Synthesis, Structural Characterization, and Hirschfeld Surface Analysis of a New Cu(II) Complex and Its Role in Photocatalytic CO2 Reduction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Infrared Spectra
2.2. UV-Vis Spectrum
2.3. Thermogravimetric Analysis
2.4. Structural Description of Cu(II) Complex
2.5. Hirschfeld Surface Analysis of Cu(II) Complex
2.6. Fluorescence Studies
2.7. Photocatalytic CO2 Reduction Activity of Cu(II) Complex
3. Experimental Section
3.1. Materials and Measurements
3.2. Synthesis of Cu(II) Complex
3.3. Crystal Structure Determination
3.4. Photocatalytic CO2 Reduction Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shang, Z.A.; Feng, X.T.; Chen, G.Z.; Qin, R.; Han, Y.H. Recent advances on single-atom catalysts for photocatalytic CO2 reduction. Small 2023, 19, 2304975. [Google Scholar] [CrossRef]
- Protti, S.; Albini, A.; Serpone, N. Photocatalytic generation of solar fuels from the reduction of H2O and CO2: A look at the patent literature. Phys. Chem. Chem. Phys. 2014, 16, 19790–19827. [Google Scholar] [CrossRef] [PubMed]
- Centi, G.; Perathoner, S. Towards solar fuels from water and CO2. ChemSusChem 2010, 3, 195–208. [Google Scholar] [CrossRef]
- Li, M.D.; Wang, Z.M.; Qi, J.; Yu, R.B. Progress in the construction of metal oxide heterojunctions and their application in photocatalytic CO2 reduction. Chem. J. Chin. Univ. 2023, 44, 20230196. [Google Scholar] [CrossRef]
- Gao, X.Q.; Cao, L.L.; Chang, Y.; Yuan, Z.Y.; Zhang, S.X.; Liu, S.J.; Zhang, M.T.; Fan, H.; Jiang, Z.Y. Improving the CO2 Hydrogenation Activity of Photocatalysts via the Synergy between Surface Frustrated Lewis Pairs and the CuPt Alloy. ACS Sustain. Chem. Eng. 2023, 11, 5597–5607. [Google Scholar] [CrossRef]
- Yin, H.B.; Li, J.H. New insight into photocatalytic CO2 conversion with nearly 100% CO selectivity by CuO-Pd/HxMoO3−y hybrids. Appl. Catal. B Environ. 2023, 320, 121927. [Google Scholar] [CrossRef]
- Heng, Q.Q.; Ma, Y.B.; Wang, X.; Wu, Y.F.; Li, Y.Z.; Chen, W. Role of Ag, Pd cocatalysts on layered SrBi2Ta2O9 in enhancing the activity and selectivity of photocatalytic CO2 reaction. Appl. Surf. Sci. 2023, 632, 1257564. [Google Scholar] [CrossRef]
- Shang, X.F.; Li, G.J.; Wang, R.N.; Xie, T.; Ding, J.; Zhong, Q. Precision loading of Pd on Cu species for highly selective CO2 photoreduction to methanol. Chem. Eng. J. 2023, 456, 140805. [Google Scholar] [CrossRef]
- Ross, M.B.; De Luna, P.; Li, Y.; Dinh, C.T.; Kim, D.; Yang, P.; Sargent, E.H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658. [Google Scholar] [CrossRef]
- Yuan, Z.M.; Zhu, X.L.; Jiang, Z.Y. Recent advances of constructing metal/semiconductor catalysts designing for photocatalytic CO2 hydrogenation. Molecules 2023, 28, 5693. [Google Scholar] [CrossRef]
- Olowoyo, J.O.; Kumar, M.; Singhal, N.; Jain, S.L.; Babalola, J.O.; Vorontsov, A.V.; Kumar, U. Engineering and modeling the effect of Mg doping in TiO2 for enhanced photocatalytic reduction of CO2 to fuels. Catal. Sci. Technol. 2018, 8, 3686–3694. [Google Scholar] [CrossRef]
- Li, N.X.; Chen, Y.M.; Xu, Q.Q.; Yang, Z. Photocatalytic reduction of CO2 to CO using manganese complexes with bipyridine modifed electron-donating groups. Catal. Lett. 2023, 153, 2910–2916. [Google Scholar] [CrossRef]
- Fox, A.R.; Bart, S.C.; Meyer, K.; Cummins, C.C. Towards uranium catalysts. Nature 2008, 455, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Sain, B.; Jain, S.L. Photocatalytic reduction of carbon dioxide to methanol using a ruthenium trinuclear polyazine complex immobilized on graphene oxide under visible light irradiation. J. Mater. Chem. A 2014, 2, 11246–11253. [Google Scholar] [CrossRef]
