitative relationships among composition, processing parameters, and electrochemical performance, ML approaches serve as powerful accelerators for discovering novel alloy architectures and refining material design.
- iii.
- To overcome remaining barriers to large-scale implementation, future research should prioritize the development of cost-effective and scalable synthesis protocols. This includes exploring alternative alloy compositions with reduced rare-earth content or incorporating transition metals to enhance resource sustainability. Long-term durability studies at the atomic level, utilizing computational thermodynamics and defect engineering strategies, are urgently needed to understand and mitigate degradation mechanisms. Additionally, hybrid systems that integrate superlattice alloys with porous scaffolds or 2D materials, such as MXenes and graphene, offer promising avenues to enhance kinetic properties and structural stability. Incorporating sustainability considerations, such as life-cycle analysis, into materials development frameworks will ensure alignment with global decarbonization objectives. Through these combined efforts—advancing materials science, innovative characterization methods, and sustainable design principles—next-generation superlattice hydrogen storage alloys with superior performance, economic viability, and durability can be realized, supporting the transition towards sustainable energy systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paul, A.R.; Mehla, S.; Bhargava, S. Intermetallic Compounds for Hydrogen Storage: Current Status and Future Perspectives. Small 2024, 21, 2408889. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, S.; Hashmi, S.A.R.; Kim, K.-H. MXenes: Emerging 2D materials for hydrogen storage. Nano Energy 2021, 85, 105989. [Google Scholar] [CrossRef]
- Wang, Y.; Xue, Y.; Züttel, A. Nanoscale engineering of solid-state materials for boosting hydrogen storage. Chem. Soc. Rev. 2024, 53, 972–1003. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, L.; Xu, L.; Wan, C.; An, Y.; Ye, M. Recent Developments of effective catalysts for hydrogen storage technology using N-Ethylcarbazole. Catalysts 2020, 10, 648. [Google Scholar] [CrossRef]
- Zhao, B.; Li, B.; Xie, L. Study on the safety characteristics of high-pressure hydrogen storage containers against shooting. Int. J. Hydrogen Energy 2025, 105, 611–618. [Google Scholar] [CrossRef]
- Chen, H.; Ma, Y.; Wu, Q.; Xu, H.; Zhang, L.; Wang, X.; Lyu, X.; Chen, J.; Jia, Y. Electrocatalysis for liquid chemical hydrogen storage. Coord. Chem. Rev. 2025, 534, 216562. [Google Scholar] [CrossRef]
- Fadonougbo, J.O.; Szczepańska, K.; Baran, A.; Wyrębska, I.; Płatek, P.; Janiszewski, J.; Polański, M. Combinatorial synthesis of solid-state hydrogen storage materials using a modified planetary ball mill. Int. J. Hydrogen Energy 2025, 101, 946–958. [Google Scholar] [CrossRef]
- Mustafa, N.S.; Noor, N.A.M.; Omar, N.A.M.Y.; Omar, Z.; Ismail, M. Influence of CeCl3 incorporation on the dehydrogenation characteristics of NaAlH4 for solid-state hydrogen storage. Int. J. Hydrogen Energy 2025, 105, 278–285. [Google Scholar] [CrossRef]
- Shirzad, G.; Shirkhani, A.; Hoseinzadeh, S. Underground hydrogen storage in naturally fractured reservoirs: Matrix scale modeling for cushion gas selection. Int. J. Hydrogen Energy 2025, 116, 266–278. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Dong, X.; Yang, J.; Guo, H.; Gong, M. Thermodynamic analysis of low-temperature and high-pressure (cryo-compressed) hydrogen storage processes cooled by mixed-refrigerants. Int. J. Hydrogen Energy 2022, 47, 28932–28944. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, J.; Chen, P. Complex transition metal hydrides for heterogeneous catalysis. Chem Catal. 2023, 3, 100524. [Google Scholar] [CrossRef]
- Xiao, J.; Travis, J.R.; Breitung, W. Hydrogen release from a high pressure gaseous hydrogen reservoir in case of a small leak. Int. J. Hydrogen Energy 2011, 36, 2545–2554. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, M.; Zhou, Y.; Dong, X.; Shen, J. Thermodynamics analysis of hydrogen storage based on compressed gaseous hydrogen, liquid hydrogen and cryo-compressed hydrogen. Int. J. Hydrogen Energy 2019, 44, 16833–16840. [Google Scholar] [CrossRef]
- Yao, H.; Tan, X.F.; Sun, W.; Gu, Q.; Qin, J.; Zhang, Y.; Zeng, G.; Guo, E.; Nogita, K. Fast activation of Na micro-alloyed Mg–Ni-Gd-Y-Zn-Cu alloys for solid-state hydrogen storage. Int. J. Hydrogen Energy 2025, 118, 237–250. [Google Scholar] [CrossRef]
- Boateng, E.; Thiruppathi, A.R.; Hung, C.-K.; Chow, D.; Sridhar, D.; Chen, A. Functionalization of graphene-based nanomaterials for energy and hydrogen storage. Electrochim. Acta 2023, 452, 142340. [Google Scholar] [CrossRef]
- Suh, M.P.; Park, H.J.; Prasad, T.K.; Lim, D.-W. Hydrogen storage in metal–organic frameworks. Chem. Rev. 2012, 112, 782–835. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Mohan, S. Solid state storage of hydrogen and its isotopes: An engineering overview. Renew. Sustain. Energy Rev. 2015, 41, 872–883. [Google Scholar] [CrossRef]
