Charge Storage Properties of Ferrimagnetic BaFe12O19 and Polypyrrole–BaFe12O19 Composites
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of PPy
3.3. Electrode Fabrication
3.4. Characterization Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anjum, S.; Sehar, F.; Mustafa, Z.; Awan, M. Enhancement of structural and magnetic properties of M-type hexaferrite permanent magnet based on synthesis temperature. Appl. Phys. A 2018, 124, 49. [Google Scholar] [CrossRef]
- Ebrahimi, Z.; Hedayati, K.; Ghanbari, D. Preparation of hard magnetic BaFe12O19–TiO2 nanocomposites: Applicable for photo-degradation of toxic pollutants. J. Mater. Sci. Mater. Electron. 2017, 28, 13956–13969. [Google Scholar] [CrossRef]
- Joshi, H.; Kumar, A.R. Investigations and correlations of structural, magnetic, and dielectric properties of M-type barium hexaferrite (BaFe12O19) for hard magnet applications. J. Supercond. Nov. Magn. 2022, 35, 2435–2451. [Google Scholar] [CrossRef]
- Manikandan, M.; Venkateswaran, C. Effect of high energy milling on the synthesis temperature, magnetic and electrical properties of barium hexagonal ferrite. J. Magn. Magn. Mater. 2014, 358, 82–86. [Google Scholar] [CrossRef]
- Nabiyouni, G.; Ghanbari, D.; Yousofnejad, A.; Seraj, M. A sonochemical-assisted method for synthesis of BaFe12O19 nanoparticles and hard magnetic nanocomposites. J. Ind. Eng. Chem. 2014, 20, 3425–3429. [Google Scholar] [CrossRef]
- Birsöz, B.; Baykal, A.; Sözeri, H.; Toprak, M.S. Synthesis and characterization of polypyrrole–BaFe12O19 nanocomposite. J. Alloys Compd. 2010, 493, 481–485. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Kaneko, Y.; Okuyama, D.; Ishiwata, S.; Arima, T.; Wakimoto, S.; Kakurai, K.; Taguchi, Y.; Tokura, Y. Multiferroic M-type hexaferrites with a room-temperature conical state and magnetically controllable spin helicity. Phys. Rev. Lett. 2010, 105, 257201. [Google Scholar] [CrossRef]
- Kostishyn, V.; Panina, L.; Timofeev, A.; Kozhitov, L.; Kovalev, A.; Zyuzin, A. Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19. J. Magn. Magn. Mater. 2016, 400, 327–332. [Google Scholar] [CrossRef]
- Xu, X.; Huang, F.; Shao, Y.; Zhou, M.; Ren, X.; Lu, X.; Zhu, J. Improved magnetic and magnetoelectric properties in BaFe12O19 nanostructures. Phys. Chem. Chem. Phys. 2017, 19, 18023–18029. [Google Scholar] [CrossRef]
- Li, X.; Tan, G.-L. Multiferroic and magnetoelectronic polarizations in BaFe12O19 system. J. Alloys Compd. 2021, 858, 157722. [Google Scholar] [CrossRef]
- Venevtsev, Y.N.; Gagulin, V.V.; Zhitomirsky, I.D. Material science aspects of seignette-magnetism problem. Ferroelectrics 1987, 73, 221–248. [Google Scholar] [CrossRef]
- Makled, M.H.; Sheha, E. An attempt to utilize hard magnetic BaFe12O19 phase as a cathode for magnesium batteries. J. Electron. Mater. 2019, 48, 1612–1616. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, Y.; Wang, Q.; Wang, Y.; Zong, M. Preparation of BaFe12O19 as anode material for lithium-ion batteries through sol–gel method. J. Sol-Gel Sci. Technol. 2013, 66, 238–241. [Google Scholar] [CrossRef]
- Ojeda, L.; Encinas, A.; Zakhidov, A.; Oliva, A.; Gonzalez-Contreras, G.; Diaz, S.; Oliva, J. Recycled magnetic materials (BaFe12O19 and Fe3O4) for the enhancement of capacitance/energy-density in graphene supercapacitors. J. Energy Storage 2023, 72, 108733. [Google Scholar] [CrossRef]