- Boston, D.J.; Xu, C.; Armstrong, D.W.; MacDonnell, F.M. Photochemical reduction of carbon dioxide to methanol and formate in a homogeneous system with pyridinium catalysts. J. Am. Chem. Soc. 2013, 135, 16252–16255. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zhao, S.; Gao, C.; Qi, J.; Yin, H.; Wei, D.; Mideksa, M.F.; Wang, X.; Gao, Y.; Tang, Z.; et al. Metallic cobalt–carbon composite as recyclable and robust magnetic photocatalyst for efficient CO2 reduction. Small 2018, 14, 1800762. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Ren, Y.Y.; Liu, J.; Deng, B.Y.; Wang, F. Non-synergistic photocatalysis of CO2-to-CO conversion by a binuclear complex of rigidly linking two cobalt catalytic centers. J. Photochem. Photobiol. A Chem. 2022, 426, 113754. [Google Scholar] [CrossRef]
- Jing, H.W.; Zhao, L.; Song, G.Y.; Li, J.Y.; Wang, Z.Y.; Han, Y.; Wang, Z.X. Application of a mixed-ligand metal-organic framework in photocatalytic CO2 reduction, antibacterial activity and dye adsorption. Molecules 2023, 28, 5204. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Ma, N.; Hu, C.Y.; Liang, Q.; Bian, Z.Y. Abundant manganese complex-anchored BiOI hybrid photocatalyst for visible light-driven CO2 reduction. NANO 2019, 14, 111–119. [Google Scholar] [CrossRef]
- Yasuomi, Y.; Takayuki, O.; Jun, I.; Shota, F.; Chinatsu, T.; Tomoya, U.; Taro, T. Photocatalytic CO2 reduction using various heteroleptic diimine-diphosphine Cu(I) complexes as photosensitizers. Front. Chem. 2019, 7, 288. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.C.; Mi, C.; Sun, Y.; Yang, Z.; Xu, Q.Q.; Fu, W.F. An unexpected iron (II)-based homogeneous catalytic system for highly efficient CO2-to-CO conversion under visible-light irradiation. Molecules 2019, 24, 1878. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, N.; Shizuno, M.; Kanazawa, T.; Kato, K.; Yamakata, A.; Nozawa, S.; Ito, T.; Terashima, K.; Maeda, K.; Tamaki, Y.; et al. Surface-specific modification of graphitic carbon nitride by plasma for enhanced durability and selectivity of photocatalytic CO2 reduction with a supramolecular photocatalyst. ACS Appl. Mater. Interfaces 2023, 15, 13205–13218. [Google Scholar] [CrossRef]
- Tai, X.S.; Wang, Y.F.; Wang, L.H.; Yan, X.H. Synthesis, structural characterization, hirschfeld surface analysis and photocatalytic CO2 reduction of Yb(III) complex with 4-aacetylphenoxyacetic acid and 1,10-phenanthroline ligands. Bull. Chem. React. Eng. Catal. 2023, 18, 285–293. [Google Scholar] [CrossRef]
- Wang, L.H.; Tai, X.S. Synthesis, structural characterization, hirschfeld surface analysis and photocatalytic CO2 reduction activity of a new dinuclear Gd(III) complex with 6-phenylpyridine-2-carboxylic acid and 1,10-phenanthroline ligands. Molecules 2023, 28, 7595. [Google Scholar] [CrossRef]
- Liu, W.J.; Huang, H.H.; Ouyang, T.; Jiang, L.; Zhong, D.C.; Zhang, W.; Lu, T.B. A copper(II) molecular catalyst for efficient and selective photochemical reduction of CO2 to CO in a water-containing system. Chem.-A Eur. J. 2018, 24, 4503–4508. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.G.; Yu, F.; Yang, Y.; Leung, C.F.; Ng, S.M.; Ko, C.C.; Cometto, C.; Lau, T.C.; Robert, M. Photocatalytic conversion of CO2 to CO by a copper(II) quaterpyridine complex. ChemSusChem 2017, 10, 4009–4013. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Q.; Zhou, S.S.; Chen, Z.G.; Liu, C.B.; Chen, F. An artificial photosynthesis system based on CeO2 as light harvester and N-doped graphene Cu(II) complex as artificial metalloenzyme for CO2 reduction to methanol fuel. Catal. Commun. 2016, 73, 7–11. [Google Scholar] [CrossRef]
- Liu, P.; Wang, L.H.; Tai, X.S. The crystal structure of catena-poly[bis(6-phenylpyridine-2-carboxylato-κ2N,O)-(μ2-4,4′-bipyridne-κ2N:N)cadmium(II)], C34H24N4O4Cd. Z. Für Krist. New Cryst. Struct. 2023, 238, 771–773. [Google Scholar] [CrossRef]
