Variation in (Hyper)Polarizability of H2 Molecule in Bond Dissociation Processes Under Spatial Confinement
Abstract
1. Introduction
2. Theory
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bartkowiak, W.; Lipkowski, P.; Chołuj, M. Molecular systems in spatial confinement: Variation of linear and nonlinear electrical response of molecules in the bond dissociation processes. Adv. Quantum Chem. 2023, 87, 335–350. [Google Scholar]
- Kozłowska, J.; Chołuj, M.; Zaleśny, R.; Bartkowiak, W. Two-photon absorption of the spatially confined LiH molecule. Phys. Chem. Chem. Phys. 2017, 19, 7568–7575. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Champagne, B. Diradical character dependences of the first and second hyperpolarizabilities of asymmetric open-shell singlet systems. J. Chem. Phys. 2013, 138, 244306. [Google Scholar] [CrossRef]
- Lo, J.M.H.; Klobukowski, M. Computational studies of one-electron properties of lithium hydride in confinement. Chem. Phys. 2006, 328, 132–138. [Google Scholar] [CrossRef]
- LeSar, R.; Herschbach, D.R. Electronic and vibrational properties of molecules at high pressures. Hydrogen molecule in a rigid spheroidal box. J. Phys. Chem. 1981, 85, 2084–2798. [Google Scholar] [CrossRef]
- LeSar, R.; Herschbach, D.R. Polarizability and quadrupole moment of a hydrogen molecule in a spherical box. J. Phys. Chem. 1983, 87, 5202–5206. [Google Scholar] [CrossRef]
- Pang, T. Hydrogen molecule under confinement: Exact results. Phys. Rev. A 1994, 49, 1709–1713. [Google Scholar] [CrossRef] [PubMed]
- Cruze, S.A.; Soullard, J.; Gamaly, E.G. Proton stopping in dense molecular hydrogen: A molecular-confinement model. Phys. Rev. A 1999, 60, 2207–2214. [Google Scholar] [CrossRef]
- Bielińska-Wa̧ż, D.; Diercksen, G.H.F.; Klobukowski, M. Quantum chemistry of confined systems: Structure and vibronic spectra of a confined hydrogen molecule. Chem. Phys. Lett. 2001, 349, 215–219. [Google Scholar] [CrossRef]
- Lo, J.M.H.; Klobukowski, M.; Diercksen, G.H.F. Low-lying excited states of the hydrogen molecule in cylindrical harmonic confinement. Adv. Quantum Chem. 2005, 48, 59–89. [Google Scholar]
- Colín-Rodríguez, R.; Cruze, S.A. The hydrogen molecule inside prolate spheroidal boxes: Full nuclear position optimization. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 235102. [Google Scholar] [CrossRef]
- Colín-Rodríguez, R.; Díaz-García, C.; Cruze, S.A. The hydrogen molecule and the H2+ molecular ion inside padded prolate spheroidal cavities with arbitrary nuclear positions. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 241001. [Google Scholar] [CrossRef]
- Sarsa, A.; Alcaraz-Pelegrina, J.M.; Le Sech, C.; Cruz, S.A. Quantum confinement of the covalent bond beyond the Born-Oppenheimer approximation. J. Phys. Chem. B 2013, 117, 7270–7276. [Google Scholar] [CrossRef] [PubMed]
- Sarsa, A.; Alcaraz-Pelegrina, J.M.; Le Sech, C. Isotopic effects on covalent bond confined in a penetrable sphere. J. Phys. Chem. B 2015, 119, 14364–14372. [Google Scholar] [CrossRef]
- de Oliveira Batael, H.; Filho, E.D. Ground-state energy for confined H2: A variational approach. Theor. Chem. Acc. 2018, 137, 65. [Google Scholar] [CrossRef]
- Cruz, S.A.; Garrido-Aguirre, D. Confinement effects on the diatomic interaction potential. Radiat. Eff. Defects Solids 2020, 175, 202–217. [Google Scholar] [CrossRef]
- Le Sech, C. Changes induced in a covalent bond confined in a structured cavity. Chem. Phys. Lett. 2022, 791, 39396. [Google Scholar] [CrossRef]
- Morcillo-Arencibia, M.F.; Alcaraz-Pelegrina, J.M.; Sarsa, A.; Randazzob, H.M. An off-center endohedrally confined hydrogen molecule. Phys. Chem. Chem. Phys. 2022, 24, 22971. [Google Scholar] [CrossRef] [PubMed]
- Longo, S.; Lonigro, D.; Lerario, G.; Stripoli, C.; Longo, G.M. Quantum states of H2+ and H2 in an icosahedral potential well. Eur. Phys. J. D 2023, 77, 29. [Google Scholar] [CrossRef]
- Sarsa, A.; Alcaraz-Pelegrina, J.M.; Le Sech, C. Exclusion principle repulsion effects on the covalent bond beyond the Born-Oppenheimer approximation. Phys. Chem. Chem. Phys. 2019, 21, 10411–10416. [Google Scholar] [CrossRef]
