Determination of the Fatty Acid Profile and Lipid Quality Indices in Selected Infant Formulas
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparison of Fatty Acid Profile in Infant Formulas from Different Manufacturers
2.1.1. Saturated Fatty Acids (SFAs)
2.1.2. Monounsaturated Fatty Acids (MUFAs)
2.1.3. Polyunsaturated Fatty Acids (PUFAs)
2.1.4. Trans Fatty Acids (TFAs)
2.2. Comparison of the Fatty Acid Profile of Infant Formulas with Breast Milk
2.2.1. Saturated Fatty Acids (SFAs)
2.2.2. Monounsaturated Fatty Acids (MUFAs)
2.2.3. Polyunsaturated Fatty Acids (PUFAs)
2.2.4. Trans Fatty Acids (TFAs)
2.3. Lipid Quality Indices in Infant Formulas and Human Milk
2.3.1. Index of Desirable Fatty Acids (DFAs) and Index of Index of Hypercholesterolemic Fatty Acids (OFAs)
2.3.2. Index of Atherogenicity (AI), Index of Thrombogenicity (TI), and Hypocholesterolemic/Hypercholesterolemic (H/H) Ratio
2.4. Associations between Obtained Data—Multivariate Analysis
2.4.1. Principal Component Analysis (PCA)
2.4.2. Cluster Analysis (CA)
2.5. Limitations and Future Directions
3. Materials and Methods
3.1. Chemicals
3.2. Milk Samples Used in the Study
3.3. Fat Extraction
3.4. Fatty Acid Methyl Ester (FAME) Preparation and Gas Chromatography (GC) Analysis
3.5. The Lipid Quality Indices
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
AA | arachidonic fatty acid (C20:4 n-6) |
AI | Index of Atherogenicity |
ALA | α-linolenic fatty acid (C18:3 n-3) |
DFA | Index of Desirable Fatty Acids |
DHA | docosahexaenoic acid (C22:6 n-3) |
EPA | eicosapentaenoic acid (C20:5 n-3) |
FAMEs | fatty acid methyl esters |
H/H | hypocholesterolemic/hypercholesterolemic ratio |
HM | human milk |
IF | infant formula |
LA | linoleic fatty acid (C18:2 n-6) |
MCFA | medium-chain fatty acid |
MUFAs | monounsaturated fatty acids |
OFA | Index of Hypercholesterolemic Fatty Acids |
PUFAs n-3 | polyunsaturated fatty acids n-3 |
PUFAs n-6 | polyunsaturated fatty acids n-6 |
SCFA | short-chain fatty acid |
SFAs | saturated fatty acids |
TFAs | trans fatty acids |
TI | Index of Thrombogenicity |
References
- Bakshi, S.; Paswan, V.K.; Yadav, S.P.; Bhinchar, B.K.; Kharkwal, S.; Rose, H.; Kanetkar, P.; Kumar, V.; Al-Zamani, Z.A.; Bunkar, D.S. A comprehensive review on infant formula: Nutritional and functional constituents, recent trends in processing and its impact on infants’ gut microbiota. Front. Nutr. 2023, 10, 1194679. [Google Scholar] [CrossRef]
- Del Ciampo, L.A.; Del Ciampo, R.L. Breastfeeding and the Benefits of Lactation for Women’s Health. Rev. Bras. Ginecol. Obstet. 2019, 40, 354–359. [Google Scholar] [CrossRef]
- Mendonça, M.A.; Coelho Araújo, W.M.; Borgo, L.A.; de Rodrigues Alencar, E. Lipid profile of different infant formulas for infants. PLoS ONE 2017, 12, e0177812. [Google Scholar] [CrossRef]
- World Health Organization. Guidance on Ending the Inappropriate Promotion of Foods for Infants and Young Children: Implementation Manual. 2017. Available online: https://apps.who.int/gb/ebwha/pdf_files/WHA69/A69_7Add1-en.pdf (accessed on 20 March 2024).
