Defects and Defect Passivation in Perovskite Solar Cells
Abstract
:1. Introduction
2. Passivation of Defects in Perovskite Films
2.1. Ionic Compounds
2.1.1. Cations
2.1.2. Anions
2.2. Organic Molecules
2.2.1. Organic Ammonium Salt
2.2.2. Lewis Acid
2.2.3. Lewis Base
2.3. Polymer
3. Passivation of Defects on the Surface of Perovskite
3.1. Electron/Perovskite Transport Layer Interface
3.2. Perovskite/Hole Transport Layer Interface
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.H.; Im, S.H.; Heo, J.H.; Mandal, T.N.; Seok, S.I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; De Marco, N.; Yang, Y.; Song, T.-B.; Chen, C.-C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Zhao, L.; Wu, J.; Hu, Q.; Zhang, Y.; Xu, Z.; Liu, Y.; Liu, T.; Chen, K.; Yang, W.; et al. Dual-Source precursor approach for highly efficient inverted planar heterojunction perovskite solar cells. Adv. Mater. 2017, 29, 1604758. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yuan, Y.; Shao, Y.; Yan, Y. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017, 2, 17042. [Google Scholar] [CrossRef]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef] [PubMed]
- Stranks, S.D.; Eperon, G.E.; Grancini, G.; Menelaou, C.; Alcocer, M.J.P.; Leijtens, T.; Herz, L.M.; Petrozza, A.; Snaith, H.J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.-J.; Shi, T.; Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 2014, 104, 063903. [Google Scholar] [CrossRef]
- Buin, A.; Pietsch, P.; Xu, J.; Voznyy, O.; Ip, A.H.; Comin, R.; Sargent, E.H. Materials processing routes to trap-free halide perovskites. Nano Lett. 2014, 14, 6281–6286. [Google Scholar] [CrossRef]
- Uratani, H.; Yamashita, K. Charge carrier trapping at surface defects of perovskite solar cell absorbers: A first-principles study. J. Phys. Chem. Lett. 2017, 8, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Wu, Y.; Chen, H.; Yang, X.; Qiang, Y.; Han, L. Cost-Performance analysis of perovskite solar modules. Adv. Sci. 2017, 4, 1600269. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wu, Y.; Cai, B.; Ma, Q.; Zheng, X.; Zhang, W. Solution-Processable perovskite solar cells toward commercialization: Progress and challenges. Adv. Funct. Mater. 2019, 29, 1807661. [Google Scholar] [CrossRef]
- Chatterjee, S.; Pal, A.J. Influence of metal substitution on hybrid halide perovskites: Towards lead-free perovskite solar cells. J. Mater. Chem. A 2018, 6, 3793–3823. [Google Scholar] [CrossRef]
- Chen, B.; Rudd, P.N.; Yang, S.; Yuan, Y.; Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 2019, 48, 3842–3867. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.M.; Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 2016, 1, 16149. [Google Scholar] [CrossRef]
- Ran, C.; Xu, J.; Gao, W.; Huang, C.; Dou, S. Defects in metal triiodide perovskite materials towards high-performance solar cells: Origin, impact, characterization, and engineering. Chem. Soc. Rev. 2018, 47, 4581–4610. [Google Scholar] [CrossRef]
- Gao, F.; Zhao, Y.; Zhang, X.; You, J. Recent progresses on defect passivation toward efficient perovskite solar cells. Adv. Energy Mater. 2020, 10, 1902650. [Google Scholar] [CrossRef]
- Steirer, K.X.; Schulz, P.; Teeter, G.; Stevanovic, V.; Yang, M.; Zhu, K.; Berry, J.J. Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett. 2016, 1, 360–366. [Google Scholar] [CrossRef]
- Li, B.; Ferguson, V.; Silva, S.R.P.; Zhang, W. Defect engineering toward highly efficient and stable perovskite solar cells. Adv. Mater. Interfaces 2018, 5, 1800326. [Google Scholar] [CrossRef]
- Fu, L.; Li, H.; Wang, L.; Yin, R.; Li, B.; Yin, L. Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy Environ. Sci. 2020, 13, 4017–4056. [Google Scholar] [CrossRef]
- Shao, Y.; Fang, Y.; Li, T.; Wang, Q.; Dong, Q.; Deng, Y.; Yuan, Y.; Wei, H.; Wang, M.; Gruverman, A.; et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 2016, 9, 1752–1759. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Q.; Wang, Y.H.; Tam, P.O.; Li, X.; Gao, Y. Closure to “experimental characterizations of contact movement in two-dimensional rod assembly subjected to direct shearing” by q. yuan, y. h. wang, p. o. tam, x. li, and y. gao. Int. J. Geomech. 2018, 18, 07018010. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, H.; Song, T.-B.; Luo, S.; Hong, Z.; Duan, H.-S.; Dou, L.; Liu, Y.; Yang, Y. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 2014, 14, 4158–4163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhu, K. Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 2020, 10, 1902579. [Google Scholar] [CrossRef]
- Zhang, H.; Lee, J.-W.; Nasti, G.; Handy, R.; Abate, A.; Grätzel, M.; Park, N.-G. Lead immobilization for environmentally sustainable perovskite solar cells. Nature 2023, 617, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Deng, Y.; Xiao, X.; Xu, S.; Rudd, P.N.; Huang, J. Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells. Nat. Sustain. 2021, 4, 636–643. [Google Scholar] [CrossRef]
- Valastro, S.; Smecca, E.; Mannino, G.; Bongiorno, C.; Fisicaro, G.; Goedecker, S.; Arena, V.; Spampinato, C.; Deretzis, I.; Dattilo, S.; et al. Preventing lead leakage in perovskite solar cells with a sustainable titanium dioxide sponge. Nat. Sustain. 2023, 6, 974–983. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Liu, F.; Wei, J. Defects and passivation in perovskite solar cells. Surf. Innov. 2022, 10, 3–20. [Google Scholar] [CrossRef]
- Zhang, H.; Pfeifer, L.; Zakeeruddin, S.M.; Chu, J.; Grätzel, M. Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 2023, 7, 632–652. [Google Scholar] [CrossRef]
