Recent Advances in the Synthesis of Benzo[d]isothiazol-3(2H)-One and Benzo[e][1,3]Thiazin-4-One Derivatives
Abstract
:1. Introduction
2. Synthesis of Benzo[d]isothiazol-3(2H)-Ones via Intramolecular and Intermolecular Pathways
2.1. Synthesis of Benzo[d]isothiazol-3(2H)-Ones via Intramolecular Pathways
2.2. Synthesis of Benzo[d]isothiazol-3(2H)-Ones via Intermolecular Pathways
3. Synthesis of 2,3-Dihydro-4H-Benzo[e][1,3]Thiazin-4-Ones via Intramolecular and Intermolecular Pathways
3.1. Synthesis of 2,3-Dihydro-4H-Benzo[e][1,3]Thiazin-4-Ones via Intramolecular Pathways
3.2. Synthesis of 2,3-Dihydrobenzothiazin-4-Ones via Intermolecular Pathways
4. Synthesis of 4H-Benzo[e][1,3]Thiazin-4-Ones via Intermolecular Pathways
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaur, B.; Singh, G.; Sharma, V.; Singh, I. Sulphur containing heterocyclic compounds as anticancer agents. Anticancer Agents Med. Chem. 2023, 23, 869–881. [Google Scholar] [PubMed]
- Obaid, R.J.; Mughal, E.U.; Naeem, N.; Al-Rooqi, M.M.; Sadiq, A.; Jassas, R.S.; Moussa, Z.; Ahmed, S.A. Pharmacological significance of nitrogen-containing five and six-membered heterocyclic scaffolds as potent cholinesterase inhibitors for drug discovery. Process Biochem. 2022, 120, 250–259. [Google Scholar] [CrossRef]
- Hemming, K. Heterocyclic chemistry. Annu. Rep. Prog. Chem. Sect. B Org. Chem. 2011, 107, 118–137. [Google Scholar] [CrossRef]
- Gopinath, P.; Yadav, R.K.; Shukla, P.K.; Srivastava, K.; Puri, S.K.; Muraleedharan, K.M. Broad spectrum anti-infective properties of benzisothiazolones and the parallels in their anti-bacterial and anti-fungal effects. Bioorg. Med. Chem. Lett. 2017, 27, 1291–1295. [Google Scholar] [CrossRef]
- Lai, H.; Dou, D.; Aravapalli, S.; Teramoto, T.; Lushington, G.H.; Mwania, T.M.; Alliston, K.R.; Eichhorn, D.M.; Padmanabhan, R.; Groutas, W.C. Design, synthesis and characterization of novel 1,2-benzisothiazol-3(2H)-one and 1,3,4-oxadiazole hybrid derivatives: Potent inhibitors of dengue and west nile virus NS2B/NS3 proteases. Bioorg. Med. Chem. 2013, 21, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Obermeyer, L.; Dicke, K.; Skudlik, C.; Brans, R. Occupational allergic contact dermatitis from 2-butyl-1,2-benzisothiazol-3-one in cutting fluids: A case series. Contact Dermat. 2024, 90, 520–522. [Google Scholar] [CrossRef]
- Dahl, R.; Bravo, Y.; Sharma, V.; Ichikawa, M.; Dhanya, R.-P.; Hedrick, M.; Brown, B.; Rascon, J.; Vicchiarelli, M.; Mangravita-Novo, A.; et al. Potent, selective, and orally available benzoisothiazolone phosphomannose isomerase inhibitors as probes for congenital disorder of glycosylation la. J. Med. Chem. 2011, 54, 3661–3668. [Google Scholar] [CrossRef]
- Smith, S.M.E.; Min, J.; Ganesh, T.; Diebold, B.; Kawahara, T.; Zhu, Y.; McCoy, J.; Sun, A.; Snyder, J.P.; Fu, H.; et al. Ebselen and congeners inhibit NADPH oxidase 2-dependent superoxide generation by interrupting the binding of regulatory subunits. Chem. Biol. 2012, 19, 752–763. [Google Scholar] [CrossRef]
- Li, Q.; Yuan, D.; Liu, C.; Herington, F.; Yang, K.; Ge, H. Selective oxidation of benzo[d]isothiazol-3(2H)-ones enabled by Selectfluor. Molecules 2024, 29, 3899. [Google Scholar] [CrossRef]
- Solomon, V.R.; Haq, W.; Srivastava, K.; Puri, S.K.; Katti, S.B. Synthesis and antimalarial activity of side chain modified 4-aminoquinoline serivatives. J. Med. Chem. 2007, 50, 394–398. [Google Scholar] [CrossRef]