- Baker, P.; Santos, T.; Neves, P.A.; Machado, P.; Smith, J.; Piwoz, E.; Barros, A.J.D.; Victoria, C.G.; McCoy, D. First-food systems transformations and the ultra-processing of infant and young child diets: The determinants, dynamics and consequences of the global rise in commercial milk formula consumption. Matern. Child Nutr. 2021, 17, e13097. [Google Scholar] [CrossRef]
- Martin, C.R.; Ling, P.-R.; Blackburn, G.L. Review of infant feeding: Key features of breast milk and infant formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef]
- Sánchez-Hernández, S.; Esteban-Muñoz, A.; Giménez-Martínez, R.; Aguilar-Cordero, M.J.; Miralles-Buraglia, B.; Olalla-Herrera, M. A Comparison of Changes in the Fatty Acid Profile of Human Milk of Spanish Lactating Women during the First Month of Lactation Using Gas Chromatography-Mass Spectrometry. A Comparison with Infant Formulas. Nutrients 2019, 11, 3055. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, S.; Liu, L.; Pang, X.; Yang, Y.; Lu, J.; Lv, J. Differences in the Triacylglycerol and Fatty Acid Compositions of Human Colostrum and Mature Milk. J. Agric. Food Chem. 2018, 66, 4571–4579. [Google Scholar] [CrossRef]
- Delplanque, B.; Gibson, R.; Koletzko, B.; Lapillonne, A.; Strandvik, B. Lipid Quality in Infant Nutrition: Current Knowledge and Future Opportunities. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 8–17. [Google Scholar] [CrossRef]
- Mazzocchi, A.; D’Oria, V.; De Cosmi, V.; Bettocchi, S.; Milani, G.P.; Silano, M.; Agostoni, C. The Role of Lipids in Human Milk and Infant Formulae. Nutrients 2018, 10, 567. [Google Scholar] [CrossRef]
- Paszczyk, B.; Tońska, E. Fatty Acid Content, Lipid Quality Indices, and Mineral Composition of Cow Milk and Yogurts Produced with Different Starter Cultures Enriched with Bifidobacterium bifidum. Appl. Sci. 2022, 12, 6558. [Google Scholar] [CrossRef]
- Krešić, G.; Dujmović, M.; Mandić, M.L.; Delaš, I. Relationship between Mediterranean diet and breast milk fatty acid profile: A study in breastfeeding women in Croatia. Dairy Sci. Technol. 2013, 93, 287–301. [Google Scholar] [CrossRef]
- Deng, L.; Zou, Q.; Liu, B.; Zhuo, C.; Chen, L.; Deng, Z.-Y.; Fan, Y.-W.; Li, J. Fatty acid positional distribution in colostrum and mature milk of women living in Inner Mongolia, North Jiangsu and Guangxi of China. Food Funct. 2018, 9, 4234–4245. [Google Scholar] [CrossRef]
- Kiprop, V.J.; Girard, A.W.; Gogo, L.A.; Omwamba, M.N.; Mahungu, S.M. Determination of the Fatty Acid Profile of Breast Milk from Nursing Mothers in Bungoma County, Kenya. Food Nutr. Sci. 2016, 7, 661–670. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, L.; Zhang, Y.; Shi, J.; Tan, C.P.; Zheng, Z.; Liu, Y. Lipid Profiles of Human Milk and Infant Formulas: A Comparative Lipidomics Study. Foods 2023, 12, 600. [Google Scholar] [CrossRef]
- Boateng, L.; Ansong, R.; Owusu, W.B.; Steiner-Asiedu, M. Coconut oil and pal’ oil’s role in nutrition, health and national development: A review. Ghana Med. J. 2016, 50, 189–196. [Google Scholar] [CrossRef]
- Tounian, P.; Bellaïche, M.; Legrand, P. ARA or no ARA in infant formulae, that is the question. Arch. De Pédiatrie 2021, 28, 69–74. [Google Scholar] [CrossRef]
- Mehni, M.E.; Samadlouie, H.-R.; Rajaei, A. Enhancement of oil productivity of Mortierella alpine and investigation into the potential of Pickering oil-in-water emulsions to improve its oxidative stability. Food Sci. Nutr. 2021, 10, 103–114. [Google Scholar] [CrossRef]
- Commission Delegated Regulation (EU) 2016/127 of 25 September 2015 Supplementing Regulation (EU) No 609/2013 of the European Parliament and of the Council as Regards the Specific Compositional and Information Requirements for Infant Formula and Follow-On Formula and as Regards Requirements on Information Relating to Infant and Young Child Feeding. Available online: https://eur-lex.europa.eu/eli/reg_del/2016/127/oj (accessed on 20 March 2024).
- Commission Directive 2006/141/EC of 22 December 2006 on Infant Formulae and Follow-On Formulae and Amending Directive 1999/21/EC Text with EEA Relevance. Available online: https://eur-lex.europa.eu/eli/dir/2006/141/oj (accessed on 7 April 2024).