- Zhou, L.; Li, W.; Hu, H.; Zeng, H.; Chen, Q. Ce-doped TiZrCrMn alloys for enhanced hydrogen storage. Energy Fuels 2022, 36, 3997–4005. [Google Scholar] [CrossRef]
- Hu, H.; Ma, C.; Chen, Q. Mechanism and microstructural evolution of TiCrVFe hydrogen storage alloys upon de-/hydrogenation. J. Alloys Compd. 2021, 877, 160315. [Google Scholar] [CrossRef]
- Xue, X.; Ma, C.; Liu, Y.; Wang, H.; Chen, Q. Impacts of Ce dopants on the hydrogen storage performance of Ti-Cr-V alloys. J. Alloys Compd. 2023, 934, 167947. [Google Scholar] [CrossRef]
- Adams, R.E.; Grusenmeyer, T.A.; Griffith, A.L.; Schmehl, R.H. Transition metal hydride complexes as mechanistic models for proton reduction catalysis. Coord. Chem. Rev. 2018, 362, 44–53. [Google Scholar] [CrossRef]
- Bhaskar, A.; Muduli, R.C.; Kale, P. Prediction of hydrogen storage in metal hydrides and complex hydrides: A supervised machine learning approach. Int. J. Hydrogen Energy 2025, 98, 1212–1225. [Google Scholar] [CrossRef]
- Rossin, A.; Peruzzini, M. Ammonia–borane and amine–borane dehydrogenation mediated by complex metal hydrides. Chem. Rev. 2016, 116, 8848–8872. [Google Scholar] [CrossRef] [PubMed]
- Shet, S.P.; Shanmuga Priya, S.; Sudhakar, K.; Tahir, M. A review on current trends in potential use of metal-organic framework for hydrogen storage. Int. J. Hydrogen Energy 2021, 46, 11782–11803. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Q.; Ding, Z.; Jiang, H.; Yang, H.; Du, W.; Zheng, Y.; Huo, K.; Shaw, L.L. MOFs-based materials for solid-state hydrogen storage: Strategies and perspectives. Chem. Eng. J. 2024, 485, 149665. [Google Scholar] [CrossRef]
- Furukawa, H.; Yaghi, O.M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 2009, 131, 8875–8883. [Google Scholar] [CrossRef]
- Yang, C.C.; Wang, C.C.; Li, M.M.; Jiang, Q. A start of the renaissance for nickel metal hydride batteries: A hydrogen storage alloy series with an ultra-long cycle life. J. Mater. Chem. A 2017, 5, 1145–1152. [Google Scholar] [CrossRef]
- Sato, T.; Saitoh, H.; Utsumi, R.; Ito, J.; Nakahira, Y.; Obana, K.; Takagi, S.; Orimo, S. Hydrogen absorption reactions of hydrogen storage alloy LaNi5 under high pressure. Molecules 2023, 28, 1256. [Google Scholar] [CrossRef]
- Hu, W.-K. Studies on cobalt-free AB5-type hydrogen storage alloys. J. Alloys Compd. 1999, 289, 299–305. [Google Scholar] [CrossRef]
- Kalita, G.; Otsuka, R.; Endo, T.; Furukawa, S. Recent advances in substitutional doping of AB5 and AB2 type hydrogen storage metal alloys for Ni-MH battery applications. J. Alloys Compd. 2025, 1020, 179352. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, H.; Xu, J.; Yue, S.; Wang, L.; Liu, J.; Li, Y.; Ye, Y.; Yan, K.; Cheng, H. Function mechanism of Fe in improving cycle stability and plateau characteristics of AB5-type hydrogen storage alloys. Int. J. Hydrogen Energy 2024, 63, 1013–1024. [Google Scholar] [CrossRef]
- Wan, C.; Jiang, X.; Yin, X.; Ju, X. High-capacity Zr-based AB2-type alloys as metal hydride battery anodes. J. Alloys Compd. 2020, 828, 154402. [Google Scholar] [CrossRef]
- Qiao, W.; Liu, W.; Yin, D.; Ding, N.; Zhao, S.; Xiu, H.; Liu, C.; Wang, Y.; He, M.; Wang, C.; et al. Comprehensive improvement of AB2 hydrogen storage alloy: Substitution of rare earth elements for different A-side alloys. Chem. Eng. J. 2024, 495, 153489. [Google Scholar] [CrossRef]
- Téliz, E.; Abboud, M.; Faccio, R.; Esteves, M.; Zinola, F.; Díaz, V. Hydrogen storage in AB2 hydride alloys: Diffusion processes analysis. J. Electroanal. Chem. 2020, 879, 114781. [Google Scholar] [CrossRef]
- Zhao, H.; Yao, P.; Zhao, Y.; Zeng, Z.; Xia, C.; Yang, T. Microstructure and hydrogen storage properties of Zr-based AB2-type high entropy alloys. J. Alloys Compd. 2023, 960, 170665. [Google Scholar] [CrossRef]
- Ha, T.; Kim, J.-H.; Sun, C.; Lee, Y.-S.; Kim, D.-I.; Suh, J.-Y.; Jang, J.; Lee, J.; Kim, Y.; Shim, J.-H. Crucial role of Ce particles during initial hydrogen absorption of AB-type hydrogen storage alloys. Nano Energy 2023, 112, 108483. [Google Scholar] [CrossRef]
- Leng, H.; Yu, Z.; Luo, Q.; Yin, J.; Miao, N.; Li, Q.; Chou, K.-C. Effect of cobalt on the microstructure and hydrogen sorption performances of TiFe0.8Mn0.2 alloy. Int. J. Hydrogen Energy 2020, 45, 19553–19560. [Google Scholar] [CrossRef]
- Lee, S.-I.; Ha, T.; Lee, Y.-S.; Kim, D.-I.; Suh, J.-Y.; Cho, Y.W.; Hwang, B.; Lee, J.; Shim, J.-H. EBSD microstructural analysis of AB-type TiFe hydrogen storage alloys. Mater. Charact. 2021, 178, 111276. [Google Scholar] [CrossRef]
- Skryabina, N.; Aptukov, V.; De Rango, P.; Fruchart, D. Effect of temperature on fast forging process of Mg-Ni samples for fast formation of Mg2Ni for hydrogen storage. Int. J. Hydrogen Energy 2020, 45, 3008–3015. [Google Scholar] [CrossRef]
- Zhong, H.; Xu, J.; Jiang, C.; Lu, X. Microstructure and remarkably improved hydrogen storage properties of Mg2Ni alloys doped with metal elements of Al, Mn and Ti. Trans. Nonferrous Met. Soc. China 2018, 28, 2470–2477. [Google Scholar] [CrossRef]