- Zarghi, A.; Zebardast, T.; Daraie, B.; Hedayati, M. Design and synthesis of new 1,3-benzthiazinan-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors. Bioorg. Med. Chem. 2009, 17, 5369–5373. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fang, K.; Dong, G.; Chen, S.; Liu, N.; Miao, Z.; Yao, J.; Li, J.; Zhang, W.; Sheng, C. Scaffold diversity inspired by the natural product evodiamine: Discovery of highly potent and multitargeting antitumor agents. J. Med. Chem. 2015, 58, 6678–6696. [Google Scholar] [CrossRef]
- Kimura, H.; Sato, Y.; Tajima, Y.; Suzuki, H.; Yukitake, H.; Imaeda, T.; Kajino, M.; Oki, H.; Takizawa, M.; Tanida, S. BTZO-1, a cardioprotective agent, reveals that macrophage migration inhibitory factor regulates ARE-mediated gene expression. Chem. Biol. 2010, 17, 1282–1294. [Google Scholar] [CrossRef]
- Tiwari, R.; Miller, P.A.; Chiarelli, L.R.; Mori, G.; Sarkan, M.; Centarova, I.; Cho, S.; Mikusova, K.; Franzblau, S.G.; Oliver, A.G.; et al. Design, syntheses, and anti-TB activity of 1,3-benzothiazinone azide and click chemistry products inspired by BTZ043. ACS Med. Chem. Lett. 2016, 7, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Tsutsumi, R.; Matsumoto, N.; Yamashita, H.; Amada, Y.; Shishikura, J.-I.; Yatsugi, H.I.S.I.; Okada, M.; Sakamoto, S.; Yamaguchi, T. Functional characterization of YM928, a novel moncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist. J. Pharmacol. Exp. Ther. 2003, 306, 66–72. [Google Scholar] [CrossRef]
- Paul, R.; Punniyamurthy, T. Copper-catalysed one-pot synthesis of N-substituted benzo[d]isothiazol-3(2H)-ones via C−S/N−S bond formation. RSC Adv. 2012, 2, 7057–7060. [Google Scholar] [CrossRef]
- Wang, F.; Chen, C.; Deng, G.; Xi, C. Concise approach to benzisothiazol-3(2H)-one via copper-catalyzed tandem reaction of o-bromobenzamide and potassium thiocyanate in water. J. Org. Chem. 2012, 77, 4148–4151. [Google Scholar] [CrossRef]
- Clerici, F.; Gelmi, M.L.; Pellegrino, S.; Pocar, D. Chemistry of biologically active isothiazoles. Top. Heterocycl. Chem. 2007, 9, 179–264. [Google Scholar]
- Li, S.; Hong, H.; Zhu, N.; Han, L.; Lu, J. Review about the synthesis of 1,3-benzothiazinone derivatives. Chin. J. Org. Chem. 2016, 36, 2024–2038. [Google Scholar] [CrossRef]
- Nosova, E.V.; Lipunova, G.N.; Charushin, V.N.; Chupakhin, O.N. Synthesis and biological activity of 2-amino- and 2-aryl (heteryl)substituted 1,3-benzothiazin-4-ones. Mini-Rev. Med. Chem. 2019, 19, 999–1014. [Google Scholar] [CrossRef]
- Sainsbury, M. Oxazines, thiazines and their benzo derivatives. In Comprehensive Heterocyclic Chemistry, 1st ed.; Katritzky, A.R., Rees, C.W., Eds.; Pergamon Press: Oxford, UK, 1984; Volume 3, pp. 995–1038. [Google Scholar]
- Potts, K.T. Synthesis of five-membered rings with two or more heteroatoms. In Comprehensive Heterocyclic Chemistry, 1st ed.; Katritzky, A.R., Rees, C.W., Eds.; Pergamon Press: Oxford, UK, 1984; Volume 5, pp. 111–166. [Google Scholar]
- Pain, D.L.; Peart, B.J.; Wooldridge, K.R.H. Isothiazoles and their benzo derivatives. In Comprehensive Heterocyclic Chemistry, 1st ed.; Katritzky, A.R., Rees, C.W., Eds.; Pergamon Press: Oxford, UK, 1984; Volume 6, pp. 131–175. [Google Scholar]
- Ivanova, Y.; Smoljo, M.; De Jonghe, S.; Dehaen, W. Synthesis of benzo[d]isothiazoles: An update. Archivoc 2024, 202312146. [Google Scholar] [CrossRef]