- Bartkowiak, W.; Chołuj, M.; Kozłowska, J. Effect of confinement on the Optical Response Properties of Molecules. In Chemical Reactivity in Confined Systems: Theory, Modelling and Applications, 1st ed.; Chattaraj, P.K., Chakraborty, D., Eds.; John Wiley & Sons Ltd.: Hoboken, NY, USA, 2021; pp. 213–223. [Google Scholar]
- Miliordos, E.; Hunt, K.L.C. Dependence of the multipole moments, static polarizabilities, and static hyperpolarizabilities of the hydrogen molecule on the H–H separation in the ground singlet state. J. Chem. Phys. 2018, 149, 234103. [Google Scholar] [CrossRef] [PubMed]
- Medved’, M.; Stachová, M.; Jacquemin, D.; André, J.M.; Perpete, E.A. A generalized Romberg differentiation procedure for calculation of hyperpolarizabilities. J. Mol. Struct. THEOCHEM 2007, 47, 39–46. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian~16 Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Sabin, J.R.; Brändas, E.J.; Cruz, S.A. Advances in Quantum Chemistry. Theory of Confined Quantum Systems, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2009; Volumes 57–58. [Google Scholar]
- Sen, K.D. (Ed.) Electronic Structure of Quantum Confined Atoms and Molecules, 1st ed.; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Góra, R.W.; Zeleśny, R.; Kozłowska, J.; Naciążek, P.; Roztoczyńska, A.; Strasburger, K.; Bartkowiak, W. Electric dipole (hyper)polarizabilities of spatially confined LiH molecule. J. Chem. Phys. 2012, 137, 094307. [Google Scholar] [CrossRef] [PubMed]
- Zeleśny, R.; Góra, R.W.; Kozłowska, J.; Luis, J.M.; Ågren, H.; Bartkowiak, W. Resonant and nonresonant hyperpolarizabilities of spatially confined molecules: A case study of cyanoacetylene. J. Chem. Theory Comput. 2013, 9, 3463–3472. [Google Scholar] [CrossRef]
- Zeller, F.; Hsieh, C.-M.; Dononelli, W.; Neudecker, T. Computational high-pressure chemistry: Ab initio simulations of atoms, molecules, and extended materials in the gigapascal regime. WIREs Comput. Mol. Sci. 2024, 14, e1708. [Google Scholar] [CrossRef]
- Chołuj, M.; Lipkowski, P.; Bartkowiak, W. HeH+ under Spatial Confinement. Molecules 2022, 27, 8997. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Nagao, H.; Yamaguchi, K. Many-electron hyperpolarizability density analysis: Application to the dissociation process of one-dimensional H2. Phys. Rev. A 1997, 55, 1503–1513. [Google Scholar] [CrossRef]
- Kamada, K.; Ohta, K.; Shimizu, A.; Kubo, T.; Kishi, R.; Takahashi, H.; Botek, E.; Champagne, B.; Nakano, M. Singlet diradical character from experiment. J. Phys. Chem. Lett. 2010, 1, 937–940. [Google Scholar] [CrossRef]
- Lopez, X.; Piris, M.; Nakano, M.; Champagne, B. Natural orbital functional calculations of molecular polarizabilities and second hyperpolarizabilities. The hydrogen molecule as a test case. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 015101. [Google Scholar] [CrossRef]
- Nakano, M.; Takebe, A.; Kishi, R.; Ohta, S.; Nate, M.; Kubo, T.; Kamada, K.; Ohta, K.; Champagne, B.; Botek, E.; et al. Long-range corrected density functional theory study on static second hyperpolarizabilities of singlet diradical systems. Chem. Phys. Lett. 2006, 432, 473–479. [Google Scholar] [CrossRef]
- Kołos, W.; Wolniewicz, L. Polarizability of the hydrogen molecule. J. Chem. Phys. 1967, 46, 1426–1432. [Google Scholar] [CrossRef]
- Bursi, R.; Lankhorst, M.; Feil, D. Uncoupled Hartree–Fock calculations of the polarizability and hyperpolarizabilities of nitrophenols. J. Comp. Chem. 1995, 16, 545–562. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipkowski, P.; Bartkowiak, W. Variation in (Hyper)Polarizability of H2 Molecule in Bond Dissociation Processes Under Spatial Confinement. Molecules 2025, 30, 9. https://doi.org/10.3390/molecules30010009
Lipkowski P, Bartkowiak W. Variation in (Hyper)Polarizability of H2 Molecule in Bond Dissociation Processes Under Spatial Confinement. Molecules. 2025; 30(1):9. https://doi.org/10.3390/molecules30010009
Chicago/Turabian StyleLipkowski, Paweł, and Wojciech Bartkowiak. 2025. "Variation in (Hyper)Polarizability of H2 Molecule in Bond Dissociation Processes Under Spatial Confinement" Molecules 30, no. 1: 9. https://doi.org/10.3390/molecules30010009
APA StyleLipkowski, P., & Bartkowiak, W. (2025). Variation in (Hyper)Polarizability of H2 Molecule in Bond Dissociation Processes Under Spatial Confinement. Molecules, 30(1), 9. https://doi.org/10.3390/molecules30010009