- Ni, Z.; Bao, C.; Liu, Y.; Jiang, Q.; Wu, W.-Q.; Chen, S.; Dai, X.; Chen, B.; Hartweg, B.; Yu, Z.; et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 2020, 367, 1352–1358. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, J.; Yun, H.-S.; Paik, M.J.; Noh, E.; Mun, H.J.; Kim, M.G.; Shin, T.J.; Seok, S.I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S.M.; Correa-Baena, J.-P.; Tress, W.R.; Abate, A.; Hagfeldt, A.; et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Zhang, L.; Hu, H.; Tang, Z.; Xu, B.; Park, N. Propylammonium chloride additive for efficient and stable FAPbI3 perovskite solar cells. Adv. Energy Mater. 2021, 11, 2102538. [Google Scholar] [CrossRef]
- Turren-Cruz, S.-H.; Saliba, M.; Mayer, M.T.; Juárez-Santiesteban, H.; Mathew, X.; Nienhaus, L.; Tress, W.; Erodici, M.P.; Sher, M.-J.; Bawendi, M.G.; et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ. Sci. 2018, 11, 78–86. [Google Scholar] [CrossRef]
- Yuan, S.; Cai, Y.; Yang, S.; Zhao, H.; Qian, F.; Han, Y.; Sun, J.; Liu, Z.; Liu, S. Simultaneous cesium and acetate coalloying improves efficiency and stability of FA0.85MA0.15PbI3 perovskite solar cell with an efficiency of 21.95%. Sol. RRL 2019, 3, 1900220. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, F.; Tao, J.; Jiang, J.; Zhang, J.; Yang, J.; Hu, Z.; Chu, J. Efficient and hole-transporting-layer-free CsPbI2Br planar heterojunction perovskite solar cells through rubidium passivation. ChemSusChem 2019, 12, 983–989. [Google Scholar] [CrossRef]
- Bi, C.; Zheng, X.; Chen, B.; Wei, H.; Huang, J. Spontaneous passivation of hybrid perovskite by sodium ions from glass substrates: Mysterious enhancement of device efficiency revealed. ACS Energy Lett. 2017, 2, 1400–1406. [Google Scholar] [CrossRef]
- Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J.M.; Alsari, M.; Booker, E.P.; Hutter, E.M.; Pearson, A.J.; et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 2018, 555, 497–501. [Google Scholar] [CrossRef]
- Wang, J.T.-W.; Wang, Z.; Pathak, S.; Zhang, W.; deQuilettes, D.W.; Wisnivesky-Rocca-Rivarola, F.; Huang, J.; Nayak, P.K.; Patel, J.B.; Mohd Yusof, H.A.; et al. Efficient perovskite solar cells by metal ion doping. Energy Environ. Sci. 2016, 9, 2892–2901. [Google Scholar] [CrossRef]
- Son, D.-Y.; Kim, S.-G.; Seo, J.-Y.; Lee, S.-H.; Shin, H.; Lee, D.; Park, N.-G. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 2018, 140, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhan, J.; Liu, X.; Tang, J.; Yin, W.-J.; Prezhdo, O.V. Atomistic mechanism of passivation of halide vacancies in lead halide perovskites by alkali ions. Chem. Mater. 2021, 33, 1285–1292. [Google Scholar] [CrossRef]
- Sun, D.; Gao, Y.; Raza, H.; Liu, S.; Ren, F.; Hu, X.; Wang, H.; Meng, X.; Wang, J.; Chen, R.; et al. Chemical reduction of iodine impurities and defects with potassium formate for efficient and stable perovskite solar cells. Adv. Funct. Mater. 2023, 33, 2303225. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Y.; Li, L.; Ma, Y.; Hu, R.; Wu, X.; Chu, L.; Li, X.; Huang, W. Stable and efficient Pb–Ni binary metal perovskite solar cells. ACS Sustain. Chem. Eng. 2021, 9, 17112–17119. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, H.; Hu, J.; Huang, B.; Sun, M.; Dong, B.; Zheng, G.; Huang, Y.; Chen, Y.; Li, L.; et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 2019, 363, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yang, B.; Mao, X.; Yang, R.; Jiang, L.; Li, Y.; Xiong, J.; Yang, Y.; He, R.; Deng, W.; et al. Perovskite CH(3)NH(3)PbI(3-x)Br(x) single crystals with charge-carrier lifetimes exceeding 260 μs. ACS Appl. Mater. Interfaces 2017, 9, 14827–14832. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Chen, H.; Shi, T.; Wei, S.; Yan, Y. Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of cl and o at grain boundaries. Adv. Elect. Mater. 2015, 1, 1500044. [Google Scholar] [CrossRef]
- Pool, V.L.; Gold-Parker, A.; McGehee, M.D.; Toney, M.F. Chlorine in PbCl2-derived hybrid-perovskite solar absorbers. Chem. Mater. 2015, 27, 7240–7243. [Google Scholar] [CrossRef]
- Wang, F.; Yang, M.; Yang, S.; Qu, X.; Yang, L.; Fan, L.; Yang, J.; Rosei, F. Iodine-assisted antisolvent engineering for stable perovskite solar cells with efficiency > 21.3%. Nano Energy 2020, 67, 104224. [Google Scholar] [CrossRef]
- Sutter-Fella, C.M.; Li, Y.B.; Amani, M.; Ager, J.W.; Toma, F.M.; Yablonovitch, E.; Sharp, I.D.; Javey, A. High photoluminescence quantum yield in band gap tunable bromide containing mixed halide perovskites. Nano Lett. 2016, 16, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Chen, M.; Liu, X.; Chen, D.; Gu, Y.; Wang, S. Halogen anion management in solution-processed perovskite films for efficient solar cells. Sol. RRL 2024, 8, 2301001. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.-W.; Jung, E.H.; Jeon, N.J.; Kim, Y.C.; Lee, D.U.; Shin, S.S.; Seo, J.; Kim, E.K.; Noh, J.H.; et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.Y.; Oh, S.H.; Nguyen, B.P.; Jo, W.; Kim, B.J.; Lee, D.G.; Jung, H.S. Efficient carrier separation and intriguing switching of bound charges in inorganic–organic lead halide solar cells. J. Phys. Chem. Lett. 2015, 6, 2355–2362. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Gamliel, S.; Nijem, S.; Aharon, S.; Holt, M.; Stripe, B.; Rose, V.; Bertoni, M.I.; Etgar, L.; Fenning, D.P. Spatially heterogeneous chlorine incorporation in organic–inorganic perovskite solar cells. Chem. Mater. 2016, 28, 6536–6543. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, F.; Qu, Z.; Yu, S.; Shen, T.; Deng, H.-X.; Chu, X.; Peng, X.; Yuan, Y.; Zhang, X.; et al. Inactive (PbI2)2 RbCl stabilizes perovskite films for efficient solar cells. Science 2022, 377, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Sakai, N.; Da, P.; Wu, J.; Sansom, H.C.; Ramadan, A.J.; Mahesh, S.; Liu, J.; Oliver, R.D.J.; Lim, J.; et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 2020, 369, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Abate, A.; Saliba, M.; Hollman, D.J.; Stranks, S.D.; Wojciechowski, K.; Avolio, R.; Grancini, G.; Petrozza, A.; Snaith, H.J. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells. Nano Lett. 2014, 14, 3247–3254. [Google Scholar] [CrossRef] [PubMed]