- Wang, Z.; Kuninobu, Y.; Kanai, M. Copper-catalyzed intramolecular N−S bond formation by oxidative dehydrogenative cyclization. J. Org. Chem. 2013, 78, 7337–7342. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Song, L.; Tang, S.; Li, L.; Li, H.; Yuan, B.; Yang, G. Co-catalyzed intramolecular S−N bond formation in water for 1,2-benzisothiazol-3(2H)-ones and 1,2,4-thiadiazoles synthesis. Eur. J. Org. Chem. 2019, 2019, 1281–1285. [Google Scholar] [CrossRef]
- Yu, T.-Q.; Hou, Y.-S.; Jiang, Y.; Xu, W.-X.; Shi, T.; Wu, X.; Zhang, J.-C.; He, D.; Wang, Z. Potassium bromide catalyzed N−S bond formation via oxidative dehydrogenation. Tetrahedron Lett. 2017, 58, 2084–2087. [Google Scholar] [CrossRef]
- Gopinath, P.; Nilaya, S.; Debi, T.R.; Ramkumar, V.; Muraleedharan, K.M. As many as six tandem reactions in one step! Unprecedented formation of highly functionalized benzothiophenes. Chem. Commun. 2009, 7131–7133. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Xu, H.-C. Electrochemical generation of nitrogen-centered radicals for organic synthesis. Green Synth. Catal. 2021, 2, 165–178. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.Y.; Liao, H.R.; Shu, X.R.; He, W.-M. Electrochemical transient iodination and coupling for selenylated 4-anilinocoumarin synthesis. Green Synth. Catal. 2021, 2, 233–236. [Google Scholar] [CrossRef]
- Zhong, Q.; Xiong, Z.; Sheng, S.; Chen, J. Electrochemical synthesis for benzisothiazol-3(2H)-ones by dehydrogenative N−S bond formation. Tetrahedron Lett. 2021, 80, 153323. [Google Scholar] [CrossRef]
- Laudadio, G.; Barmpoutsis, E.; Schotten, C.; Struik, L.; Govaerts, S.; Browne, D.L.; Noel, T. Sulfonamide synthesis through electrochemical oxidative coupling of amines and thiols. J. Am. Chem. Soc. 2019, 141, 5664–5668. [Google Scholar] [CrossRef]
- Nyffeler, P.T.; Duron, S.G.; Burkart, M.D.; Vincent, S.P.; Wong, C.-H. Selectfluor: Mechanistic insight and applications. Angew. Chem. Int. Ed. 2005, 44, 192–212. [Google Scholar] [CrossRef]
- Stavber, S. Recent advances in the application of SelectfluorTMF-TEDA-BF4 as a versatile mediator or catalyst in organic synthesis. Molecules 2011, 16, 6432–6464. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Song, M.; Ali, A.; Mudassir, S.; Ge, H. Recent advances in the application of selectfluor as a “fluorine-free” functional reagent in organic synthesis. Chem. Asian J. 2020, 15, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Li, Y.; Ma, Z.; Tang, L.; Yin, Y.; Zhang, H.; Li, Z.; Sun, X. Metal-free C−S bond cleavage to access N-substituted acrylamide and β-aminopropanamide. Eur. J. Org. Chem. 2019, 2019, 5812–5814. [Google Scholar] [CrossRef]
- Yang, K.; Li, Y.; Song, M.; Dai, S.; Li, Z.-Y.; Sun, X. Metal-free direct C(sp3)−H functionalization of 2-alkylthiobenzoic acid to access 1,3-benzooxathiin-4-one. Chin. Chem. Lett. 2021, 32, 146–149. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, H.; Niu, B.; Tang, T.; Ge, H. Benzisothiazol-3-ones through a metal-free intramolecular N–S bond formation. Eur. J. Org. Chem. 2018, 2018, 5520–5523. [Google Scholar] [CrossRef]
- Dai, S.; Yang, K.; Luo, Y.; Xu, Z.; Li, Z.; Li, Z.-Y.; Li, B.; Sun, X. Metal-free and Selectfluor-mediated diverse transformations of 2-alkylthiobenzamides to access 2,3-dihydrobenzothiazin-4-ones, benzoisothiazol-3-ones and 2-alkylthiobenzonitriles. Org. Chem. Front. 2022, 9, 4016–4022. [Google Scholar] [CrossRef]