- Perez-Gonzalez, R.; Cherepanov, S.; Oliva, A.; Zakhidov, A.; Encinas, A.; Flores-Zuñiga, H.; Diaz-Castañon, S.; Oliva, J. Highly efficient flexible CNT based supercapacitors fabricated with magnetic BaFe12O19 nanoparticles and biodegradable components. J. Phys. Chem. Solids 2021, 155, 110115. [Google Scholar] [CrossRef]
- Wang, S.; Gao, H.; Sun, G.; Zhang, J.; Xia, Y.; Xie, C.; Yang, G.; Wang, Y.; Fang, L. M-type barium hexaferrite nanoparticles synthesized by γ-ray irradiation assisted polyacrylamide gel method and its optical, magnetic and supercapacitive performances. J. Clust. Sci. 2021, 32, 569–578. [Google Scholar] [CrossRef]
- Jiang, J.; Ai, L.-H.; Qin, D.-B.; Liu, H.; Li, L.-C. Preparation and characterization of electromagnetic functionalized polyaniline/BaFe12O19 composites. Synth. Met. 2009, 159, 695–699. [Google Scholar] [CrossRef]
- Sadeghinia, M.; Shayeh, J.S.; Fatemi, F.; Rahmandoust, M.; Ehsani, A.; Rezaei, M. Electrochemical study of perlite-barium ferrite/conductive polymer nano composite for super capacitor applications. Int. J. Hydrogen Energy 2019, 44, 28088–28095. [Google Scholar] [CrossRef]
- Sikkema, R.; Zhitomirsky, I. Magnetic supercapacitors: Charge storage mechanisms, magnetocapacitance, and magnetoelectric phenomena. Appl. Phys. Rev. 2023, 10, 021307. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Wang, X.-W.; Ma, K.; Wen, X.-R.; Chen, Y.-L. Flower-like lamellar SmMn2O5 nanosheets with electrochemical properties for the application in supercapacitor electrodes. J. Mater. Sci. 2023, 58, 11982–11991. [Google Scholar] [CrossRef]
- Thorat, J.; Nikam, R.; Lokhande, V.; Lokhande, C. Porous NiCo2O4 electrodes for high-energy asymmetric supercapacitor: Effect of annealing. J. Mater. Sci. 2023, 58, 9586–9604. [Google Scholar] [CrossRef]
- Nayak, D.; Choudhary, R.B. Enhanced photophysical and electrochemical properties of 2D layered rGO and MoS2 integrated polypyrrole (rGO-PPy-MoS2) composite. J. Mater. Sci. 2023, 58, 9160–9180. [Google Scholar] [CrossRef]
- Justinabraham, R.; Sowmya, S.; Durairaj, A.; Wesley, R.J.; Vijaikanth, V.; Obadiah, A.; Vasanthkumar, S. Copper phosphate-assisted silkworm waste-derived biochar composite for energy storage application. J. Mater. Sci. 2023, 58, 8445–8462. [Google Scholar] [CrossRef]
- Chrisma, R.; Jafri, R.I.; Anila, E. A review on the electrochemical behavior of graphene–transition metal oxide nanocomposites for energy storage applications. J. Mater. Sci. 2023, 58, 6124–6150. [Google Scholar] [CrossRef]
- Kesavan, T.; Murugan, R.; Ramanujam, K. Rationally designed N/P dual-doped ordered mesoporous carbon for supercapacitors. J. Mater. Sci. 2022, 57, 17380–17397. [Google Scholar] [CrossRef]
- Tang, F.; Jiang, W.; Xie, J.; Zhao, D.; Meng, Y.; Yang, Z.; Lv, Z.; Xu, Y.; Sun, W.; Jiang, Z. PPy-Coated Mo3S4/CoMo2S4 Nanotube-like Heterostructure for High-Performance Lithium Storage. Molecules 2024, 29, 234. [Google Scholar] [CrossRef]
- Lu, Z.; Qin, W.; Ma, J.; Cao, Y.; Bao, S. A Facile Preparation of Sandwich-Structured Pd/Polypyrrole-Graphene/Pd Catalysts for Formic Acid Electro-Oxidation. Molecules 2023, 28, 5296. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Li, T.; Liang, L.; Wen, S.; Zhang, Y.; Liu, G.; Ren, F.; Wang, G. Efficient Regulation of Polysulfides by Anatase/Bronze TiO2 Heterostructure/Polypyrrole Composites for High-Performance Lithium-Sulfur Batteries. Molecules 2023, 28, 4286. [Google Scholar] [CrossRef]