- Meggiolaro, D.; Mosconi, E.; De Angelis, F. Mechanism of reversible trap passivation by molecular oxygen in lead-halide perovskites. ACS Energy Lett. 2017, 2, 2794–2798. [Google Scholar] [CrossRef]
- Li, N.X.; Tao, S.X.; Chen, Y.H.; Niu, X.X.; Onwudinanti, C.K.; Hu, C.; Qiu, Z.W.; Xu, Z.Q.; Zheng, G.H.J.; Wang, L.G.; et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 2019, 4, 408–415. [Google Scholar] [CrossRef]
- Bai, S.; Da, P.; Li, C.; Wang, Z.; Yuan, Z.; Fu, F.; Kawecki, M.; Liu, X.; Sakai, N.; Wang, J.T.-W.; et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Saliba, M.; Moore, D.T.; Pathak, S.K.; Hörantner, M.T.; Stergiopoulos, T.; Stranks, S.D.; Eperon, G.E.; Alexander-Webber, J.A.; Abate, A.; et al. Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 2015, 6, 6142. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Q.; Zhang, C.; Gong, C.; Li, H.; Li, H.; Zhang, Z.; Yang, H.; Chen, J.; Zang, Z. Tailoring multifunctional anion modifiers to modulate interfacial chemical interactions for efficient and stable perovskite solar cells. Nano Energy 2022, 102, 107747. [Google Scholar] [CrossRef]
- Ke, W.; Xiao, C.; Wang, C.; Saparov, B.; Duan, H.; Zhao, D.; Xiao, Z.; Schulz, P.; Harvey, S.P.; Liao, W.; et al. Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells. Adv. Mater. 2016, 28, 5214–5221. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, M.; Seo, J.; Lu, H.; Ahlawat, P.; Mishra, A.; Yang, Y.; Hope, M.A.; Eickemeyer, F.T.; Kim, M.; et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Kothandaraman, R.K.; Jiang, Y.; Feurer, T.; Tiwari, A.N.; Fu, F. Near-Infrared-Transparent perovskite solar cells and perovskite-based tandem photovoltaics. Small Methods 2020, 4, 2000395. [Google Scholar] [CrossRef]
- Cui, H.; Ning, Y.; Yang, Y.; He, D.; Chen, W.; Huang, Y.; Zhao, P.; Feng, Y.; Zhang, B. Effective passivation of perovskite solar cells involving a unique secondary ammonium halide modulator. Sol. RRL 2023, 7, 2300080. [Google Scholar] [CrossRef]
- Wang, R.; Xue, J.; Wang, K.-L.; Wang, Z.-K.; Luo, Y.; Fenning, D.; Xu, G.; Nuryyeva, S.; Huang, T.; Zhao, Y.; et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 2019, 366, 1509–1513. [Google Scholar] [CrossRef]
- Wang, R.; Xue, J.J.; Meng, L.; Lee, J.W.; Zhao, Z.P.; Sun, P.Y.; Cai, L.; Huang, T.Y.; Wang, Z.X.; Wang, Z.K.; et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 2019, 3, 1464–1477. [Google Scholar] [CrossRef]
- Son, D.-Y.; Lee, J.-W.; Choi, Y.J.; Jang, I.-H.; Lee, S.; Yoo, P.J.; Shin, H.; Ahn, N.; Choi, M.; Kim, D.; et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 2016, 1, 16081. [Google Scholar] [CrossRef]
- Hawash, Z.; Raga, S.R.; Son, D.Y.; Ono, L.K.; Park, N.G.; Qi, Y. Interfacial modification of perovskite solar cells using an ultrathin mai layer leads to enhanced energy level alignment, efficiencies, and reproducibility. J. Phys. Chem. Lett. 2017, 8, 3947–3953. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhu, K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: Structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 2014, 118, 9412–9418. [Google Scholar] [CrossRef]
- Long, M.; Zhang, T.; Zhu, H.; Li, G.; Wang, F.; Guo, W.; Chai, Y.; Chen, W.; Li, Q.; Wong, K.S.; et al. Textured CH3NH3PbI3 thin film with enhanced stability for high performance perovskite solar cells. Nano Energy 2017, 33, 485–496. [Google Scholar] [CrossRef]
- Chen, L.; Hu, M.; Lee, S.; Kim, J.; Zhao, Z.Y.; Han, S.P.; Lah, M.S.; Seok, S.I. Deciphering reaction products in formamidine-based perovskites with methylammonium chloride additive. J. Am. Chem. Soc. 2023, 145, 27900–27910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.G.; Cong, J.Y.; Li, Y.Y.; Bergstrand, J.; Liu, H.C.; Cai, B.; Hajian, A.; Yao, Z.Y.; Wang, L.Q.; Hao, Y.; et al. A facile route to grain morphology controllable perovskite thin films towards highly efficient perovskite solar cells. Nano Energy 2018, 53, 405–414. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Y.; Pang, S.; Xiao, Z.; Zhang, J.; Chai, W.; Xu, H.; Liu, Z.; Padture, N.P.; Cui, G. Additive-modulated evolution of HC(NH2)2PbI3 black polymorph for mesoscopic perovskite solar cells. Chem. Mater. 2015, 27, 7149–7155. [Google Scholar] [CrossRef]
- Kim, M.; Kim, G.-H.; Lee, T.K.; Choi, I.W.; Choi, H.W.; Jo, Y.; Yoon, Y.J.; Kim, J.W.; Lee, J.; Huh, D.; et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 2019, 3, 2179–2192. [Google Scholar] [CrossRef]
- Jiang, Q.; Chu, Z.; Wang, P.; Yang, X.; Liu, H.; Wang, Y.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Planar-Structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 2017, 29, 1703852. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Dai, Z.; Han, T.H.; Choi, C.; Chang, S.Y.; Lee, S.J.; De Marco, N.; Zhao, H.; Sun, P.; Huang, Y.; et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 2018, 9, 3021. [Google Scholar] [CrossRef]