- Huang, Z.; Li, C.; Chu, Y.; Gu, J.; Li, W.; Xie, J.; Gao, G.; Wang, H.; Fan, M.; Yao, Z. Potential and challenges for V-based solid solution hydrogen storage alloys. Energy 2025, 316, 134574. [Google Scholar] [CrossRef]
- Zhai, Y.T.; Li, Y.M.; Wei, S.H.; Tolj, I.; Kennedy, J.; Yang, F. Progress in V-BCC based solid solution hydrogen storage alloys. J. Energy Storage 2025, 109, 115103. [Google Scholar] [CrossRef]
- Young, K.-H.; Ouchi, T.; Nei, J.; Yasuoka, S. Fe-substitution for Ni in misch metal-based superlattice hydrogen absorbing alloys—Part 1. structural, hydrogen storage, and electrochemical properties. Batteries 2016, 2, 34. [Google Scholar] [CrossRef]
- Xin, G.; Yuan, H.; Yang, K.; Jiang, L.; Liu, X.; Wang, S. Investigation of the capacity degradation mechanism of La–Mg–Ca–Ni AB3-type alloy. Int. J. Hydrogen Energy 2016, 41, 21261–21267. [Google Scholar] [CrossRef]
- Iwatake, Y.; Okamoto, N.L.; Kishida, K.; Inui, H.; Ishida, J.; Kai, T.; Yasuoka, S. New crystal structure of Nd2Ni7 formed on the basis of stacking of block layers. Int. J. Hydrogen Energy 2015, 40, 3023–3034. [Google Scholar] [CrossRef]
- Liu, J.; Han, S.; Li, Y.; Zhang, L.; Zhao, Y.; Yang, S.; Liu, B. Phase structures and electrochemical properties of La–Mg–Ni-based hydrogen storage alloys with superlattice structure. Int. J. Hydrogen Energy 2016, 41, 20261–20275. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, Y.; Hu, M.; Zeng, C.; Liang, C. Rare earth-Mg-Ni-based alloys with superlattice structure for electrochemical hydrogen storage. J. Alloys Compd. 2021, 887, 161381. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Xu, J.; Zhu, S.; Cheng, H.; Yang, G.; Han, X.; Zhang, L.; Li, Y.; Han, S. A new strategy for enhancing the cycling stability of superlattice hydrogen storage alloys. Chem. Eng. J. 2021, 418, 129395. [Google Scholar] [CrossRef]
- Li, R.; Lu, H.; Pan, X.; Zhao, J.; Wang, W.; Li, Y.; Xi, N.; Peng, Q.; Han, S.; Zhang, L. Improvement on cyclic stability of AB4-type La–Mg–Ni-based hydrogen storage alloys via merging Y element for nickel-metal hydride batteries. Int. J. Hydrogen Energy 2023, 48, 32849–32859. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Yuan, H.; Jiang, L.; Mi, J.; Hao, L. Effect of Mn and Al on the superlattice La–Y–Ni-based hydrogen storage alloys in the long-period electrochemical cycling process. Int. J. Hydrogen Energy 2025, 109, 264–274. [Google Scholar] [CrossRef]
- Teng, Y.; Wang, R.; Sun, X.; Liu, B.; Liu, B.; Hu, B.; Luo, Q.; Li, Q. Composition screening and cycling degradation mechanisms of long-cycle-life superlattice hydrogen storage alloys. J. Alloys Compd. 2025, 1025, 180349. [Google Scholar] [CrossRef]
- Wang, R.; Teng, Y.; Xi, J.; Sun, X.; Luo, Q.; Li, Q. Design of La3−xYxNi9 (x = 0–3) alloys with good cyclic stability considering crystal structure and subunit volume. Int. J. Hydrogen Energy 2024, 83, 745–754. [Google Scholar] [CrossRef]
- Wang, W.; Xu, G.; Zhang, L.; Ma, C.; Zhao, Y.; Zhang, H.; Ding, Z.; Fu, Y.; Li, Y.; Han, S. Electrochemical features of Ce2Ni7-type La0.65Nd0.15Mg0.25Ni3.20M0.10 (M = Ni, Mn and Al) hydrogen storage alloys for rechargeable nickel metal hydride battery. J. Alloys Compd. 2021, 861, 158469. [Google Scholar] [CrossRef]
- Xu, J.; Yan, H.; Li, B.; Zhang, X.; Zhao, Y.; Zhou, S.; Yu, Z.; Xiong, W.; Xu, Y.; Wang, L. Microstructure and electrochemical properties of cobalt-substituted A2B7-type La–Y–Ni-based hydrogen storage alloys. Int. J. Hydrogen Energy 2024, 54, 1394–1402. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, S.; Zhang, X.; Luo, Q.; Zhao, Y.; Yan, H.; Li, Q. Insights into the structure–performance relationship in La–Y–Ni-based hydrogen storage alloys. Int. J. Hydrogen Energy 2023, 48, 25797–25807. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Han, D.; Yang, S.; Chen, X.; Zhang, L.; Han, S. Electrochemical performance and capacity degradation mechanism of single-phase La–Mg–Ni-based hydrogen storage alloys. J. Power Sources 2015, 300, 77–86. [Google Scholar] [CrossRef]
- Ren, L.; Li, Y.; Zhang, N.; Li, Z.; Lin, X.; Zhu, W.; Lu, C.; Ding, W.; Zou, J. Nanostructuring of Mg-based hydrogen storage materials: Recent advances for promoting key applications. Nano-Micro Lett. 2023, 15, 93. [Google Scholar] [CrossRef]
- Luo, Y.; Sun, L.; Xu, F.; Liu, Z. Improved hydrogen storage of LiBH4 and NH3BH3 by catalysts. J. Mater. Chem. A 2018, 6, 7293–7309. [Google Scholar] [CrossRef]
- Iwase, K.; Kunimoto, R.; Katagiri, R.; Mori, K. Effect of Mn substitution on crystal structure and cyclic property of Y–Ni alloy with superlattice structure. J. Solid State Chem. 2024, 340, 125001. [Google Scholar] [CrossRef]
- Nowak, M.; Balcerzak, M.; Jurczyk, M. Hydrogen storage and electrochemical properties of mechanically alloyed La1.5−xGdxMg0.5Ni7 (0 ≤ x ≤ 1.5). Int. J. Hydrogen Energy 2018, 43, 8897–8906. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, L.; Li, B.; He, X.; Zhang, X.; Xu, J.; Zhao, Y.; Yan, H. Regulation strategy of preparation methods for new spherical La-Y-Ni hydrogen storage alloy with ultra-long cycle lives. J. Power Sources 2025, 628, 235928. [Google Scholar] [CrossRef]
