The Resource Utilization of Poplar Leaves for CO2 Adsorption
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. CO2 Adsorption Properties of Poplar Leaves-Based ACs
2.2.1. CO2 Adsorption Performance and Process Optimization
2.2.2. The Adsorption Kinetics of the Poplar Leaf-Based ACs
2.2.3. The Adsorption Thermodynamics of the Poplar Leaves-Based ACs
2.2.4. Linear Correlation Analysis between the Adsorption Capacity and Influencing Factors
2.3. The Regeneration Performance of the Selected ACs
3. Materials and Methods
3.1. Materials
3.2. Preparation of Poplar Leaf-Based ACs
3.2.1. H3PO4– and KOH–Activated Poplar Leaves
3.2.2. N-doping PHa and PKc
3.3. Characterization
3.4. Adsorption and Regeneration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boot-Handford, M.E.; Abanades, J.C.; Anthony, E.J.; Blunt, M.J.; Brandani, S.; Dowell, N.M.; Fernandez, J.R.; Ferrari, M.-C.; Gross, R.; Hallett, J.P. Carbon capture and storage update. Energy Environ. Sci. 2014, 7, 130–189. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ. Sci. 2011, 4, 1765–1771. [Google Scholar] [CrossRef]
- Mai, B.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Dowell, N.M. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar]
- Bhown, A.S.; Freeman, B.C. Analysis and status of post combustion carbon dioxide capture technologies. Environ. Sci. Technol. 2011, 45, 8624–8632. [Google Scholar] [CrossRef]
- Hussain, M.A.; Soujanya, Y.; Sastry, G.N. Evaluating the efficacy of amino acids as CO2 capturing agents: A first principles investigation. Environ. Sci. Technol. 2011, 45, 8582–8588. [Google Scholar] [CrossRef]
- Rayer, A.V.; Mobley, P.D.; Soukri, M.; Gohndrone, T.R.; Tanthana, J.; Zhou, J.; Lail, M. Absorption rates of carbon dioxide in amines in hydrophilic and hydrophobic solvents. Chem. Eng. J. 2018, 348, 514–525. [Google Scholar] [CrossRef]
- Samanta, A.; Bandyopadhyay, S.S. Absorption of carbon dioxide into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol. Chem. Eng. Sci. 2009, 64, 1185–1194. [Google Scholar] [CrossRef]
- Hwang, S.J.; Lee, M.; Kim, H.; Lee, K.S. Cyclic CO2 absorption capacity of aqueous single and blended amine solvents. J. Ind. Eng. Chem. 2018, 65, 95–103. [Google Scholar] [CrossRef]
- Yang, S.-T.; Kim, J.-Y.; Kim, J.; Ahn, W.-S. CO2 capture over amine-functionalized MCM-22, MCM-36 and ITQ-2. Fuel 2012, 97, 435–442. [Google Scholar] [CrossRef]
- Samanta, A.; Zhao, A.; Shimizu, G.K.H.; Sarkar, P.; Gupta, R. Post-combustion CO2 capture using solid sorbents: A review. Ind. Eng. Chem. Res. 2012, 51, 1438–1463. [Google Scholar] [CrossRef]
- Xiao, J.; Sitamraju, S.; Janik, M.J. CO2 adsorption thermodynamics over N-substituted/grafted graphanes: A DFT study. Langmuir 2014, 30, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- Muriithi, G.N.; Petrik, L.F.; Doucet, F.J. Synthesis, characterization and CO2 adsorption potential of NaA and NaX zeolites and hydrotalcite obtained from the same coal fly ash. J. CO2 Util. 2020, 36, 220–230. [Google Scholar] [CrossRef]
- Aquino, T.F.D.; Estevam, S.T.; Viola, V.O.; Marques, C.R.M.; Zancan, F.L.; Vasconcelos, L.B.; Riella, H.G.; Pires, M.J.R.; Morales-Ospino, R.; Torres, A.E.B.; et al. CO2 adsorption capacity of zeolites synthesized from coal fly ashes. Fuel 2020, 276, 118143–118152. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, D.; Shao, J.; Zhang, X.; Zhang, S.; Yang, H.; Chen, H. A new nitrogen-enriched biochar modified by ZIF-8 grafting and annealing for enhancing CO2 adsorption. Fuel Process. Technol. 2022, 231, 107250–107259. [Google Scholar] [CrossRef]