- Cao, D.H.; Stoumpos, C.C.; Farha, O.K.; Hupp, J.T.; Kanatzidis, M.G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 2015, 137, 7843–7850. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, Z.; Huang, Y.; Xue, Q.; Zheng, Y.; Wu, X.; Tian, C.; Zhang, Y.; Wang, Y.; Chen, Z.; et al. Volatile 2D ruddlesden-popper perovskite: A gift for α-formamidinium lead triiodide solar cells. Adv. Funct. Mater. 2022, 32, 2207177. [Google Scholar] [CrossRef]
- Khan, U.; Iqbal, T.; Rauf, A.; Wu, R.; Khan, M.; Khan, Q.U. Incorporating EA+ into PbI2 film for stable multiple cations perovskite solar cells with negligible hysteresis. Sol. Energy 2021, 224, 868–874. [Google Scholar] [CrossRef]
- Zhao, D.; Gao, D.; Wu, X.; Li, B.; Zhang, S.; Li, Z.; Wang, Q.; Wu, Z.; Zhang, C.; Choy, W.C.H.; et al. Efficient and stable 3D/2D perovskite solar cells through vertical heterostructures with (BA)4AgBiBr8 nanosheets. Adv. Mater. 2022, 34, 2204661. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Zhang, Y.; Paek, S.; Gao, X.-X.; Li, X.; Nazeeruddin, M.K. Enhanced stability of α-phase FAPbI3 perovskite solar cells by insertion of 2D (PEA)2PbI4 nanosheets. J. Mater. Chem. A 2020, 8, 8058–8064. [Google Scholar] [CrossRef]
- Yu, B.; Chen, Z.; Zhu, Y.; Wang, Y.; Han, B.; Chen, G.; Zhang, X.; Du, Z.; He, Z. Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 2021, 33, 2102055. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhao, Y.; Zhang, X.; Yang, X.; Chen, Y.; Chu, Z.; Ye, Q.; Li, X.; Yin, Z.; You, J. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466. [Google Scholar] [CrossRef]
- Rong, Y.; Hou, X.; Hu, Y.; Mei, A.; Liu, L.; Wang, P.; Han, H. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nat. Commun. 2017, 8, 14555. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Chen, S.; Li, Y.; Zhang, L.; Shen, N.; Zhang, G.; Du, J.; Fu, N.; Xu, B. Direct surface passivation of perovskite film by 4-fluorophenethylammonium iodide toward stable and efficient perovskite solar cells. ACS Appl. Mater. Interfaces 2021, 13, 2558–2565. [Google Scholar] [CrossRef]
- Zuo, C.; Ding, L. An 80.11% ff record achieved for perovskite solar cells by using the nh4cl additive. Nanoscale 2014, 6, 9935–9938. [Google Scholar] [CrossRef]
- He, J.; Chen, T. Additive regulated crystallization and film formation of CH3NH3PbI3−xBrx for highly efficient planar-heterojunction solar cells. J. Mater. Chem. A 2015, 3, 18514–18520. [Google Scholar] [CrossRef]
- Fu, Q.; Xiao, S.; Tang, X.; Chen, Y.; Hu, T. Amphiphilic fullerenes employed to improve the quality of perovskite films and the stability of perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 24782–24788. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-H.; Wu, C.-G. Bulk heterojunction perovskite–pcbm solar cells with high fill factor. Nat. Photon. 2016, 10, 196–200. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, W.; Luo, J.; Pellet, N.; Yi, C.; Li, X.; Zhao, X.; Dennis, T.J.S.; Li, X.; Wang, S.; et al. Isomer-Pure bis-PCBM-assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability. Adv. Mater. 2017, 29, 1606806. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, C.; Du, P.; Zheng, J.; Gong, X. Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy Environ. Sci. 2015, 8, 1245–1255. [Google Scholar] [CrossRef]
- Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, W.; Li, H.; Zhang, C.; Fan, J.; Mai, Y. C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency. Nanoscale 2017, 9, 13967–13975. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lin, F.; Chueh, C.-C.; Chen, Q.; Zhao, T.; Liang, P.-W.; Zhu, Z.; Sun, Y.; Jen, A.K.-Y. Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells. Nano Energy 2016, 30, 417–425. [Google Scholar] [CrossRef]
- Xu, J.; Buin, A.; Ip, A.H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J.J.; et al. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, L.; Qiu, J.; Yan, Z.; Li, C.; Dai, C.; Zhen, C.; Tai, K.; Yu, W.; Jiang, X. In situ passivation on rear perovskite interface for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 7690–7700. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Bi, E.; Islam, A.; Han, L. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 2016, 1, 16148. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Liu, Y.; Pang, T.; Hu, Z.; Zhu, Y.; Luan, S.; Jia, R. Interfacial characteristics and leakage current transfer mechanisms in organometal trihalide perovskite gate-controlled devices via doping of pcbm. J. Phys. D Appl. Phys. 2017, 50, 475101. [Google Scholar] [CrossRef]
- Li, M.; Chao, Y.-H.; Kang, T.; Wang, Z.-K.; Yang, Y.-G.; Feng, S.-L.; Hu, Y.; Gao, X.-Y.; Liao, L.-S.; Hsu, C.-S. Enhanced crystallization and stability of perovskites by a cross-linkable fullerene for high-performance solar cells. J. Mater. Chem. A 2016, 4, 15088–15094. [Google Scholar] [CrossRef]
- Vidal, S.; Izquierdo, M.; Filippone, S.; Fernández, I.; Akin, S.; Seo, J.; Zakeeruddin, S.M.; Grätzel, M.; Martín, N. Site-selective synthesis of β-[70]PCBM-like fullerenes: Efficient application in perovskite solar cells. Chem. A Eur. J 2019, 25, 3224–3228. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Zhou, Y.; Liu, H.; Xue, Q.; Li, X.; Chueh, C.-C.; Yip, H.-L.; Zhu, Z.; Jen, A.K.Y. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a lewis base. Nat. Commun. 2020, 11, 177. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, X.; Bi, E.; Jiang, F.; Park, S.M.; Li, Y.; Chen, L.; Wang, Z.; Zeng, L.; Chen, H.; et al. Rational design of lewis base molecules for stable and efficient inverted perovskite solar cells. Science 2023, 379, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Bi, D.; Pellet, N.; Xiao, C.; Li, Z.; Berry, J.J.; Zakeeruddin, S.M.; Zhu, K.; Grätzel, M. Suppressing defects through the synergistic effect of a lewis base and a lewis acid for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 2018, 11, 3480–3490. [Google Scholar] [CrossRef]
