Preparation and Performance Verification of a Solid Slow-Release Carbon Source Material for Deep Nitrogen Removal in Urban Tailwater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Static Release Rules of Slow-Release Carbon Sources
2.2. Influence of SRC on the Effect of Nitrogen Removal by Denitrification
3. Materials and Methods
3.1. Preparation of SRCs
3.2. Static Carbon Release Experiment and Batch Carbon Release Experiments
3.3. SEM-EDS Analyses
3.4. Analysis Items and Methods
3.5. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vatanpour, N.; Malvandi, A.M.; Talouki, H.H.; Gattinoni, P.; Scesi, L. Impact of rapid urbanization on the surface water’s quality: A long-term environmental and physicochemical investigation of tajan river, iran (2007–2017). Environ. Sci. Pollut. Res. 2020, 27, 8439–8450. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.M.; Wang, J.L. Various electron donors for biological nitrate removal: A review. Sci. Total. Environ. 2021, 794, 148699. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.R.; Hou, R.R.; Yang, P.; Qian, S.T.; Feng, Z.Q.; Chen, Z.B.; Wang, F.; Yuan, R.F.; Chen, H.L.; Zhou, B.H. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review. Sci. Total. Environ. 2022, 817, 153061. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.M.; Feng, C.P.; Tong, S.; Chen, N.; Dong, S.S.; Peng, T.; Jin, S.L. Denitrification behavior and microbial community spatial distribution inside woodchip-based solid-phase denitrification (w-spd) bioreactor for nitrate-contaminated water treatment. Bioresour. Technol. 2018, 249, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.T.; Chen, N.; Tong, S.; Li, B.; He, Q.C.; Feng, C.P. Enhancement of rice bran as carbon and microbial sources on the nitrate removal from groundwater. Biochem. Eng. J. 2019, 148, 185–194. [Google Scholar] [CrossRef]
- Zhang, F.F.; Ma, C.J.; Huang, X.F.; Liu, J.; Lu, L.J.; Peng, K.M.; Li, S.Y. Research progress in solid carbon source-based denitrification technologies for different target water bodies. Sci. Total. Environ. 2021, 782, 146669. [Google Scholar] [CrossRef] [PubMed]
- Gibert, O.; Pomierny, S.; Rowe, I.; Kalin, R.M. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (prb). Bioresour. Technol. 2008, 99, 7587–7596. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.X.; Zhang, D.; Cai, L.; Xie, Y.F.; Wang, L.; Li, Q.L.; Hua, Y. An innovative double-layer microsphere used as slow-release carbon source for biological denitrification. Water Air Soil Pollut. 2020, 231, 135. [Google Scholar] [CrossRef]
- Li, L.; Zhang, W.; He, J.; Ma, W.; Liu, F. Characteristics of cod release in corn straw and its denitrification effect. Chin. J. Environ. Eng. 2015, 9, 113–118. [Google Scholar]
- Ding, Y.; Tang, H.; Yu, Q.; Liu, X.; Song, X. Research progress in utilizing plant carbon for promoting nitrogen removal effect in constructed wetland. Ind. Water Treat. 2020, 40, 7–10. [Google Scholar]
- Ali, M.; Shaw, D.R.; Zhang, L.; Haroon, M.F.; Narita, Y.; Emwas, A.H.; Saikaly, P.E.; Okabe, S. Aggregation ability of three phylogenetically distant anammox bacterial species. Water Res. 2018, 143, 10–18. [Google Scholar] [CrossRef]
- Yu, L.; Lu, H.; Li, T.; Fan, P.; Ren, K.; Peng, Z. Improving the advanced nitrogen removal of secondary effluent by slow-release carbon source with embedding microorganisms. Technol. Water Treat. 2023, 49, 135–140. [Google Scholar]