- Carlson, S.E.; Schipper, L.; Brenna, J.T.; Agostoni, C.; Calder, P.C.; Foryth, S.; Legrand, P.; Abrahamse-Berkeveld, M.; van de Heijning, B.J.M.; van der Beek, E.M.; et al. Perspective: Moving toward Desirable Linoleic Acid Content in Infant Formula. Adv. Nutr. 2021, 12, 2085–2098. [Google Scholar] [CrossRef]
- Happe, R.P.; Gambelli, L. Infant formula. In Specialty Oils and Fats in Food and Nutrition Properties, Processing and Applications; Talbot, G., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 285–315. [Google Scholar] [CrossRef]
- Codex Alimentarius Commision. Codex Committee on Nutrition and Foods for Special Dietary Uses. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-720-37%252FCRD%252FCRD_05.pdf (accessed on 20 March 2024).
- Tarar, O.M.; Ahmed, K.M.; Nishtar, N.A.; Achakzai, A.B.K.; Gulzar, Y.; Delles, C.; Al-Jawaldeh, A. Understanding the complexities of prevalence of trans fat and its control in food supply in Pakistan. J. Clin. Hypertens. 2020, 22, 1338–1346. [Google Scholar] [CrossRef]
- Miliku, K.; Duan, Q.L.; Moraes, T.J.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.L.; Sears, M.R.; Subbarao, P.; Field, C.J.; et al. Human milk fatty acid composition is associated with dietary, genetic, sociodemographic, and environmental factors in the CHILD Cohort Study. Am. J. Clin. Nutr. 2019, 110, 1370–1383. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Yang, X.; Cheng, Y.; Zhang, H.; Xu, X.; Zhou, J.; Chen, H.; Su, M.; Yang, Y.; et al. Human Milk Lipid Profiles around the World: A Systematic Review and Meta-Analysis. Adv. Nutr. 2022, 13, 2519–2536. [Google Scholar] [CrossRef]
- Petersohn, I.; Hellinga, A.H.; van Lee, L.; Keukens, N.; Bont, L.; Hettinga, K.A.; Feskens, E.J.M.; Brouwer-Brolsma, E.M. Maternal diet and human milk composition: An updated systematic review. Front. Nutr. 2024, 10, 1320560. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Li, D.; Yi, H.; Xu, T.; Li, S.; Zhang, L. Fatty acid and triacylglycerol comparison of infant formulas on the Chinese market. Int. Dairy J. 2019, 95, 35–43. [Google Scholar] [CrossRef]
- Costa, A.G.V.; Sabarense, C.M. Modulation and composition of fatty acids in human milk. Rev. Nutr. 2010, 23, 445–457. [Google Scholar] [CrossRef]
- Hasibuan, H.A.; Sitanggang, A.B.; Andarwulan, N.; Hariyadi, P. Enzymatic Synthesis of Human Milk Fat Substi–ute—A Review on Technological Approaches. Food Technol. Biotechnol. 2021, 59, 475–495. [Google Scholar] [CrossRef]
- Borgo, L.A.; Coelho Araújo, W.M.; Conceição, M.H.; Sabioni Resck, I.; Mendonça, M.A. Are fat acids of human milk impacted by pasteurization and freezing? Nutr. Hosp. 2014, 31, 1386–1393. [Google Scholar] [CrossRef]
- Jagodic, M.; Tratnik, J.S.; Potočnik, D.; Mazej, D.; Ogrinc, N.; Horvat, M. Dietary habits of Slovenian inland and coastal primiparous women and fatty acid composition of their human milk samples. Food Chem. Toxicol. 2020, 141, 111299. [Google Scholar] [CrossRef]
- Su, M.; Subbaraj, A.K.; Fraser, K.; Qi, X.; Jia, H.-X.; Chen, W.; Gomes Reis, M.; Agnew, M.; Day, L.; Roy, N.; et al. Lipidomics of Brain Tissues in Rats Fed Human Milk from Chinese Mothers or Commercial Infant Formula. Metabolites 2019, 9, 253. [Google Scholar] [CrossRef]
- Codex Allimentarius. Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants. Available online: https://www.nicd.ac.za/wp-content/uploads/2018/05/Standard_for_Infant_Formula_and_Formulas_for_Special_Medical_Purposes_intended_for_Infant_CODEX_STAN_72-1981_formerly_CAC_RS_72-1972.pdf (accessed on 20 March 2024).