- He, X.; Xiong, W.; Wang, L.; Li, B.; Li, J.; Zhou, S.; Li, J.; Yan, H. Study on the evolution of phase and properties for ternary La-Y-Ni-based hydrogen storage alloys with different stoichiometric ratios. J. Alloys Compd. 2022, 921, 166064. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, S.; Chen, X.; Xu, J.; Zhang, L.; Yan, K.; Chen, W.; Cheng, H.; Han, S. Superior electrochemical performance of La-Mg-Ni-based alloys with novel A2B7-A7B23 biphase superlattice structure. J. Mater. Sci. Technol. 2021, 80, 128–138. [Google Scholar] [CrossRef]
- Du, J.; Wang, H.; Tang, R.; Liu, J.; Ouyang, L.; Zhu, M. Compositional tuning of A2B7-type La0.7−xYxMg0.3Ni3.5 alloys for gaseous hydrogen storage. J. Rare Earths 2024, 42, 1912–1919. [Google Scholar] [CrossRef]
- Lim, K.L.; Liu, Y.; Zhang, Q.-A.; Chan, S.L.I. Effects of partial substitutions of cerium and aluminum on the hydrogenation properties of La(0.65−x)CexCa1.03Mg1.32Ni(9−y)Aly alloy. Int. J. Hydrogen Energy 2014, 39, 10537–10545. [Google Scholar] [CrossRef]
- Lu, H.; Guo, Y.; Wang, Q.; Zhang, A.; Li, Y.; Xi, N.; Zhu, X.; Han, S.; Zhang, L. Phase transformation and electrochemical feature of an AB4 -type La0.60 Sm0.20 Mg0.20 Ni3.50 Al0.20 hydrogen storage alloy for Ni/MH batteries. J. Electrochem. Soc. 2023, 170, 080504. [Google Scholar] [CrossRef]
- Zhou, W.; Xiao, H.; Tang, R.; Liu, Y.; He, X.; Zhang, X.; Ma, C.; Jiang, Q.; Pu, C.; Pu, Z.; et al. Effect of Y-doping on microstructural evolution and hydrogen storage performance of La0.65YxCaMgNi9 alloy. J. Alloys Compd. 2025, 1018, 179244. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, W.; Su, H.; Lu, H.; Li, Y.; Peng, Q.; Han, S.; Zhang, L. Insights into the effect of Y substitution on superlattice structure and electrochemical performance of A5B19-type La-Mg-Ni-based hydrogen storage alloy for nickel metal hydride battery. J. Mater. Sci. Technol. 2025, 207, 60–69. [Google Scholar] [CrossRef]
- Iwase, K.; Sakaki, K.; Matsuda, J.; Nakamura, Y.; Ishigaki, T.; Akiba, E. Synthesis and crystal structure of a Pr5Ni19 superlattice alloy and its hydrogen absorption–desorption property. Inorg. Chem. 2011, 50, 4548–4552. [Google Scholar] [CrossRef]
- Iwase, K.; Mori, K.; Hoshikawa, A.; Ishigaki, T. Crystal structure of GdNi3 with superlattice alloy and its hydrogen absorption–desorption property. Int. J. Hydrogen Energy 2012, 37, 15170–15174. [Google Scholar] [CrossRef]
- Iwase, K.; Mori, K. Crystal structure and hydrogen storage property of Nd2Ni7 superlattice alloy. Int. J. Hydrogen Energy 2013, 38, 5316–5321. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, H.; Hu, R.; Jiang, W.; Liu, J.; Ouyang, L.; Zhu, M. Phase transformation and hydrogen storage properties of LaY2Ni10.5 superlattice alloy with single Gd2Co7-type or Ce2Ni7-type structure. J. Alloys Compd. 2021, 868, 159254. [Google Scholar] [CrossRef]
- Wan, C.; Zhao, S.; Wang, H.; Yang, L.; Liu, J.; Ouyang, L.; Zhu, M. Annealing temperature-dependent phase structure and electrochemical hydrogen storage properties of AB4-type La1.5Y1.5Ni12−xMnx (x = 0, 1.0) superlattice alloys. Int. J. Hydrogen Energy 2023, 48, 1472–1481. [Google Scholar] [CrossRef]
- Wan, C.; Zhao, S.; Wang, H. Tuning phase structure and electrochemical hydrogen storage properties of A5B19-type La–Y–Ni–Mn-based superlattice alloys by partial Al substitution. Int. J. Hydrogen Energy 2024, 49, 51–58. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Zhang, S.; Wang, W.; Zhang, L.; Li, Y.; Han, S.; Xu, G. Preparation and kinetic performances of single-phase PuNi3-, Ce2Ni7-, Pr5Co19-type superlattice structure La–Gd–Mg–Ni-based hydrogen storage alloys. Intermetallics 2020, 124, 106852. [Google Scholar] [CrossRef]
- Liu, J.; Han, S.; Li, Y.; Lv, Y.; Yang, S.; Zhang, J.; Wang, J. Phase structure and electrochemical characteristics of high-pressure sintered La–Mg–Ni-based hydrogen storage alloys. Electrochim. Acta 2013, 111, 18–24. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Wu, G.-J.; Gu, J.; Kang, H.-X.; Li, Y.; Zhou, D.; Wang, W.-F.; Zhang, L.; Han, S.-M. A2B7-type La–Mg–Ni alloys prepared by Mg thermal diffusion for improved hydrogen storage performance. Rare Met. 2024, 43, 3260–3272. [Google Scholar] [CrossRef]
- Zhang, J.; Villeroy, B.; Knosp, B.; Bernard, P.; Latroche, M. Structural and chemical analyses of the new ternary La5MgNi24 phase synthesized by Spark Plasma Sintering and used as negative electrode material for Ni-MH batteries. Int. J. Hydrogen Energy 2012, 37, 5225–5233. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Y.; Zhao, D.; Chen, Y.; Guan, S.; Liu, Y.; Liu, L.; Peng, S.; Kong, F.; Poplawsky, J.D.; et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature 2022, 608, 62–68. [Google Scholar] [CrossRef]
- Xu, R.; Cai, X.; Liu, H.; Wei, F. The phase structures and electrochemical properties of (La, Mg)(Ni, Co)3.7M0.1 (M = Zr, Cr, Al, Mn, Ni) hydrogen storage alloys. Int. J. Electrochem. Sci. 2023, 18, 100237. [Google Scholar] [CrossRef]