- Noel, N.K.; Abate, A.; Stranks, S.D.; Parrott, E.S.; Burlakov, V.M.; Goriely, A.; Snaith, H.J. Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites. ACS Nano 2014, 8, 9815–9821. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Wang, Y.; Shang, W.; Liu, J.; Wang, M.; Dong, Q.; Han, Y.; Li, W.; Ma, H.; Wang, P.; et al. Lewis base governing superfacial proton behavior of hybrid perovskite: Basicity dependent passivation strategy. Chem. Eng. J. 2022, 446, 137033. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, F.; Xiao, Y.; Wang, S.; Li, X. Suppressing defects through thiadiazole derivatives that modulate CH3NH3PbI3 crystal growth for highly stable perovskite solar cells under dark conditions. J. Mater. Chem. A 2018, 6, 4971–4980. [Google Scholar] [CrossRef]
- Gu, X.; Xiang, W.; Tian, Q.; Liu, S.F. Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells. Angew. Chem. Int. Ed. Engl. 2021, 60, 23164–23170. [Google Scholar] [CrossRef]
- Wang, S.; Ma, Z.; Liu, B.; Wu, W.; Zhu, Y.; Ma, R.; Wang, C. High-Performance perovskite solar cells with large grain-size obtained by using the lewis acid-base adduct of thiourea. Sol. RRL 2018, 2, 1800034. [Google Scholar] [CrossRef]
- Kamarudin, M.A.; Hirotani, D.; Wang, Z.; Hamada, K.; Nishimura, K.; Shen, Q.; Toyoda, T.; Iikubo, S.; Minemoto, T.; Yoshino, K.; et al. Suppression of charge carrier recombination in lead-free tin halide perovskite via lewis base post-treatment. J. Phys. Chem. Lett. 2019, 10, 5277–5283. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Chen, J.; Seo, J.Y.; Kang, D.H.; Park, N.G. Rear-surface passivation by melaminium iodide additive for stable and hysteresis-less perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 25372–25383. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.-G.; Ryu, G.-I.; Kim, B.; Cha, G.-J.; Ri, J.-H.; Sonu, G.-S.; Kim, U.-C. Effects of thiourea on the perovskite crystallization for fully printable solar cells. Sol. Energy Mater. Sol. Cells 2019, 196, 105–110. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, M.; Li, Z.; Shi, T.; Yang, Y.; Yip, H.-L.; Cao, Y. StableSn/Pb-based perovskite solar cells with a coherent 2D/3D interface. iScience 2018, 9, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Jiao, N.; Guo, Y. Trap-state passivation by nonvolatile small molecules with carboxylic acid groups for efficient planar perovskite solar cells. J. Phys. Chem. C 2019, 123, 14223–14228. [Google Scholar] [CrossRef]
- Ren, J.; Wang, S.; Xia, J.; Li, C.; Xie, L.; He, H.; Niu, X.; Zhao, Q.; Hao, F. Efficient defect passivation with niacin for high-performance and stable perovskite solar cells. J. Mater. Chem. C 2021, 9, 6217–6224. [Google Scholar] [CrossRef]
- Wang, P.; Liu, J.; Shang, W.; Xu, T.; Wang, M.; Shi, Y.; Cai, R.; Bian, J. Rational selection of the lewis base molecules targeted for lead-based defects of perovskite solar cells: The synergetic co-passivation of carbonyl and carboxyl groups. J. Phys. Chem. Lett. 2023, 14, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Dou, J.; Kou, S.; Dang, J.; Ji, Y.; Yang, G.; Wu, W.; Kuang, D.; Wang, M. Multifunctional phosphorus-containing lewis acid and base passivation enabling efficient and moisture-stable perovskite solar cells. Adv. Funct. Mater. 2020, 30, 1910710. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, C.; Gao, F.; Li, Y.; Shi, B.; Cai, X.; Yang, F.; Zhang, J.; Liu, S. 2-amino-5-chlorobenzophenone passivating perovskite films using multiple functional groups towards high-performance solar cells. J. Mater. Chem. C 2023, 11, 4393–4403. [Google Scholar] [CrossRef]
- Tian, C.; Zhao, Y.; Han, X.; Li, B.; Rui, Y.; Xiong, H.; Qiu, Y.; An, W.; Li, K.; Hou, C.; et al. All-in-one additive enables defect passivated, crystallization modulated and moisture resisted perovskite films toward efficient solar cells. Chem. Eng. J. 2023, 452, 139345. [Google Scholar] [CrossRef]
- Liu, B.B.; Bi, H.; He, D.M.; Bai, L.; Wang, W.Q.; Yuan, H.K.; Song, Q.L.; Su, P.Y.; Zang, Z.G.; Zhou, T.W.; et al. Interfacial defect passivation and stress release via multi-active-site ligand anchoring enables efficient and stable methylammonium-free perovskite solar cells. ACS Energy Lett. 2021, 6, 2526–2538. [Google Scholar] [CrossRef]
- Li, W.; Lai, X.; Meng, F.; Li, G.; Wang, K.; Kyaw, A.K.K.; Sun, X.W. Efficient defect-passivation and charge-transfer with interfacial organophosphorus ligand modification for enhanced performance of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2020, 211, 110527. [Google Scholar] [CrossRef]
- Cheng, C.; Yao, Y.; Li, L.; Zhao, Q.; Zhang, C.; Zhong, X.; Zhang, Q.; Gao, Y.; Wang, K. A novel organic phosphonate additive induced stable and efficient perovskite solar cells with efficiency over 24% enabled by synergetic crystallization promotion and defect passivation. Nano Lett. 2023, 23, 8850–8859. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wu, J.; Zhang, X.; Zhu, Q.; Zhang, M.; Liu, X.; Zou, Y.; Wang, S.; Sun, W. Surface passivation using pyridinium iodide for highly efficient planar perovskite solar cells. J. Energy Chem. 2021, 52, 84–91. [Google Scholar] [CrossRef]