- Aumeistere, L.; Beluško, A.; Ciproviča, I.; Zavadska, D. Trans Fatty Acids in Human Milk in Latvia: Association with Dietary Habits during the Lactation Period. Nutrients 2021, 13, 2967. [Google Scholar] [CrossRef]
- Hatem, O.; Kaçar, Ö.F.; Kaçar, H.K.; Szentpéteri, J.L.; Marosvölgyi, T.; Szabó, E. Trans isomeric fatty acids in human milk and their role in infant health and development. Front. Nutr. 2024, 11, 1379772. [Google Scholar] [CrossRef]
- Bousset-Alféres, C.M.; Chávez-Servín, J.L.; Vázquez-Landaverde, P.A.; Betancourt-López, C.A.; del Carmen Caamaño, M.; Ferriz-Martínez, R.A.; Chávez-Alabat, E.F.; Lovatón-Cabrera, M.G.; de la Torre-Carbot, K. Content of industrially produced trans fatty acids in breast milk: An observational study. Food Sci. Nutr. 2022, 10, 2568–2581. [Google Scholar] [CrossRef]
- Martysiak-Żurowska, D.; Kiełbratowska, B.; Szlagatys-Sidorkiewicz, A. The Content of Conjugated Linoleic Acid and Vaccenic Acid in the Breast Milk of Women from Gdansk and the Surrounding District, As Well As In, Infant Formulas and Follow-up Formulas. Nutritional Recommendation for Nursing Women. Dev. Period Med. 2018, 22, 128–134. [Google Scholar] [CrossRef]
- Chisaguano, A.M.; Montes, R.; Castellote, A.I.; Morales, E.; Júlvez, J.; Vioque, J.; Sunyer, J.; López-Sabater, M.C. Elaidic, vaccenic, and rumenic acid status during pregnancy: Association with maternal plasmatic LC-PUFAs and atopic manifestations in infants. Pediatr. Res. 2014, 76, 470–476. [Google Scholar] [CrossRef]
- Ratanayake, W.M.N.; Swist, E.; Zoka, R.; Gagnon, C.; Lillycrop, W.; Pantazapoulos, P. Mandatory trans fat labeling regulations and nationwide product reformulations to reduce trans fatty acid content in foods contributed to lowered concentrations of trans fat in Canadian women’s breast milk samples collected in 2009–2011. Am. J. Clin. Nutr. 2014, 100, 1036–1040. [Google Scholar] [CrossRef]
- De Souza Santos da Costa, R.; da Silva Santos, F.; de Barros Mucci, D.; Vignuda de Souza, T.; de Carvalho Sardinha, F.L.; de Miranda Chaves, C.R.M.; das Graças Tavares do Carmo, M. trans Fatty Acids in Colostrum, Mature Milk and Diet of Lactating Adolescents. Lipids 2016, 51, 1363–1373. [Google Scholar] [CrossRef]
- Perrin, M.T.; Pawlak, R.; Dean, L.L.; Christis, A.; Friend, L. A cross-sectional study of fatty acids and brain-derived neurotrophic factor (BDNF) in human milk from lactating women following vegan, vegetarian, and omnivore diets. Eur. J. Nutr. 2019, 58, 2401–2410. [Google Scholar] [CrossRef]
- Wanders, A.J.; Zock, P.L.; Brouwer, I.A. Trans Fat Intake and Its Dietary Sources in General Populations Worldwide: A Systematic Review. Nutrients 2017, 9, 840. [Google Scholar] [CrossRef]
- Kuratko, C.; Abril, J.R.; Hoffman, J.P.; Salem, N., Jr. 13-Enrichment of infant formula with omega-3 fatty acids. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Food Enrichment with Omega-3 Fatty Acids; Jacobsen, C., Skall Nielsen, N., Frisenfeldt Horn, A., Moltke Sørensen, A.-D., Eds.; Woodhead Publishing: Sawston, UK, 2013; pp. 353–386. [Google Scholar] [CrossRef]
- Yu, J.; Wei, W.; Wang, F.; Yu, R.; Jin, Q.; Wang, X. Evaluation of total, sn-2 fatty acid, and triacylglycerol composition in commercial infant formulas on the Chinese market: A comparative study of preterm and term formulas. Food Chem. 2022, 384, 132477. [Google Scholar] [CrossRef]
- Ahmed, B.; Freije, A.; Omran, A.; Rondanelli, M.; Marino, M.; Perna, S. Human Milk Fatty Acid Composition and Its Effect on Preterm Infants’ Growth Velocity. Children 2023, 10, 939. [Google Scholar] [CrossRef]
- Ferreira Freitas, R.; de Souza Macedo, M.; do Carmo Lessa, A.; Ferraz, V.P.; Martins, B.E.V.; Pinto, N.A.V.D.; Teixeira, R.A. Composition in fatty acids of mature milk of nursing mothers. Rev. Bras. Saúde Matern. Infant. 2019, 19, 817–825. [Google Scholar] [CrossRef]
- Ni, M.; Wang, Y.; Yang, Z.; Xu, X.; Zhang, H.; Yang, Y.; Zhang, L.; Chen, J. Profiles of total and sn-2 fatty acid of human mature milk and their correlated factors: A cross-sectional study in China. Front. Nutr. 2022, 9, 926429. [Google Scholar] [CrossRef]