- Bouzidi, W.; Patout, L.; Charai, A.; Mliki, N.; Bessais, L. Crystal structure of nanocrystalline Pr5Co19 compound and its hydrogen storage properties. Int. J. Hydrogen Energy 2020, 45, 11190–11198. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, H.; Yang, L.; Liu, J.; Ouyang, L.; Zhu, M. Modulating superlattice structure and cyclic stability of Ce2Ni7-type LaY2Ni10.5-based alloys by Mn, Al, and Zr substitutions. J. Power Sources 2022, 524, 231067. [Google Scholar] [CrossRef]
- Cao, J.; Zhao, Y.; Zhang, L.; Jia, Z.; Wang, W.; Dong, Z.; Han, S.; Li, Y. Effect and mechanism of Mg on crystal structures and electrochemical cyclic stability of Ce2Ni7-type La Mg Ni-based hydrogen storage alloys. Int. J. Hydrogen Energy 2018, 43, 17800–17808. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, H.; Han, S.; Liu, H.; Huot, J. Hydrogen storage properties and cycling degradation of single-phase La0.60R0.15Mg0.25Ni3.45 alloys with A2B7-type superlattice structure. Energy 2020, 192, 116617. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Rodríguez-Pérez, I.A.; Zhao, Y.; Jia, Z.; Li, Y.; Han, S.; Wang, L.-M. A new AB4-type single-phase superlattice compound for electrochemical hydrogen storage. J. Power Sources 2018, 401, 102–110. [Google Scholar] [CrossRef]
- Zhang, N.; Lu, H.; Wang, W.-F.; Jia, Q.-Y.; Zhang, A.-Y.; Li, Y.; Xi, N.; Han, S.-M.; Zhang, L. Highlighting the electrochemical performance of AB4-type single-phase La0.60Sm0.22Mg0.18Ni4.09Al0.09Mn0.10 hydrogen storage alloy for nickel metal hydride batteries. Rare Met. 2025, 44, 3392–3404. [Google Scholar] [CrossRef]
- Wu, G.; Xie, Y.; Li, Y.; Wang, Q.; Fan, C.; Wang, W.; Zhang, L.; Han, S. Effect of Y, Al Co-doping on hydrogen storage properties of La–Mg–Ni-based alloys. Acta Metall. Sin. (Engl. Lett.) 2024, 37, 1399–1410. [Google Scholar] [CrossRef]
- Xu, G.; He, X.; Ma, Y.; Zhou, S.; Zhang, X.; Zhao, Y.; Xiong, W.; Li, B.; Wang, L.; Yan, H. Effect of equivalent La and Ce substitution for Y on the structure and properties of A2B7 -type La–Y–Ni-based hydrogen storage alloys. J. Phys. Chem. C 2024, 128, 18950–18961. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, H.; Jiang, L.; Hou, Z.; Li, Z.; Wu, Y.; Li, P. Microstructure and gas-solid hydrogen storage properties of La1−xCexY2Ni10.95Mn0.45 (x = 0–0.75) alloys. J. Alloys Compd. 2024, 976, 173069. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, Z.; Yang, T.; Bu, W.; Hou, Z.; Zhao, D. Gaseous hydrogen storage thermodynamics and kinetics of RE–Mg–Ni-based alloys prepared by mechanical milling. J. Cent. South Univ. 2017, 24, 773–781. [Google Scholar] [CrossRef]
- Zhang, A.; Pan, X.; Zhang, N.; Jia, Q.; Wu, G.; Wang, W.; Han, S.; Li, Y.; Zhang, L. Unraveling the hydrogen storage features of A5B19-type La0.67R0.05Y0.13Mg0.15Ni3.70Al0.15 (R = La, Ce, Nd, Sm, Gd) alloys. Int. J. Hydrogen Energy 2024, 86, 228–235. [Google Scholar] [CrossRef]
- Guo, M.; Yuan, H.; Liu, Y.; Jiang, L. Effect of Sm on the cyclic stability of La–Y–Ni-based alloys and their comparison with RE–Mg–Ni-based hydrogen storage alloy. Int. J. Hydrogen Energy 2021, 46, 7432–7441. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, Y.; Zhao, Y.; Du, W.; Li, Y.; Yang, S.; Han, S. Phase structure and cycling stability of A2B7 superlattice La0.60Sm0.15Mg0.25Ni3.4 metal hydride alloy. Int. J. Hydrogen Energy 2016, 41, 1791–1800. [Google Scholar] [CrossRef]
- Liu, J.; Qin, C.; Chen, X.; Zhang, L.; Li, Y.; Han, S.; Rong, Z.; Cheng, H.; Yang, H.; Zhu, W. Prolonging cycling life of AB3-type superlattice alloys by adjusting hydrogen absorption/desorption behaviors of [A2B4] and [AB5] subunits. Int. J. Hydrogen Energy 2024, 53, 946–957. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, S.; Liu, X.; Wang, W.; Zhang, L.; Li, Y.; Han, S. Phase formation of Ce5Co19-type super-stacking structure and its effect on electrochemical and hydrogen storage properties of La0.60M0.20Mg0.20Ni3.80 (M = La, Pr, Nd, Gd) compounds. Int. J. Hydrogen Energy 2018, 43, 17809–17820. [Google Scholar] [CrossRef]
- Liu, J.; Han, S.; Li, Y.; Yang, S.; Chen, X.; Wu, C.; Ma, C. Effect of Pr on phase structure and cycling stability of La–Mg–Ni-based alloys with A2B7- and A5B19-type superlattice structures. Electrochim. Acta 2015, 184, 257–263. [Google Scholar] [CrossRef]
- He, X.; Hu, H.; Tang, R.; Zhou, W.; Xiao, H.; Zhang, X.; Ma, C.; Chen, Q. Effect of cobalt substitution for nickel on microstructural evolution and hydrogen storage properties of La0.66Mg0.34Ni3.5−xCox alloys. J. Rare Earths 2024, 42, 930–939. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Q.; Su, H.; Zhang, L.; Guo, Y.; Lu, H.; Li, Y.; Liu, J.; Han, S.; Wang, D. Enhanced cycling durability of A5B19-type single-phase La–Mg–Ni-based hydrogen storage alloy via turning the superlattice structure by Mg. Int. J. Hydrogen Energy 2024, 71, 741–749. [Google Scholar] [CrossRef]