- Martínez, N.B.; Tejeda, A.; Del Toro, A.; Sánchez, M.P.; Zurita, F. Nitrogen removal in pilot-scale partially saturated vertical wetlands with and without an internal source of carbon. Sci. Total. Environ. 2018, 645, 524–532. [Google Scholar] [CrossRef]
- Tang, D.; Wang, J.; Zheng, T.; Liu, J.; Wang, Q. Effect of pla/starch slow-release carbon source on biological denitrification. Huanjing Kexue 2014, 35, 2236–2240. [Google Scholar]
- Zheng, X.H.; Zhang, J.; Li, M.T.; Zhuang, L.L. Optimization of the pollutant removal in partially unsaturated constructed wetland by adding microfiber and solid carbon source based on oxygen and carbon regulation. Sci. Total. Environ. 2021, 752, 141919. [Google Scholar] [CrossRef]
- Younes, K.; Grasset, L. The application of dfrc method for the analysis of carbohydrates in a peat bog: Validation and comparison with conventional chemical and thermochemical degradation techniques. Chem. Geol. 2020, 545, 119644. [Google Scholar] [CrossRef]
- Younes, K.; Grasset, L. Carbohydrates as proxies in ombrotrophic peatland: Dfrc molecular method coupled with pca. Chem. Geol. 2022, 606, 120994. [Google Scholar] [CrossRef]
- Li, H.; Chi, Z.F.; Yan, B.X.; Cheng, L.; Li, J.Z. An innovative wood-chip-framework substrate used as slow-release carbon source to treat high-strength nitrogen wastewater. J. Environ. Sci. 2017, 51, 275–283. [Google Scholar] [CrossRef]
- Han, K.; Yeum, Y.; Yun, G.; Kim, Y.-W.; Park, C.-W. Evaluating the efficacy of slow-releasing carbon source tablets for in situ biological heterotrophic denitrification of groundwater. Chemosphere 2022, 304, 135268. [Google Scholar] [CrossRef]
- Oa, S.-W.; Kim, G.; Kim, Y. Determination of electron donors by comparing reaction rates for in situ bioremediation of nitrate-contaminated groundwater. J. Environ. Sci. Health Part A 2007, 41, 2359–2372. [Google Scholar] [CrossRef]
- Zhou, G.Z.; Sun, J.; Zhang, X.; Guang-He, L.I. Carbon source study on biological denitrification in groundwater. Environ. Sci. Technol. 2008, 31, 4–6. [Google Scholar]
- Guan, X.; Ji, G.; Xu, S.; Yun, Y.; Liu, H. Selection of Agricultural Straws as Sustained-Release Carbon Source for Denitrification in a Drawer-Type Biological Filter. Water Air Soil Pollut. 2019, 230, 18. [Google Scholar] [CrossRef]
- Shao, L.; Xu, Z.-X.; Wang, S.; Jin, W.; Yin, H.-L. Performance of new solid carbon source materials for denitrification. Huanjing Kexue 2011, 32, 2323–2327. [Google Scholar] [PubMed]
- Yang, X.-L.; Jiang, Q.; Song, H.-L.; Gu, T.-T.; Xia, M.-Q. Selection and application of agricultural wastes as solid carbon sources and biofilm carriers in MBR. J. Hazard. Mater. 2015, 283, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Bigogno, R.G.; Dias, M.L.; Manhães, M.B.N.; Rodriguez, R.J.S. Integrated treatment of mining dam wastewater with quaternized chitosan and pan/hpmc/agno3 nanostructured hydrophylic membranes. J. Polym. Environ. 2022, 30, 1228–1243. [Google Scholar] [CrossRef]
- Lee, E.S.; Olson, P.R.; Gupta, N.; Solpuker, U.; Schwartz, F.W.; Kim, Y. Permanganate gel (pg) for groundwater remediation: Compatibility, gelation, and release characteristics. Chemosphere 2014, 97, 140–145. [Google Scholar] [CrossRef]
- Mostafa, A.; Tolba, A.; Alalm, M.G.; Fujii, M.; Afify, H.; Elsamadony, M. Application of magnetic multi-wall carbon nanotube composite into fermentative treatment process of ultrasonicated waste activated sludge. Bioresour. Technol. 2020, 306, 123186. [Google Scholar] [CrossRef]