- Xiong, J.; Zhong, G.; Liu, Y. Domino reactions initiated by copper-catalyzed aryl-I bond thiolation for the switchable synthesis of 2,3-dihydrobenzothiazinones and benzoisothiazolones. Adv. Synth. Catal. 2019, 361, 550–555. [Google Scholar] [CrossRef]
- Dhara, S.; Saha, M.; Das, A.R. Ligand-free access to benzisothiazolones and benzisoselenazolones through NiFe2O4 catalyzed concomitant annulation of 2-halobenzanilides with chalcogens and their late-stage transformations. New J. Chem. 2022, 46, 19501–19513. [Google Scholar] [CrossRef]
- Paul, S.; Pradhan, K.; Ghosh, S.; De, S.K.; Das, A.R. Magnetically retrievable nano crystalline nickel ferrite-catalyzed aerobic, ligand-free C–N, C–O and C–C cross-coupling reactions for the synthesis of a diversified library of heterocyclic molecules. Adv. Synth. Catal. 2014, 356, 1301–1306. [Google Scholar] [CrossRef]
- Li, T.; Yang, L.; Ni, K.; Shi, Z.; Li, F.; Chen, D. An efficient approach to construct benzisothiazol3(2H)-ones via copper-catalyzed consecutive reaction of 2-halobenzamides and carbon disulfide. Org. Biomol. Chem. 2016, 14, 6297–6303. [Google Scholar] [CrossRef]
- Yang, K.; Song, M.; Liu, H.; Ge, H. Palladium-catalyzed direct asymmetric C–H bond functionalization enabled by the directing group strategy. Chem. Sci. 2020, 11, 12616–12632. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, H.; Li, Z.; Tang, L.; Sun, X.; Yang, K. Transition-metal-catalyzed remote C–H functionalization of thioethers. RSC Adv. 2022, 12, 10835–10845. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Yang, K.; Lawrence, B.; Ge, H. Transient ligand-enabled transition metal-catalyzed C–H functionalization. ChemSusChem 2019, 12, 2955–2969. [Google Scholar] [CrossRef]
- Yang, K.; Song, M.; Ma, Z.; Li, Y.; Li, Z.; Sun, X. The decarboxylative C−H heteroarylation of azoles catalysed by nickel catalysts to access unsymmetrical biheteroaryls. Org. Chem. Front. 2019, 6, 3996–3999. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Z.; Liu, C.; Yang, K.; Ge, H. Palladium-catalyzed β-C(sp3)–H bond arylation of tertiary aldehydes facilitated by 2-pyridone ligands. Molecules 2024, 29, 259. [Google Scholar] [CrossRef]
- Yuan, D.; Xu, Z.; Zhou, Y.; Herington, F.; Liu, C.; Yang, K.; Ge, H. Palladium-catalyzed cascade reactions for synthesis of heterocycles initiated by C(sp3)–H functionalization. Catalysts 2025, 15, 72. [Google Scholar] [CrossRef]
- Chen, F.-J.; Liao, G.; Li, X.; Wu, J.; Shi, B.-F. Cu(II)-mediated C−S/N−S bond formation via C−H activation: Access to benzoisothiazolones using elemental sulfur. Org. Lett. 2014, 16, 5644–5647. [Google Scholar] [CrossRef]
- Yang, K.; Niu, B.; Ma, Z.; Wang, H.; Lawrence, B.; Ge, H. Silver-promoted site-selective intramolecular cyclization of 2-methylthiobenzamide through α-C(sp3)−H functionalization. J. Org. Chem. 2019, 84, 14045–14052. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, W.P.; Kitsiou, C.; Taylor, R.J.K. Direct imine acylation: Rapid access to diverse heterocyclic scaffolds. Org. Lett. 2013, 15, 258–261. [Google Scholar] [CrossRef]
- Kitsiou, C.; Unsworth, W.P.; Coulthard, G.; Taylor, R.J.K. Substrate scope in the direct imine acylation of ortho-substituted benzoic acid derivatives: The total synthesis (±)-cavidine. Tetrahedron 2014, 70, 7172–7180. [Google Scholar] [CrossRef]