- Tuci, G.; Iemhoff, A.; Rossin, A.; Yakhvarov, D.; Gatto, M.F.; Balderas-Xicohténcatl, R.; Zhang, R.; Hirscher, M.; Palkovits, R.; Pham-Huu, C.; et al. Tailoring morphological and chemical properties of covalent triazine frameworks for dual CO2 and H2 adsorption. Int. J. Hydrogen Energy 2022, 47, 8434–8445. [Google Scholar] [CrossRef]
- Chang, C.-W.; Kao, Y.-H.; Shen, P.-H.; Kang, P.-C.; Wang, C.-Y. Nanoconfinement of metal oxide MgO and ZnO in zeolitic imidazolate framework ZIF-8 for CO2 adsorption and regeneration. J. Hazard. Mater. 2020, 400, 122974–122986. [Google Scholar] [CrossRef]
- Martell, J.D.; Milner, P.J.; Siegelman, R.L.; Long, J.R. Kinetics of cooperative CO2 adsorption in diamine-appended variants of the metal-organic framework Mg2(dobpdc). Chem. Sci. 2020, 11, 6457–6471. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, M.A.O.; Fontana, M.; Jagdale, P.; Pirri, C.F.; Bocchini, S. Improved CO2 adsorption properties through amine functionalization of multi-walled carbon nanotubes. Chem. Eng. J. 2021, 414, 128763–128775. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, W.; Liu, W.; Cao, X.; Hou, C.; Ding, Q.; Lu, Y. CO2 adsorption of lignite chars after one-step activation. New J. Chem. 2020, 44, 13755–13763. [Google Scholar] [CrossRef]
- Yi, H.; Li, F.; Ning, P.; Tang, X.; Peng, J.; Li, Y.; Deng, H. Adsorption separation of CO2, CH4, and N2 on microwave activated carbon. Chem. Eng. J. 2013, 215–216, 635–642. [Google Scholar]
- Arami-Niya, A.; Rufford, T.E.; Zhu, Z. Activated carbon monoliths with hierarchical pore structure from tar pitch and coal powder for the adsorption of CO2, CH4 and N2. Carbon 2016, 103, 115–124. [Google Scholar] [CrossRef]
- Meng, M.; Qiu, Z.; Zhong, R.; Liu, Z.; Liu, Y.; Chen, P. Adsorption characteristics of supercritical CO2/CH4 on different types of coal and a machine learning approach. Chem. Eng. J. 2019, 368, 847–864. [Google Scholar] [CrossRef]
- Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725. [Google Scholar] [CrossRef]
- Mafra, L.; Čendak, T.; Schneider, S.; Wiper, P.V.; Pires, J.; Gomes, J.R.B.; Pinto, M.L. Amine functionalized porous silica for CO2/CH4 separation by adsorption: Which amine and why. Chem. Eng. J. 2018, 336, 612–621. [Google Scholar] [CrossRef]
- Liu, X.; Yang, X.; Du, H.; Wu, Y.; Zhang, X.; Zhang, J. Preparation and characterization of a porous silicate material using a CO2-storage material for CO2 adsorption. Powder Technol. 2018, 333, 138–152. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Guo, T.; Tian, W.; Hao, J.; Guo, Q. The competitive adsorption mechanism of CO2, H2O and O2 on a solid amine adsorbent. Chem. Eng. J. 2021, 416, 129007–129017. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, W.; Song, M.; Wang, F.; Hu, X.; Guo, Q.; Liu, Y. Polyetheramine improves the CO2 adsorption behavior of tetraethylenepentamine-functionalized sorbents. Chem. Eng. J. 2019, 364, 475–484. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Hao, J.; Ma, R.; Guo, Q.; Gao, H.; Bai, H. Nitrogen and oxygen codoped porous carbon with superior CO2 adsorption performance: A combined experimental and DFT calculation study. Ind. Eng. Chem. Res. 2019, 58, 13390–13400. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Hanaki, A.; Yamashita, H. A direct conversion of blast furnace slag to a mesoporous silica-calcium oxide composite and its application in CO2 captures. Green Chem. 2020, 22, 3759–3768. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, T.; Hu, X.; Hao, J.; Guo, Q. Mechanism and kinetics of CO2 adsorption for TEPA-impregnated hierarchical mesoporous carbon in the presence of water vapor. Powder Technol. 2020, 368, 227–236. [Google Scholar] [CrossRef]
- Rehman, A.; Heo, Y.-J.; Nazir, G.; Park, S.-J. Solvent-free, one-pot synthesis of nitrogen-tailored alkali-activated microporous carbons with an efficient CO2 adsorption. Carbon 2021, 172, 71–82. [Google Scholar] [CrossRef]