- Zielińska-Pukos, M.A.; Bryś, J.; Wesołowska, A.; Hamułka, J. Breastmilk PUFA strongly associated with maternal dietary intake but not anthropometric parameters and breastmilk carotenoids. Prostaglandins Leukot. Essent. Fat. Acids 2022, 186, 102505. [Google Scholar] [CrossRef]
- Ruiz-Núñez, B.; Dijck-Brouwer, D.A.J.; Muskiet, F.A.J. The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J. Nutr. Biochem. 2016, 36, 1–20. [Google Scholar] [CrossRef]
- Oleynik, A.; Eliseeva, T.; Vanderhoek, J.Y. Comparative Lipid Profiles of Milk Bank Breast Milk and Infant Formulas. Open Nutr. J. 2013, 7, 26–31. [Google Scholar] [CrossRef]
- Korma, S.A.; Li, L.; Abdrabo, K.A.E.; Ali, A.H.; Rahaman, A.; Abed, S.M.; Bakry, I.A.; Wei, W.; Wang, X. A comparative study of lipid composition and powder quality among powdered infant formula with novel functional structured lipids and commercial infant formulas. Eur. Food Res. Technol. 2020, 246, 2569–2586. [Google Scholar] [CrossRef]
- Sarkadi, L.S.; Zhang, M.; Muránszky, G.; Vass, R.A.; Matsyura, O.; Benes, E.; Vari, S.G. Fatty Acid Composition of Milk from Mothers with Normal Weight, Obesity, or Gestational Diabetes. Life 2022, 12, 1093. [Google Scholar] [CrossRef]
- Ramiro-Cortijo, D.; Singh, P.; Liu, Y.; Medina-Morales, E.; Yakah, W.; Freedman, S.D.; Martin, C.R. Breast Milk Lipids and Fatty Acids in Regulating Neonatal Intestinal Development and Protecting against Intestinal Injury. Nutrients 2020, 12, 534. [Google Scholar] [CrossRef]
- Giuffrida, F.; Fleith, M.; Goyer, A.; Samuel, T.M.; Elmelegy-Masserey, I.; Fontannaz, P.; Cruz-Hernandez, C.; Thakkar, S.K.; Monnard, C.; De Castro, C.A.; et al. Human milk fatty acid composition and its association with maternal blood and adipose tissue fatty acid content in a cohort of women from Europe. Eur. J. Nutr. 2022, 61, 2167–2182. [Google Scholar] [CrossRef]
- Sinanoglou, V.J.; Cavouras, D.; Boutsikou, T.; Briana, D.D.; Lantzouraki, D.Z.; Paliatsiou, S.; Volaki, P.; Bratakos, S.; Malamitsi-Puchner, A.; Zoumpoulakis, P. Factors affecting human colostrum fatty acid profile: A case study. PLoS ONE 2017, 12, e0175817. [Google Scholar] [CrossRef]
- Mohammad, M.A.; Sunehag, A.L.; Haymond, M.W. De novo synthesis of milk triglycerides in humans. Am. J. Physiol. Endocrinol. Metab. 2014, 306, 838–847. [Google Scholar] [CrossRef]
- Pietrzak-Fiećko, R.; Kamelska-Sadowska, A.M. The Comparison of Nutritional Value of Human Milk with Other Ma’mals’ Milk. Nutrients 2020, 12, 1404. [Google Scholar] [CrossRef]
- Paszczyk, B.; Łuczyńska, J. The Comparison of Fatty Acid Composition and Lipid Quality Indices in Hard Cow, Sheep, and Goat Cheeses. Foods 2020, 9, 1667. [Google Scholar] [CrossRef]
- Glišić, M.; Bošković Cabrol, M.; Čobanović, N.; Starčević, S.; Samardžić, S.; Veličković, I.; Maksimović, Z. The Effects of Sunflower and Maize Crop Residue Extracts as a New Ingredient on the Quality Properties of Pork Liver Pâtés. Foods 2024, 13, 788. [Google Scholar] [CrossRef]
- Lavalle, L.; Sauvageot, N.; Cercamondi, C.I.; Egli, D.; Jankovic, I.; Vandenplas, Y. Infant feeding practice and gastrointestinal tolerance: A real-world, multi-country, cross-sectional observational study. BMC Pedriatr. 2022, 22, 714. [Google Scholar] [CrossRef]
- Li, R.; Scanlon, K.S.; May, A.; Rose, C.; Birch, L. Bottle-Feeding Practices During Early Infancy and Eating Behaviors at 6 Years of Age. Pediatrics 2014, 134 (Suppl. S1), 70–77. [Google Scholar] [CrossRef]
- Da Silva, R.C.; Ferdaus, M.J. Technological Advances in Infant Formula Ingredients. In Infant Nutrition and Feeding; IntechOpen: London, UK, 2023; pp. 1–18. [Google Scholar] [CrossRef]
- Ambrożej, D.; Dumycz, K.; Dziechciarz, P.; Ruszczyński, M. Milk Fat Globule Membrane Supplementation in Children: Systematic Review with Meta-Analysis. Nutrients 2021, 13, 714. [Google Scholar] [CrossRef]
- PN-EN ISO 1211:2011; Milk-Determination of Fat Content-Gravimetric Method (Reference Method). ISO: Geneva, Switzerland, 2011.