- Ni, S.-Q.; Ni, J.; Yang, N.; Wang, J. Effect of magnetic nanoparticles on the performance of activated sludge treatment system. Bioresour. Technol. 2013, 143, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Su, J.F.; Liang, D.H.; Huang, T.L.; Wei, L.; Ma, M.; Lu, J. Enhancement of simultaneous algicidal and denitrification of immobilized Acinetobacter sp. J25 with magnetic Fe3O4 nanoparticles. Environ. Sci. Pollut. Res. 2017, 24, 17853–17860. [Google Scholar] [CrossRef]
- Xiong, R.; Yu, X.; Yu, L.; Peng, Z.; Cheng, L.; Li, T.; Fan, P. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP. Chemosphere 2019, 235, 434–439. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Yan, G.; Dong, W.; Chu, Z.; Wang, H.; Chang, Y.; Ling, Y.; Zhang, Y. Initial carbon release characteristics, mechanisms and denitrification performance of a novel slow release carbon source. J. Environ. Sci. 2022, 118, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhao, B.; Xie, F.; Zhang, X.; Zhou, A.; Wang, S.; Yue, X. Study on the preparation and feasibility of a novel adding-type biological slow-release carbon source. J. Environ. Manag. 2022, 316, 115236. [Google Scholar] [CrossRef] [PubMed]
- Yeum, Y.; Han, K.; Kang, J.-H.; Kim, D.-W.; Park, C.-W.; Kwon, S.; Kim, Y. Production, characterization, and evaluation of two types of slow-releasing carbon source tablets for in-situ heterotrophic nitrate denitrification in aquifers. Chemosphere 2020, 260, 127478. [Google Scholar] [CrossRef] [PubMed]
Mass Ratio of SRA/OC | Fitted Curve Equations | Carbon Release Decay Coefficient k | S2 |
---|---|---|---|
0:10 | y = 4.22 + 15,178.31e−0.47t | 0.47 | 0.989 |
1:10 | y = −28.11 + 26,711.89e−0.53t | 0.53 | 0.990 |
2:10 | y = −31.42 + 25,860.30e−0.50t | 0.50 | 0.996 |
3:10 | y = −35.10 + 20,111.55e−0.47t | 0.47 | 0.996 |
4:10 | y = −31.82 + 21,066.04e−0.47t | 0.47 | 0.996 |
5:10 | y = −38.40 + 10,687.64e−0.33t | 0.33 | 0.969 |
DF/PHA Ratio | Fitted Curve Equations | Carbon Release Decay Coefficient k | S2 |
---|---|---|---|
4:1 | — | — | — |
3:1 | y = −38.40 + 10,687.64e−0.33t | 0.33 | 0.969 |
2:1 | y = 83.67 + 11,689.13e−0.46t | 0.46 | 0.971 |
1:1 | y = 47.92 + 8770.42e−0.43t | 0.43 | 0.998 |
1:2 | y = 61.91 + 7190.24e−0.37t | 0.37 | 0.992 |
SRC1 | SRC2 | |||
---|---|---|---|---|
Element | Weight Percentage | Total Confidence Coefficient | Weight Percentage | Total Confidence Coefficient |
C | 50.43 | 0.27 | 49.66 | 0.22 |
O | 26.90 | 0.22 | 25.56 | 0.18 |
Na | 3.74 | 0.07 | 6.62 | 0.07 |
Si | 9.51 | 0.09 | 10.91 | 0.08 |
Fe | 9.42 | 0.22 | 7.26 | 0.15 |
Total | 100.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Shi, H.; Lyu, H.; Shi, H.; Liu, B. Preparation and Performance Verification of a Solid Slow-Release Carbon Source Material for Deep Nitrogen Removal in Urban Tailwater. Molecules 2024, 29, 2031. https://doi.org/10.3390/molecules29092031
Luo Z, Shi H, Lyu H, Shi H, Liu B. Preparation and Performance Verification of a Solid Slow-Release Carbon Source Material for Deep Nitrogen Removal in Urban Tailwater. Molecules. 2024; 29(9):2031. https://doi.org/10.3390/molecules29092031
Chicago/Turabian StyleLuo, Zhang, Hongtao Shi, Hanghang Lyu, Hang Shi, and Bo Liu. 2024. "Preparation and Performance Verification of a Solid Slow-Release Carbon Source Material for Deep Nitrogen Removal in Urban Tailwater" Molecules 29, no. 9: 2031. https://doi.org/10.3390/molecules29092031
APA StyleLuo, Z., Shi, H., Lyu, H., Shi, H., & Liu, B. (2024). Preparation and Performance Verification of a Solid Slow-Release Carbon Source Material for Deep Nitrogen Removal in Urban Tailwater. Molecules, 29(9), 2031. https://doi.org/10.3390/molecules29092031