- Li, Y.-L.; Liu, X.; Jin, L.; Zhou, J.; Fu, W. Synergistic passivation with multi-dentate 2,6-pyridinedicarboxylic acid for high-performance perovskite solar cells. J. Mater. Chem. C 2023, 11, 12327–12336. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, J.; He, K.; Cai, Y.; Han, Y.; Yang, S.; Zhan, S.; Wang, D.; Liu, Z.; Liu, S. A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Lett. 2021, 13, 169. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.-J.; Lee, Y.-S.; Cho, I.H.; Kim, S.; Kim, D.-H.; Kwon, S.-N.; Na, S.-I. Functional additives for high-performance inverted planar perovskite solar cells with exceeding 20% efficiency: Selective complexation of organic cations in precursors. Nano Energy 2020, 71, 104639. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, Y.; Li, Z.; Qiao, L.; Xiong, Q.; Deng, L.; Zhang, Z.; Long, R.; Zhou, Q.; Du, Y.; et al. Marked passivation effect of naphthalene-1,8-dicarboximides in high-performance perovskite solar cells. Adv. Mater. 2021, 33, 2008405. [Google Scholar] [CrossRef]
- Yu, R.; Wu, G.; Shi, R.; Ma, Z.; Dang, Q.; Qing, Y.; Zhang, C.; Xu, K.; Tan, Z. Multidentate coordination induced crystal growth regulation and trap passivation enables over 24% efficiency in perovskite solar cells. Adv. Energy Mater. 2023, 13, 2203127. [Google Scholar] [CrossRef]
- Cho, S.-P.; Lee, H.-J.; Seo, Y.-H.; Na, S.-I. Multifunctional passivation agents for improving efficiency and stability of perovskite solar cells: Synergy of methyl and carbonyl groups. Appl. Surf. Sci. 2022, 575, 151740. [Google Scholar] [CrossRef]
- Wu, T.H.; Liu, X.; He, X.; Wang, Y.B.; Meng, X.Y.; Noda, T.; Yang, X.D.; Han, L.Y. Efficient and stable tin-based perovskite solar cells by introducing π-conjugated lewis base. Sci. China-Chem. 2020, 63, 107–115. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Tang, Z.; Su, C.; Huang, W.; Li, Y.; Xing, G. Polymer strategies for high-efficiency and stable perovskite solar cells. Nano Energy 2021, 82, 105712. [Google Scholar] [CrossRef]
- Kim, K.; Han, J.; Lee, S.; Kim, S.; Choi, J.; Nam, J.; Kim, D.; Chung, I.; Kim, T.; Manzhos, S.; et al. Liquid-State dithiocarbonate-based polymeric additives with monodispersity rendering perovskite solar cells with exceptionally high certified photocurrent and fill factor. Adv. Energy Mater. 2023, 13, 2203742. [Google Scholar] [CrossRef]
- Peng, J.; Khan, J.I.; Liu, W.; Ugur, E.; Duong, T.; Wu, Y.; Shen, H.; Wang, K.; Dang, H.; Aydin, E.; et al. A universal double-side passivation for high open-circuit voltage in perovskite solar cells: Role of carbonyl groups in poly(methyl methacrylate). Adv. Energy Mater. 2018, 8, 1801208. [Google Scholar] [CrossRef]
- Tripathi, N.; Shirai, Y.; Yanagida, M.; Karen, A.; Miyano, K. Novel surface passivation technique for low-temperature solution-processed perovskite pv cells. ACS Appl. Mater. Interfaces 2016, 8, 4644–4650. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wei, J.; Li, H.; Yan, Y.; Zhou, W.; Yu, D.; Zhao, Q. A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 2016, 7, 10228. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, Y.; Jiang, X.; Yin, Y.; Yavuz, I.; Zhu, P.; Zhang, A.; Han, G.S.; Jung, H.S.; Zhou, Y.; et al. Rational selection of the polymeric structure for interface engineering of perovskite solar cells. Joule 2022, 6, 1032–1048. [Google Scholar] [CrossRef]
- Li, X.; Sheng, W.P.; Duan, X.P.; Lin, Z.J.; Yang, J.; Tan, L.C.; Chen, Y.W. Defect passivation effect of chemical groups on perovskite solar cells. ACS Appl. Mater. Interfaces 2022, 14, 34161–34170. [Google Scholar] [CrossRef]
- Meng, L.; Sun, C.K.; Wang, R.; Huang, W.C.; Zhao, Z.P.; Sun, P.Y.; Huang, T.Y.; Xue, J.J.; Lee, J.W.; Zhu, C.H.; et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J. Am. Chem. Soc. 2018, 140, 17255–17262. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, J.; You, Z.; Li, Q.; Liu, M.; Ma, Z.; Liu, Y. A multifunctional phosphorylcholine-based polymer reduces energy loss for efficient perovskite solar cells. J. Mater. Chem. C 2022, 10, 16781–16788. [Google Scholar] [CrossRef]
- Li, L.; Tu, S.; You, G.; Cao, J.; Wu, D.; Yao, L.; Zhou, Z.; Shi, W.; Wang, W.; Zhen, H.; et al. Enhancing performance and stability of perovskite solar cells through defect passivation with a polyamide derivative obtained from benzoxazine-isocyanide chemistry. Chem. Eng. J. 2022, 431, 133951. [Google Scholar] [CrossRef]
- Li, X.; Fu, S.; Liu, S.; Wu, Y.; Zhang, W.; Song, W.; Fang, J. Suppressing the ions-induced degradation for operationally stable perovskite solar cells. Nano Energy 2019, 64, 103962. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, P.; Wang, M.; Huang, S.; Zhao, Z.; Tan, S.; Han, T.H.; Lee, J.W.; Huang, T.; Wang, R.; et al. A polymerization-assisted grain growth strategy for efficient and stable perovskite solar cells. Adv. Mater. 2020, 32, e1907769. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Yao, X.; Bao, F.; Mao, J.; Chen, H.; Duan, Y.; Yang, P.; Tang, Q.; He, B. Crystallization regulation and dual-defects healing by self-polymerization of multifunctional monomer additives for stable and efficient CsPbBr3 perovskite solar cells. Sol. RRL 2023, 7, 2200883. [Google Scholar] [CrossRef]