- ISO 15884:2002 (IDF 182:2002); Milkfat: Preparation of Fatty Acid Methyl Esters. ISO: Geneva, Switzerland, 2002.
- Agilent ChemStation. Available online: https://www.agilent.com/cs/library/usermanuals/Public/G2070-91126_Understanding.pdf (accessed on 28 April 2024).
Fatty Acid | IF-I | IF-II | IF-III | IF-IV | IF-V | IF-VI | IF-VII |
---|---|---|---|---|---|---|---|
Caprylic (C8:0) | 1.96 ± 0.21 b | 2.41 ± 0.11 a | 2.40 ± 0.14 a | 1.82 ± 0.07 b | 1.92 ± 0.11 b | 0.59 ± 0.04 c | 0.56 ± 0.01 c |
Capric (C10:0) | 1.52 ± 0.16 b | 1.58 ± 0.09 b | 1.77 ± 0.10 a | 1.39 ± 0.05 b | 1.45 ± 0.08 b | 0.57 ± 0.03 c | 0.59 ± 0.01 d |
Lauric (C12:0) | 10.68 ± 1.33 b | 11.79 ± 0.44 a | 12.86 ± 0.73 a | 10.18 ± 0.29 b | 10.82 ± 0.80 b | 6.98 ± 0.32 c | 6.40 ± 0.12 d |
Myristic (C14:0) | 4.61 ± 0.43 b | 5.25 ± 0.14 a | 5.33 ± 0.21 a | 4.52 ± 0.18 b | 4.87 ± 0.32 b | 2.94 ± 0.09 d | 0.87 ± 0.06 d |
Palmitic (C16:0) | 22.33 ± 0.21 b | 18.21 ± 0.91 c | 17.85 ± 0.77 c | 22.53 ± 0.46 b | 22.37 ± 0.38 b | 23.44 ± 0.17 b | 26.17 ± 0.95 a |
Stearic (C18:0) | 3.41 ± 0.07 b | 3.25 ± 0.14 c | 3.16 ± 0.07 c | 3.63 ± 0.09 a | 3.41 ± 0.09 b | 3.40 ± 0.08 b | 3.72 ± 0.09 a |
Arachidic (C20:0) | 0.33 ± 0.02 b | 0.33 ± 0.01 b | 0.33 ± 0.01 b | 0.28 ± 0.01 c | 0.32 ± 0.01 b | 0.36 ± 0.01 b | 0.41 ± 0.03 a |
Myristoleic (C14:1 n-5) | 0.01 ± 0.00 a | 0.02 ± 0.01 a | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.01 ± 0.00 a | 0.02 ± 0.00 a |
Palmitoleic (C16:1 n-7) | 0.18 ± 0.02 a | 0.17 ± 0.02 b | 0.18 ± 0.02 a | 0.17 ± 0.01 b | 0.18 ± 0.02 a | 0.18 ± 0.00 a | 0.21 ± 0.03 a |
Oleic (C18:1 n-9) | 35.27 ± 1.56 c | 37.82 ± 0.67 b | 38.03 ± 0.24 b | 35.56 ± 0.402 c | 35.14 ± 0.70 c | 38.74 ± 0.31 b | 40.10 ± 0.78 a |
α-Linolenic (C18:3 n-3) | 1.80 ± 0.11 c | 2.02 ± 0.04 a | 2.29 ± 0.10 a | 1.25 ± 0.03 d | 1.77 ± 0.08 c | 2.29 ± 0.15 a | 1.99 ± 0.15 c |
Eicosapentaenoic (EPA) (C20:5 n-3) | 0.08 ± 0.01 a | 0.09 ± 0.03 a | 0.05 ± 0.01 b | 0.09 ± 0.02 a | 0.07 ± 0.01 a | 0.07 ± 0.01 a | 0.07 ± 0.01 a |
Docosahexaenoic (DHA) (C22:6 n-3) | 0.70 ± 0.12 a | 0.67 ± 0.06 a | 0.72 ± 0.11 a | 0.71 ± 0.12 a | 0.77 ± 0.12 a | 0.77 ± 0.12 a | 0.74 ± 0.09 a |
Linoleic (C18:2 n-6) | 15.51 ± 0.25 c | 13.29 ± 0.31 c | 13.07 ± 1.04 c | 16.77 ± 0.17 b | 15.54 ± 0.28 c | 17.84 ± 0.25 a | 16.29 ± 0.92 b |
Arachidonic (C20:4 n-6) | 0.43 ± 0.04 a | 0.46 ± 0.07 a | 0.42 ± 0.03 a | 0.40 ± 0.04 a | 0.42 ± 0.04 a | 0.42 ± 0.04 a | 0.43 ± 0.05 a |