- Zhang, A.; Li, R.; Lu, H.; Zhao, J.; Wang, W.; Liu, J.; Li, Y.; Han, S.; Zhang, L. Effects of Mn and Fe elements on the electrochemical hydrogen storage properties of the A5B19-type La-Y-Mg-Ni-Al alloy for nickel metal hydride battery. J. Alloys Compd. 2024, 992, 174229. [Google Scholar] [CrossRef]
- Yin, W.; Zhao, R.; Wan, C.; Wang, H.; Huang, M.; Ju, X.; Wu, Y. Insights into the effects of Co and Al on the structural evolution and hydrogen storage properties of La0.25Y0.75MgNi3.5(Co, Al)0.5 alloys. J. Energy Storage 2024, 90, 111926. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Zhang, J.; Chen, P.; Wang, Y.; Zhai, T.; Liu, Z.; Feng, D. Effect of Y content on the microstructure and hydrogen storage properties of annealed La1−xYxMgNi3.8Al0.2 (x = 0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys. J. Alloys Compd. 2024, 1005, 175868. [Google Scholar] [CrossRef]
- Young, K.; Ouchi, T.; Wang, L.; Wong, D.F. The effects of Al substitution on the phase abundance, structure and electrochemical performance of La0.7Mg0.3Ni2.8Co0.5−xAlx (x = 0, 0.1, 0.2) alloys. J. Power Sources 2015, 279, 172–179. [Google Scholar] [CrossRef]
- Lv, W.; Shi, Y.; Deng, W.; Yuan, J.; Yan, Y.; Wu, Y. Microstructural evolution and performance of hydrogen storage and electrochemistry of Co-added La0.75Mg0.25Ni3.5−xCox (x = 0, 0.2, 0.5 at%) alloys. Prog. Nat. Sci. Mater. Int. 2017, 27, 424–429. [Google Scholar] [CrossRef]
Property | Superlattice Alloys | Mg-Based Hydrides | Complex Hydrides |
---|---|---|---|
Theoretical Hydrogen Storage Capacity | <2 wt% | <7.6 wt% | <18 wt% (LiBH4) |
Operating Temperature | 25–80 °C | 250–400 °C (catalyst required) | 100–400 °C (dependent components) |
Hydrogen Absorption/Desorption Kinetics | Quicker (nanomaterial structure optimization) | Slow (need ball milling/doping for improvement) | Very slow (requires nano-scale confinement or catalysts) |
Key Limitation | High synthesis cost | Sluggish dehydrogenation kinetics | Poor reversibility |
Preparation Method | Alloy Ratio | Annealing/ Sintering Temperature | Phases | Abundance (wt%) | Hydrogen Storage Capacity (wt%) | Cyclic Stability | Ref. |
---|---|---|---|---|---|---|---|
Induction Melting + Annealing | La0.60Pr0.15Mg0.25Ni3.25 | 1253 K | 2H-(La, Mg)2Ni7 | 100 | / | / | [63] |
La0.60Sm0.20Mg0.20Ni3.50Al0.20 | 1243 K | A5B19 | / | / | 88.7% (100 cycles) | [66] | |
CaCu5 | / | ||||||
AB4 | 62.5 | ||||||
La0.65Ca1.03Mg1.32Ni9 | / | A3B9 | 78 | 1.60 | / | [65] | |
AB5 | 22 | ||||||
La0.15Ce0.5Ca1.03Mg1.32Ni6.5Al2.5 | A3B9 | 7 | 0.70 | / | |||
AB5 | 29 | ||||||
AB2 | 18 | ||||||
A2B7 | 5 | ||||||
La0.65CaMgNi9 | 1223 K | A3B9 | 79.6 | 1.73 | 87% (100 cycles) | [67] | |
AB5 | 20.4 | ||||||
La0.65Y0.05CaMgNi9 | A3B9 | 59.0 | 1.80 | / | |||
AB5 | 41.0 | ||||||
La0.65Y0.10CaMgNi9 | A3B9 | 54.6 | 1.97 | 91% (100 cycles) | |||
AB5 | 45.4 | ||||||
La0.65Y0.15CaMgNi9 | A3B9 | 49.1 | 1.54 | / | |||
AB5 | 50.9 | ||||||
La0.75−xGdxMg0.25Ni3.5 (x = 0.15) | 1223 K, 1263 K, 1273 K, 1283 K | 2H-type (La,Mg)2Ni7 | 100 | / | 88.2% (100 cycles) | [48] | |
La0.7Mg0.3Ni3.5 | / | Gd2Co7 | 6.9 | 1.63 | / | [64] | |
PuNi3 | 75.8 | ||||||
CaCu5 | 17.3 | ||||||
La0.56Y0.14Mg0.3Ni3.5 | Gd2Co7 | 24.8 | 1.59 | / | |||
PuNi3 | 61.1 | ||||||
CaCu5 | 14.1 | ||||||
La0.42Y0.28Mg0.3Ni3.5 | Gd2Co7 | 36.9 | 1.55 | 94.2% (50 cycles) | |||
PuNi3 | 46.6 | ||||||
CaCu5 | 16.5 | ||||||
La0.35Y0.35Mg0.3Ni3.5 | Gd2Co7 | 52.9 | 1.43 | / | |||
PuNi3 | 38.4 | ||||||
CaCu5 | 8.7 | ||||||
La0.62Sm0.15Mg0.23Ni3.55Al0.15 | 1203 K | Ce2Ni7 | 100 | / | / | [68] | |
La0.60Sm0.15Y0.02Mg0.23Ni3.55Al0.15 | Ce2Ni7 | 73.4 | 1.32 | 93% (40 cycles) | |||
Ce5Co19 | 23.9 | ||||||
Pr5Co19 | 2.7 | ||||||
1148 K | 2H-A2B7 | 60.16 | / | / | |||
3R-A2B7 | 39.84 | ||||||
1323 K | 2H-A2B7 | 100 | / | / | |||
1398 K | 2H-A2B7 | 61.64 | / | / | |||
2H-A5B19 | 36.74 | ||||||
Y2O3 | 1.62 | ||||||
La0.60Sm0.15Y0.02Mg0.23Ni3.55Al0.15 | Ce2Ni7 | 73.4 | 1.28 | 89% (40 cycles) | |||
Ce5Co19 | 23.9 | ||||||
Pr5Co19 | 2.7 | ||||||
1148 K | 2H-A2B7 | 60.16 | / | / | |||
3R-A2B7 | 39.84 | ||||||
1323 K | 2H-A2B7 | 100 | / | / | |||
1398 K | 2H-A2B7 | 61.64 | / | / | |||
2H-A5B19 | 36.74 | ||||||
Y2O3 | 1.62 |
Preparation Method | Alloy Ratio | Annealing/ Sintering Temperature | Phases | Abundance (wt%) | Hydrogen Storage Capacity (wt%) | Cyclic Stability | Ref. |
---|---|---|---|---|---|---|---|
Arc Melting + Annealing | Pr5Ni19 | 1403 K | Sm5Co19 | 100 | 1.1 | / | [69] |
Nd2Ni7 | 1448 K | Ce2Ni7 | 88 | 1.22 | / | [62] | |
CaCu5 | 12 | ||||||
GdNi3 | 1223 K | PuNi3 | 98 | 1.07 | / | [70] | |
CaCu5 | 2 | ||||||
LaY2Ni10.5 | / | La7Ni16 | 1.0 | 1.49 | / | [72] | |
PuNi3 | 11.6 | ||||||
Ce2Ni7 | 21.9 | ||||||
Gd2Co7 | 38.0 | ||||||
Ce5Co19 | 15.7 | ||||||
CaCu5 | 11.8 | ||||||
1273 K | Gd2Co7 | 100 | / | / | |||
1373 K | Ce2Ni7 | 100 | / | / | |||
La1.5Y1.5Ni12 | 1373 K | 3R-AB4 | 50.9 | 1.33 | / | [73] | |
AB5 | 4.92 | ||||||
2H-Pr5Co19 | 44.1 | ||||||
1388 K | 3R-AB4 | 62.2 | |||||
2H-Pr5Co19 | 37.7 | ||||||
1393 K | 3R-AB4 | 100 | |||||
1398 K | 3R-AB4 | 93.6 | |||||
AB5 | 6.32 | ||||||
La1.5Y1.5Ni11Mn1.0 | 1323 K | 2H-Pr5Co19 | 100 | / | / | ||
1343 K | 3R-AB4 | 68.3 | |||||