- Feng, Y.M.; Tai, X.S.; Xia, Y.P. The crystal structure of [(2,2′-bipyridine-k2N,N)-bis(6-phenylpyridine-2-carboxylate-k2 N,O)copper(II)], C34H24N4O4Cu. Z. Für Krist. New Cryst. Struct. 2022, 237, 285–287. [Google Scholar] [CrossRef]
- Tai, X.S.; Wang, Y.F.; Wang, L.H.; Yan, X.H. Synthesis, structural characterization, and photocatalytic CO2 reduction activity of a new Gd(III) coordination polymer with 6-phenylpyridine-2-carboxylic acid and 4,4’-bipyridine ligands. Bull. Chem. React. Eng. Catal. 2023, 18, 353–361. [Google Scholar] [CrossRef]
- Cao, S.H.; Li, X.Z.; Gao, Y.; Li, F.H.; Li, K.X.; Cao, X.X.; Dai, Y.W.; Mao, L.R.; Wang, S.S.; Tai, X.S. A simultaneously GSH-depleted bimetallic Cu(II) complex for enhanced chemodynamic cancer therapy. Dalton Trans. 2020, 49, 11851–11858. [Google Scholar] [CrossRef] [PubMed]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, vis-ualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar] [CrossRef] [PubMed]
Bond | d | Angle | (°) |
---|---|---|---|
Cu1-O2 | 1.9216 (16) | O2-Cu1-O5 | 96.77 (8) |
Cu1-O4 | 1.9203 (14) | O2-Cu1-N1 | 81.18 (7) |
Cu1-O5 | 2.2628 (16) | O2-Cu1-N2 | 87.83 (7) |
Cu1-N1 | 2.1179 (17) | O4-Cu1-O2 | 172.04 (7) |
Cu1-N2 | 2.0832 (18) | O4-Cu1-O5 | 91.10 (7) |
O4-Cu1-N1 | 98.22 (6) | ||
O4-Cu1-N2 | 91.47 (6) | ||
N1-Cu1-O5 | 103.25 (6) | ||
N2-Cu1-O5 | 86.56 (7) | ||
N2-Cu1-N1 | 165.99 (7) | ||
C1-O2-Cu1 | 118.87 (16) | ||
C2-N1-Cu1 | 107.96 (14) | ||
C6-N1-Cu1 | 132.89 (13) | ||
O1-C1-O2 | 124.7 (2) | ||
C20-O6-C21 | 102.67 (16) | ||
C15-N2-Cu1 | 120.08 (15) | ||
C18-N2-Cu1 | 122.95 (15) | ||
C20-N3-N4 | 105.93 (18) | ||
C21-N4-N3 | 106.40 (18) | ||
C14-O4-Cu1 | 115.06 (12) |
Donor-H | Acceptor | D-H (Å) | H…A (Å) | D…A (Å) | D-H…A (°) |
---|---|---|---|---|---|
O5-H5A | O3 #1 | 0.84 | 1.92 | 2.7516 (1) | 172 |
O5-H5B | O7 #1 | 0.85 | 2.02 | 2.8221 (1) | 159 |
O7-H7A | O1 #2 | 0.85 | 2.18 | 2.9809 (1) | 157 |
Empirical Formula | C26H23CuN5O7 |
---|---|
Formula weight | 581.03 |
Temperature/K | 296.10 (10) |
Crystal system | triclinic |
Space group | P-1 |
a/Å | 7.11322 (11) |
b/Å | 11.62617 (17) |
c/Å | 16.2290 (3) |
α/° | 96.8735 (13) |
β/° | 98.3307 (13) |
γ/° | 92.0443 (12) |
Volume/Å3 | 1316.50 (4) |
Z | 2 |
ρcalc, mg/mm3 | 1.466 |
μ/mm−1 | 1.643 |
S | 1.058 |
F (000) | 598 |
Index ranges | −8 ≤ h ≤ 7, −14 ≤ k ≤ 14, −20 ≤ l ≤ 20 |
Reflections collected | 37,707 |
Independent reflections | 5238 [R (int) = 0.0485] |
Data/restraints/parameters | 5238/4/363 |
Goodness-of-fit on F2 | 1.058 |
Refinement method | Full-matrix least-squares on F2 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0410, wR2 = 0.1218 |
Final R indexes [all data] | R1 = 0.0463, wR2 = 0.1158 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.-H.; Azam, M.; Yan, X.-H.; Tai, X.-S. Synthesis, Structural Characterization, and Hirschfeld Surface Analysis of a New Cu(II) Complex and Its Role in Photocatalytic CO2 Reduction. Molecules 2024, 29, 1957. https://doi.org/10.3390/molecules29091957
Wang L-H, Azam M, Yan X-H, Tai X-S. Synthesis, Structural Characterization, and Hirschfeld Surface Analysis of a New Cu(II) Complex and Its Role in Photocatalytic CO2 Reduction. Molecules. 2024; 29(9):1957. https://doi.org/10.3390/molecules29091957
Chicago/Turabian StyleWang, Li-Hua, Mohammad Azam, Xi-Hai Yan, and Xi-Shi Tai. 2024. "Synthesis, Structural Characterization, and Hirschfeld Surface Analysis of a New Cu(II) Complex and Its Role in Photocatalytic CO2 Reduction" Molecules 29, no. 9: 1957. https://doi.org/10.3390/molecules29091957
APA StyleWang, L. -H., Azam, M., Yan, X. -H., & Tai, X. -S. (2024). Synthesis, Structural Characterization, and Hirschfeld Surface Analysis of a New Cu(II) Complex and Its Role in Photocatalytic CO2 Reduction. Molecules, 29(9), 1957. https://doi.org/10.3390/molecules29091957