- Wu, C.; Pei, Z.; Lv, M.; Huang, D.; Wang, Y.; Yuan, S. Polypyrrole-Coated Low-Crystallinity Iron Oxide Grown on Carbon Cloth Enabling Enhanced Electrochemical Supercapacitor Performance. Molecules 2023, 28, 434. [Google Scholar] [CrossRef]
- Shi, A.; Song, X.; Wei, L.; Ma, H.; Pang, H.; Li, W.; Liu, X.; Tan, L. Design of an Internal/External Bicontinuous Conductive Network for High-Performance Asymmetrical Supercapacitors. Molecules 2022, 27, 8168. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Jyothibasu, J.P.; Kuo, D.-W.; Lee, R.-H. Flexible and freestanding electrodes based on polypyrrole/carbon nanotube/cellulose composites for supercapacitor application. Cellulose 2019, 26, 4495–4513. [Google Scholar] [CrossRef]
- Reddy, R.N.; Reddy, R.G. Sol–gel MnO2 as an electrode material for electrochemical capacitors. J. Power Sources 2003, 124, 330–337. [Google Scholar] [CrossRef]
- Jeong, Y.; Manthiram, A. Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. J. Electrochem. Soc. 2002, 149, A1419. [Google Scholar] [CrossRef]
- Dong, W.; Sakamoto, J.S.; Dunn, B. Electrochemical properties of vanadium oxide aerogels. Sci. Technol. Adv. Mater. 2003, 4, 3–11. [Google Scholar] [CrossRef]
- Wallar, C.; Poon, R.; Zhitomirsky, I. High areal capacitance of v2o3–carbon nanotube electrodes. J. Electrochem. Soc. 2017, 164, A3620. [Google Scholar] [CrossRef]
- Ata, M.; Liu, Y.; Zhitomirsky, I. A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles. RSC Adv. 2014, 4, 22716–22732. [Google Scholar] [CrossRef]
- Ata, M.S.; Poon, R.; Syed, A.M.; Milne, J.; Zhitomirsky, I. New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes. Carbon 2018, 130, 584–598. [Google Scholar] [CrossRef]
- Seung-Hoon, S.; Young-Je, Y. Characteristics of mediated enzymatic nitrate reduction by gallocyanine-bound nanoporous electrode. J. Microbiol. Biotechnol. 2006, 16, 505–510. [Google Scholar]
- Tallman, D.; Vang, C.; Wallace, G.; Bierwagen, G. Direct electrodeposition of polypyrrole on aluminum and aluminum alloy by electron transfer mediation. J. Electrochem. Soc. 2002, 149, C173. [Google Scholar] [CrossRef]
- Wang, G.-L.; Xu, J.-J.; Chen, H.-Y. Dopamine sensitized nanoporous TiO2 film on electrodes: Photoelectrochemical sensing of NADH under visible irradiation. Biosens. Bioelectron. 2009, 24, 2494–2498. [Google Scholar] [CrossRef]
- Chen, R.; Yu, M.; Sahu, R.P.; Puri, I.K.; Zhitomirsky, I. The development of pseudocapacitor electrodes and devices with high active mass loading. Adv. Energy Mater. 2020, 10, 1903848. [Google Scholar] [CrossRef]
- Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931. [Google Scholar] [CrossRef]
- Chodankar, N.R.; Raju, G.S.R.; Park, B.; Shinde, P.A.; Jun, S.C.; Dubal, D.P.; Huh, Y.S.; Han, Y.-K. Potentiodynamic polarization assisted phosphorus-containing amorphous trimetal hydroxide nanofibers for highly efficient hybrid supercapacitors. J. Mater. Chem. A 2020, 8, 5721–5733. [Google Scholar]