- Rehman, A.; Park, S.-J. From chitosan to urea-modified carbons: Tailoring the ultra-microporosity for enhanced CO2 adsorption. Carbon 2020, 159, 625–637. [Google Scholar] [CrossRef]
- Wang, X.; Wang, D.; Song, M.; Xin, C.; Zeng, W. Tetraethylenepentamine-modified activated semicoke for CO2 capture from flue gas. Energy Fuels 2017, 31, 3055–3061. [Google Scholar] [CrossRef]
- Quyang, J.; Zheng, C.; Gu, W.; Zhang, Y.; Yang, H.; Suib, S.L. Textural properties determined CO2 capture of tetraethylenepentamine loaded SiO2 nanowires from α-sepiolite. Chem. Eng. J. 2018, 337, 342–350. [Google Scholar]
- Zhang, L.X.; Tang, S.Y.; Jiang, C.J.; Jiang, X.Q.; Guan, Y.T. Simultaneous and efficient capture of inorganic nitrogen and heavy metals by polyporous layered double hydroxide and biochar composite for agricultural nonpoint pollution control. ACS Appl. Mater. Interfaces 2018, 10, 43013–43030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tang, S.; He, F.; Liu, Y.; Mao, W.; Guan, Y. Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chem. Eng. J. 2019, 378, 122215–122231. [Google Scholar] [CrossRef]
- Ding, S.; Liu, Y. Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars. Fuel 2020, 260, 116382–116391. [Google Scholar] [CrossRef]
- Yaumi, A.L.; Abu Bakar, M.Z.; Hameed, B.H. Reusable nitrogen-doped mesoporous carbon adsorbent for carbon dioxide adsorption in fixed-bed. Energy 2017, 138, 776–784. [Google Scholar] [CrossRef]
- Dong, X.; Ma, L.Q.; Zhu, Y.; Li, Y.; Gu, B. Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry. Environ. Sci. Technol. 2013, 47, 12156–12164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, S.; Yang, H.; Shi, T.; Chen, Y. Influence of NH3/CO2 modification on the characteristic of biochar and the CO2 capture. Bioenergy Res. 2013, 6, 1147–1153. [Google Scholar]
- Xu, Y.; Yang, Z.; Zhang, G.; Zhao, P. Excellent CO2 adsorption performance of nitrogen-doped waste biocarbon prepared with different activators. J. Clean. Prod. 2020, 264, 121645–121654. [Google Scholar] [CrossRef]
- Elmouwahidi, A.; Zapata-Benabithe, Z.; Carrasco-Marín, F.; Moreno-Castilla, C. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour. Technol. 2012, 111, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Ello, A.S.; Souza, L.K.C.D.; Trokourey, A.; Jaroniec, M. Development of microporous carbons for CO2 capture by KOH activation of African palm shells. J. CO2 Util. 2013, 2, 35–38. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Hu, G.; Hu, X.; Li, Z.; Shen, S.; Radosz, M.; Fan, M. Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustain. Chem. Eng. 2016, 4, 1439–1445. [Google Scholar] [CrossRef]
- Vargas, D.P.; Balsamo, M.; Giraldo, L.; Erto, A.; Lancia, A.; Moreno-Pirajań, J.C. Equilibrium and dynamic CO2 adsorption on activated carbon honeycomb monoliths. Ind. Eng. Chem. Res. 2016, 55, 7898–7905. [Google Scholar] [CrossRef]
- Plaza, M.G.; Pevida, C.; Arias, B.; Fermoso, J.; Casal, M.D.; Martín, C.F.; Rubiera, F.; Pis, J.J. Development of low-cost biomass-based adsorbents for post combustion CO2 capture. Fuel 2009, 88, 2442–2447. [Google Scholar] [CrossRef]
- Plaza, M.G.; González, A.S.; Pis, J.J.; Rubiera, F.; Pevida, C. Production of microporous biochars by single-step oxidation: Effect of activation conditions on CO2 capture. Appl. Energy 2014, 114, 551–562. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, Z.; Zhang, H.; Liu, Z. Nitrogen-doped microporous carbon materials with uniform pore diameters: Design and applications in CO2 and H2 adsorption. Micropor. Mesopor. Mat. 2020, 296, 109992–109998. [Google Scholar] [CrossRef]