Petroselaidic (C18:1t6) | 0.04 ± 0.00 a | 0.04 ± 0.00 a | 0.05 ± 0.01 a | 0.06 ± 0.01 a | 0.03 ± 0.02 b | 0.05 ± 0.02 a | 0.06 ± 0.00 a |
Elaidic (C18:1 t9) | 0.02 ± 0.00 b | 0.04 ± 0.00 a | 0.05 ± 0.01 a | 0.03 ± 0.00 b | 0.04 ± 0.01 a | 0.03 ± 0.01 b | 0.03 ± 0.01 b |
Vaccenic (C18:1 t11) | 0.01 ± 0.00 a | ND | 0.04 ± 0.01 a | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.02 ± 0.00 b |
Linoelaidic (C18:2t9,12) | ND | ND | 0.01 ± 0.00 a | ND | 0.01 ± 0.00 a | ND | 0.01 ± 0.00 a |
Palmitelaidic (C16:1 t9) | 0.07 ± 0.00 a | 0.07 ± 0.01 a | 0.06 ± 0.01 a | 0.03 ± 0.01 b | 0.03 ± 0.01 b | 0.04 ± 0.01 b | 0.04 ± 0.02 b |
∑ SFA | 44.84 b | 42.82 d | 43.70 c | 44.35 b | 45.16 a | 38.28 e | 38.72 e |
∑ MUFA | 35.46 d | 38.01 c | 38.23 c | 35.75 d | 35.34 d | 38.93 b | 40.33 a |
∑ PUFA n-3 | 2.58 c | 2.78 b | 3.06 a | 2.05 d | 2.61 c | 3.13 a | 2.80 b |
∑ PUFA n-6 | 15.94 d | 13.75 e | 13.49 f | 17.17 b | 15.96 d | 18.26 a | 16.72 c |
Σ TFA | 0.14 b | 0.15 b | 0.21 a | 0.14 b | 0.13 b | 0.14 b | 0.16 b |
Fatty Acid | Mean Values of IF | HM |
---|---|---|
Caprylic (C8:0) | 1.66 ± 0.49 a | 0.20 ± 0.09 b |
Capric (C10:0) | 1.27 ± 0.36 b | 1.50 ± 0.70 a |
Lauric (C12:0) | 9.96 ± 2.63 a | 6.58 ± 3.39 b |
Myristic (C14:0) | 4.06 ± 1.06 b | 8.14 ± 2.57 a |
Palmitic (C16:0) | 21.84 ± 4.06 b | 26.38 ± 6.82 a |
Stearic (C18:0) | 3.43 ± 0.63 b | 7.07 ± 1.48 a |
Arachidic (C20:0) | 0.33 ± 0.06 a | 0.10 ± 0.11 b |
Myristoleic (C14:1 n-5) | 0.02 ± 0.01 b | 0.17 ± 0.08 a |
Palmitoleic (C16:1 n-7) | 0.18 ± 0.04 b | 1.75 ± 0.67 a |
Oleic (C18:1 n-9) | 37.24 ± 7.45 a | 30.48 ± 5.17 b |
α-Linolenic (ALA) (C18:3 n-3) | 1.92 ± 0.46 a | 0.90 ± 0.05 b |
Eicosapentaenoic (EPA) (C20:5 n-3) | 0.07 ± 0.03 b | 0.15 ± 0.09 a |
Docosahexaenoic (DHA) (C22:6 n-3) | 0.73 ± 0.15 a | 0.36 ± 0.06 b |
Linoleic (LA) (C18:2 n-6) | 15.47 ± 2.88 a | 10.42 ± 1.44 b |
Arachidonic (AA) (C20:4 n-6) | 0.43 ± 0.09 a | 0.38 ± 0.11 b |
Petroselaidic acid (C18:1t6) | 0.05 ± 0.01 b | 0.11 ± 0.02 a |
Elaidic acid (C18:1 t9) | 0.03 ± 0.01 b | 0.12 ± 0.05 a |
Vaccenic acid (C18:1 t11) | 0.02 ± 0.01 b | 0.08 ± 0.01 a |
Linoelaidic acid (C18:2t9,12) | 0.01 ± 0.01 b | 0.13 ± 0.08 a |
Palmitelaidic Acid (C16:1 t9) | 0.05 ± 0.02 a | 0.08 ± 0.06 a |
∑ SFA | 42.55 b | 49.97 a |
∑ MUFA | 37.44 a | 32.4 b |
∑ PUFA n-3 | 2.72 a | 1.41 b |