- Qiu, F.; Sun, J.; Qi, J. Crystal growth, defect passivation and strain release via in-situ self-polymerization strategy enables efficient and stable perovskite solar cells. Chem. Eng. J. 2022, 430, 132869. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Zhang, W.; Wang, H.-Q.; Fang, J. Spontaneous grain polymerization for efficient and stable perovskite solar cells. Nano Energy 2019, 58, 825–833. [Google Scholar] [CrossRef]
- Gu, W.-M.; Jiang, K.-J.; Zhang, Y.; Yu, G.-H.; Gao, C.-Y.; Fan, X.-H.; Yang, L.-M. In-situ polymerization of PEDOT in perovskite thin films for efficient and stable photovoltaics. Chem. Eng. J. 2022, 430, 133109. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, F.; Duan, C.; Yuan, L.; Zhu, H.; Li, J.; Wen, Q.; Waterhouse, G.I.N.; Yang, X.; Yan, K. Polymerization stabilized black-phase FAPbI3 perovskite solar cells retain 100% of initial efficiency over 100 days. Chem. Eng. J. 2021, 419, 129482. [Google Scholar] [CrossRef]
- Ma, R.; Zheng, J.; Tian, Y.; Li, C.; Lyu, B.; Lu, L.; Su, Z.; Chen, L.; Gao, X.; Tang, J.; et al. Self-Polymerization of monomer and induced interactions with perovskite for highly performed and stable perovskite solar cells. Adv. Funct. Mater. 2022, 32, 2105290. [Google Scholar] [CrossRef]
- Wu, J.; Shi, J.; Li, Y.; Li, H.; Wu, H.; Luo, Y.; Li, D.; Meng, Q. Quantifying the interface defect for the stability origin of perovskite solar cells. Adv. Energy Mater. 2019, 9, 1901352. [Google Scholar] [CrossRef]
- Li, Y.; Xie, H.; Lim, E.L.; Hagfeldt, A.; Bi, D. Recent progress of critical interface engineering for highly efficient and stable perovskite solar cells. Adv. Energy Mater. 2022, 12, 2102730. [Google Scholar] [CrossRef]
- Liu, K.; Chen, S.; Wu, J.; Zhang, H.; Qin, M.; Lu, X.; Tu, Y.; Meng, Q.; Zhan, X. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells. Energy Environ. Sci. 2018, 11, 3463–3471. [Google Scholar] [CrossRef]
- Sonmezoglu, S.; Akin, S. Suppression of the interface-dependent nonradiative recombination by using 2-methylbenzimidazole as interlayer for highly efficient and stable perovskite solar cells. Nano Energy 2020, 76, 105127. [Google Scholar] [CrossRef]
- Ding, B.; Li, Y.; Huang, S.-Y.; Chu, Q.-Q.; Li, C.-X.; Li, C.-J.; Yang, G.-J. Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%. J. Mater. Chem. A 2017, 5, 6840–6848. [Google Scholar] [CrossRef]
- Chen, Q.; Yuan, L.; Duan, R.; Huang, P.; Fu, J.; Ma, H.; Wang, X.; Zhou, Y.; Song, B. Zwitterionic polymer: A facile interfacial material works at both anode and cathode in p-i-n perovskite solar cells. Sol. RRL 2019, 3, 1900118. [Google Scholar] [CrossRef]
- Yang, L.; Feng, J.; Liu, Z.; Duan, Y.; Zhan, S.; Yang, S.; He, K.; Li, Y.; Zhou, Y.; Yuan, N.; et al. Record-Efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater. 2022, 34, 2201681. [Google Scholar] [CrossRef]
- Zhou, W.; Zhen, J.; Liu, Q.; Fang, Z.; Li, D.; Zhou, P.; Chen, T.; Yang, S. Successive surface engineering of TiO2 compact layers via dual modification of fullerene derivatives affording hysteresis-suppressed high-performance perovskite solar cells. J. Mater. Chem. A 2017, 5, 1724–1733. [Google Scholar] [CrossRef]
- Islam, A.; Li, J.; Pervaiz, M.; Lu, Z.; Sain, M.; Chen, L.; Ouyang, X. Zwitterions for organic/perovskite solar cells, light-emitting devices, and lithium ion batteries: Recent progress and perspectives. Adv. Energy Mater. 2019, 9, 1803354. [Google Scholar] [CrossRef]
- Choi, K.; Lee, J.; Kim, H.I.; Park, C.W.; Kim, G.-W.; Choi, H.; Park, S.; Park, S.A.; Park, T. Thermally stable, planar hybrid perovskite solar cells with high efficiency. Energy Environ. Sci. 2018, 11, 3238–3247. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, X.; Kim, S.; Park, N. Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells. Adv. Mater. 2019, 31, 1902902. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.H.; Chen, B.; Bertens, K.; Vafaie, M.; Teale, S.; Proppe, A.; Hou, Y.; Zhu, T.; Zheng, C.; Sargent, E.H. Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 2020, 5, 2796–2801. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, S.; Guo, T.; Du, D.; Tao, Y.; Zhang, L.; Liu, G.; Chen, X.; Ye, J.; Guo, Z.; et al. Dual effect of superhalogen ionic liquids ensures efficient carrier transport for highly efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 2022, 14, 28826–28833. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Chen, Y.; Wang, X.; Wei, N.; Liu, X.; Chen, H.; Miao, Y.; Zhao, Y. Zwitterion-Functionalized SnO2 substrate induced sequential deposition of black-phase fapbi 3 with rearranged PbI2 residue. Adv. Mater. 2022, 34, 2203143. [Google Scholar] [CrossRef]
- Zhuang, J.; Mao, P.; Luan, Y.; Chen, N.; Cao, X.; Niu, G.; Jia, F.; Wang, F.; Cao, S.; Wang, J. Rubidium fluoride modified SnO2 for planar n-i-p perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2010385. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, D.; Grice, C.R.; Liao, W.; Yu, Y.; Cimaroli, A.; Shrestha, N.; Roland, P.J.; Chen, J.; Yu, Z.; et al. Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J. Mater. Chem. A 2016, 4, 12080–12087. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Chen, Q.; Yang, Y.; Liu, Y.; Hong, Z.; Liu, Z.; Hsieh, Y.-T.; Meng, L.; Li, Y.; et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 15540–15547. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Chen, Q.; Zhang, K.; Yuan, L.; Zhou, Y.; Song, B.; Li, Y. 21.7% efficiency achieved in planar n–i–p perovskite solar cells via interface engineering with water-soluble 2D TiS2. J. Mater. Chem. A 2019, 7, 6213–6219. [Google Scholar] [CrossRef]
- Marin-Beloqui, J.M.; Lanzetta, L.; Palomares, E. Decreasing charge losses in perovskite solar cells through mp-TiO2 /MAPI i interface engineering. Chem. Mater. 2016, 28, 207–213. [Google Scholar] [CrossRef]