- Sarwar, A.; Ali, M.; Khoja, A.H.; Nawar, A.; Waqas, A.; Liaquat, R.; Naqvi, S.R.; Asjid, M. Synthesis and characterization of biomass-derived surface-modified activated carbon for enhanced CO2 adsorption. J. CO2 Util. 2021, 46, 101476–101489. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, W.; Xin, C.; Kong, X.; Hu, X.; Guo, Q. The development of activated carbon from corncob for CO2 capture. RSC Adv. 2022, 51, 33069–33078. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, W.; Kong, X.; Xin, C.; Dong, Y.; Hu, X.; Guo, Q. Development of low-cost porous carbons through alkali activation of crop waste for CO2 capture. ACS Omega 2022, 50, 46992–47001. [Google Scholar] [CrossRef]
- Pramanik, P.; Patel, H.; Charola, S.; Neogi, S.; Maiti, S. High surface area porous carbon from cotton stalk agro-residue for CO2 adsorption and study of techno-economic viability of commercial production. J. CO2 Util. 2021, 45, 101450–101461. [Google Scholar] [CrossRef]
- Bahamon, D.; Alkhatib, I.I.I.; Alkhatib, N.; Builes, S.; Sinnokrot, M.; Vega, L.F. A comparative assessment of emerging solvents and adsorbents for mitigating CO2 emissions from the industrial sector by using molecular modeling tools. Front. Energy Res. 2020, 8, 165–180. [Google Scholar] [CrossRef]
- Salih, H.A.; Alkhatib, I.I.I.; Zahra, M.A.; Vega, L.F. Diamine based hybrid-slurry system for carbon capture. J. CO2 Util. 2023, 68, 102383–102393. [Google Scholar] [CrossRef]
- Singh, G.; Kim, I.Y.; Lakhi, K.S.; Srivastava, P.; Naidu, R.; Vinu, A. Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon 2017, 116, 448–455. [Google Scholar] [CrossRef]
Kinetic Model | Parameter | PN0.25 | PN0.25N1 | PK1 | PK1N1 |
---|---|---|---|---|---|
Pseudo -first-order | (mmol/g) | 2.82 | 4.74 | 3.94 | 4.69 |
(1/min) | 0.2741 | 0.1610 | 0.1872 | 0.1572 | |
R2 | 0.9854 | 0.9789 | 0.9821 | 0.9802 | |
Pseudo -second-order | (mmol/g) | 3.83 | 6.78 | 5.83 | 6.97 |
(g/mmol min) | 0.0602 | 0.0182 | 0.0233 | 0.0163 | |
R2 | 0.9744 | 0.9704 | 0.9759 | 0.9739 | |
Avrami | (mmol/g) | 2.60 | 4.15 | 3.36 | 3.96 |
(1/min) | 0.3146 | 0.2016 | 0.2485 | 0.2108 | |
1.4272 | 1.5571 | 1.5093 | 1.5410 | ||
R2 | 0.9982 | 0.9955 | 0.9955 | 0.9948 |
Parameter | 20 °C | 30 °C | 40 °C |
---|---|---|---|
The fitting equilibrium adsorption capacity (mmol/g) | 24.84 | 21.23 | 19.07 |
kL | 0.01316 | 0.0108 | 0.00874 |
R2 | 0.9918 | 0.9970 | 0.9908 |
Sorbent | qe (mmol/g) of Fresh Sample | qe (mmol/g) of Sample after Ten Regenerations | Condition | Reference |
---|---|---|---|---|
SCK-800-1 | 1.05 | 0.91 | 25 °C, 18% CO2 + 82% N2 | [37] |
CK0.3-700(1) | 3.49 | 3.44 | 20 °C, 15% CO2 + 85% N2 | [50] |
CN1K0.3-700(1) | 4.58 | 4.52 | 20 °C, 15% CO2 + 85% N2 | [50] |
PAC-0.5K2CO3-750-0.5 | 2.41 | 2.38 | 20 °C, 15% CO2 + 85% N2 | [51] |
PK1N1 | 3.85 | 3.70 | 20 °C, 15% CO2 + 85% N2 | This work |
PH0.25N1 | 4.07 | 3.95 | 20 °C, 15% CO2 + 85% N2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Kong, F.; Zeng, W.; Zhang, H.; Xin, C.; Kong, X. The Resource Utilization of Poplar Leaves for CO2 Adsorption. Molecules 2024, 29, 2024. https://doi.org/10.3390/molecules29092024
Wang X, Kong F, Zeng W, Zhang H, Xin C, Kong X. The Resource Utilization of Poplar Leaves for CO2 Adsorption. Molecules. 2024; 29(9):2024. https://doi.org/10.3390/molecules29092024
Chicago/Turabian StyleWang, Xia, Fanyuan Kong, Wulan Zeng, Huaxiang Zhang, Chunling Xin, and Xiangjun Kong. 2024. "The Resource Utilization of Poplar Leaves for CO2 Adsorption" Molecules 29, no. 9: 2024. https://doi.org/10.3390/molecules29092024
APA StyleWang, X., Kong, F., Zeng, W., Zhang, H., Xin, C., & Kong, X. (2024). The Resource Utilization of Poplar Leaves for CO2 Adsorption. Molecules, 29(9), 2024. https://doi.org/10.3390/molecules29092024