∑ PUFA n-6 | 15.90 a | 10.80 b |
Σ TFA | 0.16 b | 0.52 a |
Lipid Quality Indices | IF-I | IF-II | IF-III | IF-IV | IF-V | IF-VI | IF-VII | HM |
---|---|---|---|---|---|---|---|---|
DFA | 57.40 b | 57.79 b | 57.94 b | 58.60 b | 57.32 b | 63.72 a | 63.57 a | 51.68 c |
OFA | 37.62 b | 35.25 c | 36.04 c | 37.23 b | 38.06 b | 33.36 d | 33.44 d | 41.10 a |
AI | 0.95 b | 0.94 b | 0.95 b | 0.92 b | 0.98 b | 0.70 c | 0.49 d | 1.47 a |
TI | 0.59 b | 0.49 d | 0.48 d | 0.60 b | 0.59 b | 0.51 c | 0.53 c | 1.60 a |
H/H | 1.95 c | 2.26 a | 2.30 a | 1.98 c | 1.93 c | 2.23 a | 2.19 b | 1.21 d |
Nutritional Value in 100 mL of Ready-to-Use Product * | Range of Tested Infant Formulas |
---|---|
Energy (kcal) | 65–68 |
Fat (g), of which | 3.0–3.7 |
Saturated fatty acids (g) | 0.8–1.6 |
Monounsaturated fatty acids (g) | 1.4–1.6 |
Polyunsaturated fatty acids (g) | 0.5–0.7 |
Linoleic acid, LA (mg) | 420–621 |
α-linolenic acid, ALA (mg) | 39–60 |
Docosahexaenoic acid, DHA (mg) | 11.75–17.00 |
Carbohydrates (g), of which | 7.20–8.45 |
Sugars (g) | 4.6–8.3 |
Protein (g) | 1.29–2.15 |
Preparation of 100 mL of milk | 13.05–14.10 g of powder + 90 mL of water |
Oils used in the production of the tested infant formulas | Sunflower; rapeseed; coconut; palm; high oleic sunflower; coconut; high sn-2 palmitic palm; high oleic sunflower; low erucic rapeseed; soybean; fish; oil extracted from unicellular organisms (Mortierella alpina oil, Schizochytrium sp. oil). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purkiewicz, A.; Pietrzak-Fiećko, R. Determination of the Fatty Acid Profile and Lipid Quality Indices in Selected Infant Formulas. Molecules 2024, 29, 2044. https://doi.org/10.3390/molecules29092044
Purkiewicz A, Pietrzak-Fiećko R. Determination of the Fatty Acid Profile and Lipid Quality Indices in Selected Infant Formulas. Molecules. 2024; 29(9):2044. https://doi.org/10.3390/molecules29092044
Chicago/Turabian StylePurkiewicz, Aleksandra, and Renata Pietrzak-Fiećko. 2024. "Determination of the Fatty Acid Profile and Lipid Quality Indices in Selected Infant Formulas" Molecules 29, no. 9: 2044. https://doi.org/10.3390/molecules29092044
APA StylePurkiewicz, A., & Pietrzak-Fiećko, R. (2024). Determination of the Fatty Acid Profile and Lipid Quality Indices in Selected Infant Formulas. Molecules, 29(9), 2044. https://doi.org/10.3390/molecules29092044