- Chodankar, N.R.; Shinde, P.A.; Patil, S.J.; Hwang, S.-K.; Raju, G.S.R.; Ranjith, K.S.; Dubal, D.P.; Huh, Y.S.; Han, Y.-K. Solution-free self-assembled growth of ordered tricopper phosphide for efficient and stable hybrid supercapacitor. Energy Storage Mater. 2021, 39, 194–202. [Google Scholar] [CrossRef]
- Patil, S.J.; Chodankar, N.R.; Hwang, S.-K.; Raju, G.S.R.; Ranjith, K.S.; Huh, Y.S.; Han, Y.-K. Ultra-stable flexible Zn-ion capacitor with pseudocapacitive 2D layered niobium oxyphosphides. Energy Storage Mater. 2022, 45, 1040–1051. [Google Scholar] [CrossRef]
- Okhay, O.; Tkach, A. Graphene/reduced graphene oxide-carbon nanotubes composite electrodes: From capacitive to battery-type behaviour. Nanomaterials 2021, 11, 1240. [Google Scholar] [CrossRef] [PubMed]
- Gogotsi, Y.; Penner, R.M. Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like? ACS Nano 2018, 12, 2081–2083. [Google Scholar] [CrossRef]
- Mitchell, G.; Davis, F.; Legge, C. The effect of dopant molecules on the molecular order of electrically-conducting films of polypyrrole. Synth. Met. 1988, 26, 247–257. [Google Scholar] [CrossRef]
- Shi, K.; Pang, X.; Zhitomirsky, I. Fabrication of T iron-doped polypyrrole/MWCNT composite electrodes with high mass loading and enhanced performance for supercapacitors. J. Appl. Polym. Sci. 2015, 132, 42376. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhitomirsky, I. Influence of dopant structure and charge on supercapacitive behavior of polypyrrole electrodes with high mass loading. Synth. Met. 2013, 185, 126–132. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Zhitomirsky, I. Surface modification of MnO2 and carbon nanotubes using organic dyes for nanotechnology of electrochemical supercapacitors. J. Mater. Chem. A 2013, 1, 12519–12526. [Google Scholar] [CrossRef]
- Conway, B.E.; Birss, V.; Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 1997, 66, 1–14. [Google Scholar] [CrossRef]
- Pell, W.; Conway, B.; Marincic, N. Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations. J. Electroanal. Chem. 2000, 491, 9–21. [Google Scholar] [CrossRef]
- Pell, W.G.; Conway, B.E. Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour. J. Electroanal. Chem. 2001, 500, 121–133. [Google Scholar] [CrossRef]
- Conway, B.; Pell, W. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices. J. Power Sources 2002, 105, 169–181. [Google Scholar] [CrossRef]
- Rorabeck, K.; Zhitomirsky, I. Dispersant Molecules with Functional Catechol Groups for Supercapacitor Fabrication. Molecules 2021, 26, 1709. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Zhitomirsky, I. Charge Storage Properties of Ferrimagnetic BaFe12O19 and Polypyrrole–BaFe12O19 Composites. Molecules 2024, 29, 1979. https://doi.org/10.3390/molecules29091979
Chen S, Zhitomirsky I. Charge Storage Properties of Ferrimagnetic BaFe12O19 and Polypyrrole–BaFe12O19 Composites. Molecules. 2024; 29(9):1979. https://doi.org/10.3390/molecules29091979
Chicago/Turabian StyleChen, Silin, and Igor Zhitomirsky. 2024. "Charge Storage Properties of Ferrimagnetic BaFe12O19 and Polypyrrole–BaFe12O19 Composites" Molecules 29, no. 9: 1979. https://doi.org/10.3390/molecules29091979
APA StyleChen, S., & Zhitomirsky, I. (2024). Charge Storage Properties of Ferrimagnetic BaFe12O19 and Polypyrrole–BaFe12O19 Composites. Molecules, 29(9), 1979. https://doi.org/10.3390/molecules29091979