- Silverberg, L.J.; Pacheco, C.; Sahu, D.; Scholl, P.; Sobhi, H.F.; Bachert, J.T.; Bandholz, K.; Bendinsky, R.V.; Bradley, H.G.; Colburn, B.K.; et al. T3P-promoted synthesis of a series of novel 3-aryl-2-phenyl-2,3-dihydro-4H-1,3-benzothiazin-4-ones. Heterocyclic Chem. 2020, 57, 1797–1805. [Google Scholar] [CrossRef]
- Azizi, N.; Farzaneh, F.; Habibnejad, N. Recyclable magnetic camphor sulfonic acid: A reliable and highly efficient ionic organocatalyst for benzothiazin-4-one synthesis in green media. Catal. Lett. 2022, 152, 3146–3157. [Google Scholar] [CrossRef]
- Wang, H.-H.; Shi, T.; Gao, W.-W.; Zhang, H.-H.; Wang, Y.-Q.; Li, J.-F.; Hou, Y.-S.; Chen, J.-H.; Peng, X.; Wang, Z. Double 1,4-addition of (thio)salicylamides/thiosalicylic acids with propiolate derivatives: A direct, general synthesis of diverse heterocyclic scaffolds. Org. Biomol. Chem. 2017, 15, 8013–8017. [Google Scholar] [CrossRef]
- Yang, K.; Li, Q.; Luo, Y.; Yuan, D.; Qi, C.; Li, Z.; Li, B.; Sun, X. Transition-metal-free skeletal editing of benzoisothiazol-3-ones to 2,3-dihydrobenzothiazin-4-ones via single-carbon insertion. Org. Chem. Front. 2025, 12, 478–484. [Google Scholar] [CrossRef]
- Zhang, G.; Wan, H.; Dong, N.; Zhu, A.; Zhou, Y.; Song, Q. Metal-free three-component tandem cyclization for modular synthesis of 2,3-dihydrobenzothiazin4-ones. Org. Chem. Front. 2024, 11, 2021–2026. [Google Scholar] [CrossRef]
- Zhang, B.; He, S.; Dong, N.; Zhu, A.; Duan, H.; Wang, D.; Zhou, Y. Substituent-controlled divergent cyclization reactions of benzo[c][1,2]dithiol-3-ones and hexahydro-1,3,5-triazines. Org. Chem. Front. 2024, 11, 3302–3307. [Google Scholar] [CrossRef]
- Ibrahim, N.S.; Abed, N.M.; Kandeel, Z.E. Nitriles in heterocyclic synthesis: A new approach for the synthesis of thiazinones. Heterocycles 1984, 22, 1677–1682. [Google Scholar] [CrossRef]
- Khanmiri, R.H.; Moghimi, A.; Shaabani, A.; Valizadeh, H.; Ng, S.W. Diaminoglyoxime as a versatile reagent in the synthesis of bis(1,2,4-oxadiazoles), 1,2,4-oxadiazolyl-quinazolines and 1,2,4-oxadiazolyl-benzothiazinones. Mol. Divers. 2014, 18, 769–776. [Google Scholar] [CrossRef]
- Liu, X.; Lv, W.; Dong, J.; Liu, Z.; Hu, F.; Zhou, C.; Zhou, Y. Synthesis of benzo[e][1,3]thiazin-4-ones via PPh3-promoted cyclization of benzo[c][1,2]dithiol-3-ones and amidines. Adv. Synth. Catal. 2024, 366, 1978–1982. [Google Scholar] [CrossRef]
- Tian, X.; Liu, Y.; Yakubov, S.; Schutte, J.; Chiba, S.; Barham, J.P. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem. Soc. Rev. 2024, 53, 263–316. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Yuan, D.; Yang, K.; Li, B. Recent Advances in the Synthesis of Benzo[d]isothiazol-3(2H)-One and Benzo[e][1,3]Thiazin-4-One Derivatives. Molecules 2025, 30, 2099. https://doi.org/10.3390/molecules30102099
He Y, Yuan D, Yang K, Li B. Recent Advances in the Synthesis of Benzo[d]isothiazol-3(2H)-One and Benzo[e][1,3]Thiazin-4-One Derivatives. Molecules. 2025; 30(10):2099. https://doi.org/10.3390/molecules30102099
Chicago/Turabian StyleHe, Yongli, Dan Yuan, Ke Yang, and Bindong Li. 2025. "Recent Advances in the Synthesis of Benzo[d]isothiazol-3(2H)-One and Benzo[e][1,3]Thiazin-4-One Derivatives" Molecules 30, no. 10: 2099. https://doi.org/10.3390/molecules30102099
APA StyleHe, Y., Yuan, D., Yang, K., & Li, B. (2025). Recent Advances in the Synthesis of Benzo[d]isothiazol-3(2H)-One and Benzo[e][1,3]Thiazin-4-One Derivatives. Molecules, 30(10), 2099. https://doi.org/10.3390/molecules30102099