AB5 | 18.9 | ||||||
2H-Pr5Co19 | 12.6 | ||||||
1358 K | 3R-AB4 | 94.1 | |||||
2H-Pr5Co19 | 5.86 | ||||||
1361 K | 3R-AB4 | 100 | |||||
1368 K | 3R-AB4 | 75.2 | |||||
AB5 | 24.8 | ||||||
(La0.33Y0.67)5Ni18.1Mn0.9 | 1423 K | 2H-Pr5Co19 | 95.8 | / | / | [74] | |
2H-Ce2Ni7 | 4.2 | ||||||
(La0.33Y0.67)5Ni17.8Mn0.9Al0.3 | 1373 K | 2H-Pr5Co19 | 88.8 | / | / | ||
2H-Ce2Ni7 | 11.2 | ||||||
(La0.33Y0.67)5Ni17.5Mn0.9Al0.6 | 2H-Pr5Co19 | 85.8 | / | 69.8 (200 cycles) | |||
2H-Ce2Ni7 | 14.2 | ||||||
(La0.33Y0.67)5Ni17.2Mn0.9Al0.9 | 2H-Pr5Co19 | 93.4 | / | / | |||
2H-Ce2Ni7 | 6.6 | ||||||
1148 K | 2H-A2B7 | 60.16 | / | / | |||
3R-A2B7 | 39.84 | ||||||
1323 K | 2H-A2B7 | 100 | |||||
1398 K | 2H-A2B7 | 61.64 | |||||
2H-A5B19 | 36.74 | ||||||
Y2O3 | 1.62 |
Preparation Method | Alloy Ratio | Annealing/ Sintering Temperature | Phases | Abundance (wt%) | Hydrogen Storage Capacity (wt%) | Cyclic Stability | Ref. |
---|---|---|---|---|---|---|---|
High-Pressure Sintering | La0.25Mg0.75Ni3.5- 1.5 GPa | 1173 K | Ce2Ni7 | 35.9 | / | / | [76] |
Pr5Co19 | 64.1 | ||||||
La0.25Mg0.75Ni3.5- 2.0 GPa | Ce2Ni7 | 45.1 | / | / | |||
Pr5Co19 | 53.0 | ||||||
LaNi5 | 1.9 | ||||||
La0.25Mg0.75Ni3.5- 2.5 GPa | Ce2Ni7 | 53.2 | / | / | |||
Pr5Co19 | 42.0 | ||||||
LaNi5 | 4.8 | ||||||
La0.25Mg0.75Ni3.5- 4.0 GPa | Ce2Ni7 | 49.4 | / | / | |||
Pr5Co19 | 31.0 | ||||||
LaNi5 | 22.6 | ||||||
MgNi2 | 6.2 | ||||||
Thermal Diffusion Sintering Method | Mg(0)/La0.74Sm0.03Y0.23Ni4.32Al0.04 (1) | 1023 K | LaNi5 | 66 | 1.48 | / | [77] |
Gd2Co7 | 12 | ||||||
Ce5Co19 | 22 | ||||||
Mg(0.17)/La0.74Sm0.03Y0.23Ni4.32Al0.04 (0.83) | Gd2Co7 | 46 | / | / | |||
Ce5Co19 | 54 | ||||||
Mg(0.21)/La0.74Sm0.03Y0.23Ni4.32Al0.04 (0.79) | Gd2Co7 | 44 | / | / | |||
Ce2Ni7 | 56 | ||||||
Mg(0.28)/La0.74Sm0.03Y0.23Ni4.32Al0.04 (0.72) | Gd2Co7 | 64 | 1.72 | 89.33% (20 cycles) | |||
Ce2Ni7 | 36 | ||||||
Mg(0.33)/La0.74Sm0.03Y0.23Ni4.32Al0.04 (0.67) | MgCu4Sn | 4 | / | / | |||
Gd2Co7 | 70 | ||||||
Ce2Ni7 | 26 | ||||||
Mg(0.38)/La0.74Sm0.03Y0.23Ni4.32Al0.04 (0.62) | MgCu4Sn | 14 | 1.69 | / | |||
Gd2Co7 | 59 | ||||||
Ce2Ni7 | 27 | ||||||
Stepwise Sintering Method | La0.6Gd0.15Mg0.25Ni3.8 | 1203 K | Pr5Co19 | 100 | / | / | [75] |
La0.6Gd0.15Mg0.25Ni3.5 | Ce2Ni7 | 100 | |||||
La0.6Gd0.15Mg0.25Ni3.0 | PuNi3 | 100 | |||||
La2MgNi9 | 1293 K | 3R-AB3 | 100 | 1.596 | / | [56] | |
La3MgNi14 | 2H-A2B7 | 100 | 1.587 | / | |||
La4MgNi19 | 2H,3R-A5B19 | / | 1.569 | / |
Preparation Method | Alloy Ratio | Annealing/ Sintering Temperature | Phases | Abundance (wt%) | Hydrogen Storage Capacity (wt%) | Cyclic Stability | Ref. |
---|---|---|---|---|---|---|---|
Induction Melting + Annealing | La2Y4Ni20.8Mn1.2Al0.8 | 1148 K | Ce2Ni7 | 52.36 | 1.48 | 78.9 (100 cycles) | [61] |
GdCo5 | 15.61 | ||||||
Ce5Co19 | 32.03 | ||||||
Rapid Quenching + Annealing | Ce2Ni7 | 59.58 | 1.52 | 87.5 (100 cycles) | |||
Gd2Co7 | 40.42 | ||||||
Gas Atomization + Annealing | Ce2Ni7 | 50.21 | 1.40 | 90.5 (100 cycles) | |||
Gd2Co7 | 35.72 | ||||||
GdCo5 | 14.08 | ||||||
Levitation Melting + Annealing | La0.85Mg0.15Ni2.65Co1.05Zr0.1 | 1173 K | LaNi5 | 52.05 | / | 88.3 (100 cycles) | [80] |
Ce5Co19 | 17.29 | ||||||
Pr5Co19 | 10.35 | ||||||
Ce2Ni7 | 20.31 | ||||||
La0.85Mg0.15Ni2.65Co1.05Cr0.1 | LaNi5 | 41.12 | / | 77.9 (100 cycles) | |||
Ce5Co19 | 31.88 | ||||||
Pr5Co19 | 24.24 | ||||||
Ce2Ni7 | 2.76 | ||||||
La0.85Mg0.15Ni2.65Co1.05Al0.1 | LaNi5 | 44.82 | / | 86.7 (100 cycles) | |||
Ce5Co19 | 28.68 | ||||||
Pr5Co19 | 8.26 | ||||||
Ce2Ni7 | 18.24 | ||||||
La0.85Mg0.15Ni2.65Co1.05Mn0.1 | LaNi5 | 37.69 | / | 75.8 (100 cycles) | |||
Ce5Co19 | 33.38 | ||||||
Pr5Co19 | 20.96 | ||||||
Ce2Ni7 | 7.98 | ||||||
La0.85Mg0.15Ni2.65Co1.05Ni0.1 | LaNi5 | 6.80 | / | 82.4 (100 cycles) | |||
Ce5Co19 | 83.60 | ||||||
Pr5Co19 | 9.61 | ||||||
Rapid Quenching + Annealing | LaY1.9Ni10Mn0.5Al0.2 | / | 2H-A2B7 | 45.40 | / | / | [55] |
3R-A2B7 | 30.50 | ||||||
3R-A5B19 | 18.08 | ||||||
AB5 | 6.02 | ||||||
1148 K | 2H-A2B7 | 60.16 | / | / | |||
3R-A2B7 | 39.84 | ||||||
1323 K | 2H-A2B7 | 100 | / | / | |||
1398 K | 2H-A2B7 | 61.64 | / | / | |||
2H-A5B19 | 36.74 | ||||||
Y2O3 | 1.62 |
Alloy | Hydrogen Absorption Capacity/wt% | Reversible Capacity/wt% | Platform Pressure/MPa | ΔH/ kJ mol−1 | Ref. | ||
---|---|---|---|---|---|---|---|
Absorption | Desorption | Absorption | Desorption | ||||
LaY2Ni10.5 | 1.49 | 1.29 | 0.26 | / | / | [72] | |
La1.5Y1.5Ni12 | 1.33 | 0.8 | 5.8 | 0.05 | / | [73] | |
La0.60Pr0.15Mg0.25Ni3.45 | 1.44 | 1.13 | 0.097 | 0.027 | −37.5 | 38.2 | [84] |
La0.60Nd0.15Mg0.25Ni3.45 | 1.43 | 1.16 | 0.106 | 0.039 | −36.6 | 37.3 | |
La0.60Gd0.15Mg0.25Ni3.45 | 1.43 | 1.22 | 0.116 | 0.116 | −36.0 | 36.2 | |
LaY2Ni9 | 1.56 | / | / | −35.23 | / | [62] | |
La2Y4Ni21 | 1.59 | / | / | −32.86 | / | ||
La5Y10Ni57 | 1.35 | / | / | −31.92 | / | ||
La0.78Mg0.22Ni3.67Al0.10 | 1.50 | / | / | −23.2 | 24.2 | [85] | |
La0.60Sm0.22Mg0.18Ni4.09Al0.09Mn0.10 | 1.38 | / | 0.029 | / | −25.5 | 28.3 | [86] |
Alloy | Hydrogen Absorption Capacity/wt% | Reversible Capacity/wt% | Platform Pressure/MPa | Hf | ΔH/kJ mol−1 | Ref. | ||