- Ma, J.; Yang, G.; Qin, M.; Zheng, X.; Lei, H.; Chen, C.; Chen, Z.; Guo, Y.; Han, H.; Zhao, X.; et al. MgO nanoparticle modified anode for highly efficient SnO2-based planar perovskite solar cells. Adv. Sci. 2017, 4, 1700031. [Google Scholar] [CrossRef]
- Tsvetkov, N.; Khan, M.E.; Moon, B.C.; Kim, Y.-H.; Kang, J.K. Strain-induced metallization and defect suppression at zipper-like interdigitated atomically thin interfaces enabling high-efficiency halide perovskite solar cells. ACS Nano 2021, 15, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Mohd Yusoff, A.R.B.; Vasilopoulou, M.; Georgiadou, D.G.; Palilis, L.C.; Abate, A.; Nazeeruddin, M.K. Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy Environ. Sci. 2021, 14, 2906–2953. [Google Scholar] [CrossRef]
- Krishna, A.; Zhang, H.; Zhou, Z.; Gallet, T.; Dankl, M.; Ouellette, O.; Eickemeyer, F.T.; Fu, F.; Sanchez, S.; Mensi, M.; et al. Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy Environ. Sci. 2021, 14, 5552–5562. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, A.A.; Igci, C.; Kim, H.; Kanda, H.; Shibayama, N.; Mensi, M.; Queloz, V.I.E.; Momblona, C.; Yun, H.J.; Bolink, H.J.; et al. Phosphine oxide derivative as a passivating agent to enhance the performance of perovskite solar cells. ACS Appl. Energy Mater. 2021, 4, 1259–1268. [Google Scholar] [CrossRef]
- Chen, Q.; Deng, K.; Shen, Y.; Li, L. Stable one dimensional (1D)/three dimensional (3D) perovskite solar cell with an efficiency exceeding 23%. InfoMat 2022, 4, e12303. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Zhang, Y.; Li, Y.; Huang, Y.; Jiang, Z.; Ai, Q.; Liu, Y.; Zhang, L.; Peng, Y.; et al. Highly orientational order perovskite induced by in situ-generated 1d perovskitoid for efficient and stable printable photovoltaics. Small 2022, 18, 2200130. [Google Scholar] [CrossRef] [PubMed]
- Su, T.-S.; Eickemeyer, F.T.; Hope, M.A.; Jahanbakhshi, F.; Mladenović, M.; Li, J.; Zhou, Z.; Mishra, A.; Yum, J.-H.; Ren, D.; et al. Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells. J. Am. Chem. Soc. 2020, 142, 19980–19991. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G.F.; Watts, J.F.; Xu, Z.; et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 2018, 360, 1442–1446. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Kim, S.; Park, N. FA0.88Cs0.12PbI3−x(PF6)x interlayer formed by ion exchange reaction between perovskite and hole transporting layer for improving photovoltaic performance and stability. Adv. Mater. 2018, 30, 1801948. [Google Scholar] [CrossRef]
- Li, Y.; Lim, E.L.; Xie, H.; Song, J.; Kong, T.; Zhang, Y.; Yang, M.; Wu, B.; Duan, C.; Bi, D. Hydrophobic fluorinated conjugated polymer as a multifunctional interlayer for high-performance perovskite solar cells. ACS Photonics 2021, 8, 3185–3192. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, Q.; Wu, J.; Tu, Y.; Sun, T.; Li, G.; Liu, X.; Wang, X.; Du, Y.; Deng, C.; et al. Poly(3-hexylthiophene)/perovskite heterointerface by spinodal decomposition enabling efficient and stable perovskite solar cells. Adv. Mater. 2024, 36, 2310800. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Hu, J.; He, D.; Bai, L.; Zhou, Q.; Wang, W.; Xu, C.; Song, Q.; Lee, D.; Zhao, P.; et al. Simultaneous passivation of bulk and interface defects with gradient 2d/3d heterojunction engineering for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 2022, 14, 21079–21088. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Motti, S.G.; Sorrentino, R.; Petrozza, A. Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy Environ. Sci. 2018, 11, 2609–2619. [Google Scholar] [CrossRef]
- Li, F.; Yuan, J.; Ling, X.; Zhang, Y.; Yang, Y.; Cheung, S.H.; Ho, C.H.Y.; Gao, X.; Ma, W. A universal strategy to utilize polymeric semiconductors for perovskite solar cells with enhanced efficiency and longevity. Adv. Funct. Mater. 2018, 28, 1706377. [Google Scholar] [CrossRef]
- Akman, E.; Akin, S. Poly(n, n′-bis-4-butylphenyl-n, n′-bisphenyl)benzidine-based interfacial passivation strategy promoting efficiency and operational stability of perovskite solar cells in regular architecture. Adv. Mater. 2021, 33, 2006087. [Google Scholar] [CrossRef]
- Chen, J.; Seo, J.; Park, N. Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2d perovskite at (FAPbI3)0.88(CsPbBr3)0.12 /CuSCN interface. Adv. Energy Mater. 2018, 8, 1702714. [Google Scholar] [CrossRef]
- Sung, S.J.; Im, J.; Kim, G.; Moon, C.S.; Yoo, J.J.; Shin, S.S.; Jeon, N.J.; Ma, B.S.; Kim, D.J.; Kim, T.; et al. Molecular engineering for function-tailored interface modifier in high-performance perovskite solar cells. Adv. Energy Mater. 2022, 12, 2200758. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Gao, H.; Wu, D.; Meng, J.; Deng, J.; Cui, M. Defects and Defect Passivation in Perovskite Solar Cells. Molecules 2024, 29, 2104. https://doi.org/10.3390/molecules29092104
Wang Z, Gao H, Wu D, Meng J, Deng J, Cui M. Defects and Defect Passivation in Perovskite Solar Cells. Molecules. 2024; 29(9):2104. https://doi.org/10.3390/molecules29092104
Chicago/Turabian StyleWang, Zhanwei, Hongli Gao, Dandan Wu, Junhua Meng, Jinxiang Deng, and Min Cui. 2024. "Defects and Defect Passivation in Perovskite Solar Cells" Molecules 29, no. 9: 2104. https://doi.org/10.3390/molecules29092104
APA StyleWang, Z., Gao, H., Wu, D., Meng, J., Deng, J., & Cui, M. (2024). Defects and Defect Passivation in Perovskite Solar Cells. Molecules, 29(9), 2104. https://doi.org/10.3390/molecules29092104