---|---|---|---|---|---|---|---|---|
Absorption | Desorption | Absorption | Desorption | |||||
La0.65Y0.10CaMgNi9 | 1.93 | 1.91 | 0.29 | / | −27.1 | 26.8 | [67] | |
La0.52Y0.44Mg0.04Ni3.21Al0.26 | 1.449 | / | 0.188 | 0.139 | 0.302 | −29.216 | 27.572 | [87] |
La0.7Mg0.3Ni3.5 | 1.63 | 1.42 | 0.088 | 0.054 | 0.49 | / | [64] | |
La0.56Y0.14Mg0.3Ni3.5 | 1.59 | 1.51 | 0.154 | 0.088 | 0.56 | / | ||
La0.42Y0.28Mg0.3Ni3.5 | 1.55 | 1.49 | 0.489 | 0.244 | 0.70 | −32.18 | 31.01 | |
La0.35Y0.35Mg0.3Ni3.5 | 1.43 | 1.39 | 0.617 | 0.356 | 0.55 | / | ||
La0.64Sm0.15Mg0.20Ni3.56Al0.15 | 1.28 | / | 0.019 | / | −33.9 | 35.3 | [68] | |
La0.62Sm0.16Y0.02Mg0.20Ni3.56Al0.15 | 1.32 | / | 0.022 | / | −32.3 | 34.6 | ||
La0.65Ca1.03Mg1.32Ni9 | 1.49 | 1.16 | 0.10 | 0.04 | / | [65] | ||
La1Y2Ni10.95Mn0.45 | 1.64 | 0.56 | 0.14/0.04 | 0.09/0.03 | 0.41/0.43 | −32.66/−33.87 | / | [89] |
La0.85Ce0.15Y2Ni10.95Mn0.45 | 1.65 | 1.06 | 0.18/0.07 | 0.15/0.05 | 0.22/0.44 | −32.06/−31.96 | / | |
La0.70Ce0.30Y2Ni10.95Mn0.45 | 1.62 | 1.20 | 0.27/0.11 | 0.22/0.07 | 0.18/0.41 | −31.60/−30.75 | / | |
La0.55Ce0.45Y2Ni10.95Mn0.45 | 1.61 | 1.35 | 0.30 | 0.23 | 0.26 | −29.95 | / | |
La0.40Ce0.60Y2Ni10.95Mn0.45 | 1.57 | 1.23 | 0.36 | 0.25 | 0.37 | −28.25 | / | |
La0.25Ce0.75Y2Ni10.95Mn0.45 | 1.56 | 1.08 | 0.58 | 0.33 | 0.56 | −27.38 | / | |
La0.67R0.05Y0.13Mg0.15Ni3.70Al0.15 | 1.23 | / | 0.008 | 0.004 | 0.69 | −31.2 | 34.3 | [91] |
La0.67R0.05Y0.13Mg0.15Ni3.70Al0.15 | 1.46 | / | 0.010 | 0.004 | 0.92 | −38.1 | 46.3 | |
La0.67R0.05Y0.13Mg0.15Ni3.70Al0.15 | 1.50 | / | 0.015 | 0.008 | 0.63 | −30.3 | 26.6 | |
La0.67R0.05Y0.13Mg0.15Ni3.70Al0.15 | 1.43 | / | 0.014 | 0.003 | 1.54 | −30.3 | 26.6 | |
La0.67R0.05Y0.13Mg0.15Ni3.70Al0.15 | 1.37 | / | 0.011 | 0.007 | 0.45 | −34.0 | 31.1 |
Alloy | Hydrogen Absorption Capacity/ wt% | Reversible Capacity/wt% | Platform Pressure/MPa | Hf | ΔH/kJ mol−1 | Ref. | ||
---|---|---|---|---|---|---|---|---|
Absorption | Desorption | Absorption | Desorption | |||||
La0.66Mg0.34Ni3.5 | 1.63 | 1.45 | 0.169 | 0.060 | 1.04 | 30.84 | [97] | |
La0.66Mg0.34Ni3.4Co0.1 | 1.77 | 1.60 | 0.131 | 0.061 | 0.76 | / | 29.85 | |
La0.66Mg0.34Ni3.3Co0.2 | 1.69 | 1.53 | 0.128 | 0.062 | 0.72 | 29.18 | ||
La0.66Mg0.34Ni3.2Co0.3 | 1.73 | 1.55 | 0.124 | 0.065 | 0.64 | 27.10 | ||
La0.66Mg0.34Ni3.1Co0.4 | 1.70 | 1.59 | 0.132 | 0.079 | 0.51 | 26.02 | ||
La0.7Mg0.3Ni3.5 | 1.63 | 1.42 | 0.088 | 0.054 | 0.49 | / | / | [64] |
La0.42Y0.28Mg0.3Ni3.5 | 1.55 | 1.49 | 0.489 | 0.244 | 0.70 | −32.18 | 31.01 | |
La0.64Sm0.15Mg0.20Ni3.56Al0.15 | 1.28 | / | 0.009 | 0.005 | −33.9 | 35.3 | [68] | |
La0.62Sm0.16Y0.02Mg0.20Ni3.56Al0.15 | 1.32 | / | 0.008 | 0.004 | / | −32.3 | 34.6 | |
La0.58Sm0.18Y0.01Mg0.20Ni3.62Al0.16 | 1.39 | / | 0.030 | 0.025 | / | −24.4 | 26.4 | [98] |
La0.58Sm0.21Y0.01Mg0.23Ni3.62Al0.16 | 1.35 | / | 0.036 | 0.030 | / | −25.9 | 29.2 | |
La0.72Y0.13Mg0.15Ni3.65Al0.15Mn0.05 | 1.38 | / | 0.007 | 0.006 | / | −29.7 | 25.4 | [99] |
La0.72Y0.13Mg0.15Ni3.65Al0.15Fe0.05 | 1.44 | / | 0.014 | 0.006 | / | −22.9 | 24.8 | |
La0.74Y0.22Mg0.04Ni3.338Al0.132 | 1.352 | 0.281 | 0.187 | 0.407 | −27.10 | 25.24 | [87] | |
La0.63Y0.33Mg0.04Ni3.722Al0.198 | 1.381 | 0.226 | 0.155 | 0.377 | −28.29 | 26.31 | ||
La0.52Y0.44Mg0.04Ni3.206Al0.264 | 1.449 | / | 0.188 | 0.139 | 0.302 | −29.22 | 27.57 | |
LaY2Ni10.95Mn0.45 | 1.64 | 0.56 | 0.14/0.04 | 0.09/0.03 | 0.41/0.43 | / | 32.66/33.87 | [89] |
La0.85Ce0.15Y2Ni10.95Mn0.45 | 1.65 | 1.06 | 0.18/0.07 | 0.15/0.05 | 0.22/0.44 | / | 32.06/31.96 | |
La0.25Ce0.75Y2Ni10.95Mn0.45 | 1.56 | 1.08 | 0.33 | 0.33 | 0.56 | / | 27.38 | |
La0.3Mg0.7Ni2.8Co0.5 | 1.64 | 1.46 | 0.027 | 0.014 | 0.65 | / | [102] | |
La0.75Mg0.25Ni3.3Co0.2 | 1.14 | / | 0.04 | 0.027 | 0.4 | / | [103] | |
Mm0.83Mg0.17Ni2.89Al0.17Co0.2Fe0.05 | 1.39 | 1.23 | 0.0146 | 0.0116 | 0.23 | −33 | / | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, Y.; He, T.; Wang, H.; Zhang, S.; Wang, J.; Xue, X.; Liu, Y.; Chen, B. Advances in Superlattice Hydrogen Storage Alloys: Preparation Method, Phase Structure Modulation, and Hydrogen Storage Performance. Molecules 2025, 30, 2161. https://doi.org/10.3390/molecules30102161
Zhang Y, Zhang Y, He T, Wang H, Zhang S, Wang J, Xue X, Liu Y, Chen B. Advances in Superlattice Hydrogen Storage Alloys: Preparation Method, Phase Structure Modulation, and Hydrogen Storage Performance. Molecules. 2025; 30(10):2161. https://doi.org/10.3390/molecules30102161
Chicago/Turabian StyleZhang, Yuqing, Yajie Zhang, Tianmeng He, Hao Wang, Shubin Zhang, Jinpeng Wang, Xiaoyi Xue, Yanrong Liu, and Biaohua Chen. 2025. "Advances in Superlattice Hydrogen Storage Alloys: Preparation Method, Phase Structure Modulation, and Hydrogen Storage Performance" Molecules 30, no. 10: 2161. https://doi.org/10.3390/molecules30102161
APA StyleZhang, Y., Zhang, Y., He, T., Wang, H., Zhang, S., Wang, J., Xue, X., Liu, Y., & Chen, B. (2025). Advances in Superlattice Hydrogen Storage Alloys: Preparation Method, Phase Structure Modulation, and Hydrogen Storage Performance. Molecules, 30(10), 2161. https://doi.org/10.3390/molecules30102161