Dissipation and Safety Analysis of Dimethomorph Application in Lychee by High-Performance Liquid Chromatography–Tandem Mass Spectrometry with QuEChERS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analytical Method Verification
2.2. Dissipation of Dimethomorphs in Lychee
2.3. Lychee Dimethomorph Terminal Residues
2.4. Risk Evaluation
3. Material and Methods
3.1. Chemicals and Reagents
3.2. Field Research and Sample Preparation
3.3. Cleanup and Extraction
3.4. Instrumentation and HPLC Analytical Specifications
3.5. Methodology Validation
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, G.B.; Feng, J.T.; Xiang, X.; Wang, J.B.; Jarkko, S.; Liu, C.M.; Wu, Z.X.; Zhang, J.S.; Liang, X.M.; Jiang, Z.D.; et al. Two divergent haplotypes from a highly heterozygous litchi genome suggest independent domestication events for early and late-maturing cultivars. Nat. Genet. 2022, 54, 73–83. [Google Scholar] [CrossRef]
- Zhao, F.; Liao, M.J.; Zhang, J.E.; Huang, M.; Zhang, Z.H. Characteristics, value, and conservation of litchi heritage systems in China: A case study of the lingnan litchi cultivation system (Zengcheng). Chin. J. Eco-Agric. 2020, 28, 1435–1442. [Google Scholar]
- Luo, T.; Li, S.S.; Han, D.M.; Guo, X.M.; Liang, S.; Wu, Z.X. The effect of desulfurization on the postharvest quality and sulfite metabolism in pulp of sulfitated “Feizixiao” Litchi (Litchi chinensis Sonn.) fruits. Food Sci. Nutr. 2019, 7, 1715–1726. [Google Scholar] [CrossRef]
- Li, C.Q.; Wang, Y.; Huang, X.M.; Li, J.; Wang, H.C.; Li, J.G. De novo assembly and characterization of fruit transcriptome in Litchi chinensis Sonn and analysis of differentially regulated genes in fruit in response to shading. BMC Genom. 2013, 14, 552. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Wang, Y.; Song, L.; Liu, H.; Lichter, A.; Kerdchoechuen, O.; Joyce, D.C.; Shi, J. Postharvest characteristics and handling of litchi fruit—An overview. Aust. J. Exp. Agric. 2006, 46, 1541–1556. [Google Scholar] [CrossRef]
- Zheng, Z.L. Summary of studies on Phytophthora litchii and its biological characteristics. Fruit Trees South. China 2015, 44, 157–168+172. [Google Scholar]
- Lan, W.T.; Ren, D.D.; Li, R.H.; Pan, F.; Jiang, Z.D.; Pan, R.Q.; Ji, C.Y. Baseline sensitivity and resistance risk assessment of Peronophythora litchii to Dimethomorph. J. Fruit Sci. 2023, 40, 1226–1234. [Google Scholar] [CrossRef]
- Available online: https://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report07/Dimethomorph.pdf (accessed on 1 March 2024).
- Liu, L.; Shao, H.; Li, H.; Li, N.; Li, J.; Zhang, Y.T.; Song, S.R.; Guo, Y.Z. Degradation dynamics of dimethomorph+pyraclostrobin 18.7% WG in cucumber and soil. Mod. Agrochem. 2015, 14, 32–34+49. [Google Scholar]
- Li, H.Y.; Lin, C.X.; Han, Q.; Aihemaitijiang, M.M.T. Study on residues and dynamic degradation of 10% dimethomorph EW in grape and soil. Pestic. Sci. Adm. 2013, 34, 29–34. [Google Scholar]
- Wang, Y.; Wang, C.W.; Gao, J.; Cui, L.L. Degradation dynamics and dietary risk assessment of dimethomorph in Ginseng and soil. Food Sci. 2014, 35, 170–174. [Google Scholar]
- Wang, W.J.; Zhang, S.H.; Li, Z.; Li, J.Q.; Yang, X.M.; Wang, C.; Wang, Z. Construction of covalent triazine-based frameworks and application to solid phase microextraction of polycyclic aromatic hydrocarbons from honey samples. Food Chem. 2020, 322, 126770. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhang, Y.; Nie, J.Y.; Jiao, B.N.; Zhao, Q.Y. Determination of Triazole Fungicide Residues in fruits by QuEChERS combined with ionic liquid-Based dispersive liquid-liquid microextraction: Optimization using response surface methodology. Food Anal. Methods 2016, 9, 3509–3519. [Google Scholar] [CrossRef]
- Guo, Y.G.; Zhang, J.; Xu, J.; Wu, X.H.; Dong, F.S.; Liu, X.G.; Zheng, Y.Q. An integrated strategy for purification by combining solid-phase extraction with dispersive-solid-phase extraction for detecting 22 pesticides and metabolite residues in fish. J. Agric. Food Chem. 2021, 69, 7199–7208. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.P.; Yuan, X.C.; Zhao, P.F.; Sun, H.; Ye, X.; Liang, N.; Zhao, L.S. Trace determination of five triazole fungicide residues in traditional Chinese medicine samples by dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid–liquid microextraction and UHPLC–MS/MS. J. Sep. Sci. 2017, 40, 3257–3266. [Google Scholar] [CrossRef]
- Navarro, M.; Pico, Y.; Marin, R.; Manes, J. Application of matrix solid-phase dispersion to the determination of a new generation of fungicides in fruits and vegetables. J. Chromatogr. A. 2002, 968, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.J.; Liu, S.W.; Chen, A.; Chen, W.Y.; Luo, X.W.; Liu, Y.; Zhang, D.Y. Residue changes and processing factors of eighteen field-applied pesticides during the production of Chinese Baijiu from rice. Food Chem. 2021, 359, 129983. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.M.; Long, Z.Y.; Huang, W.X.; Yue, Y.J.; Lv, F.; Huang, X.D.; Liu, R. Simultaneous determination for 35 kinds of strobilurin fungicides and triazole fungicide in fruit and vegetable by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry. J. Food Saf. Qual. 2019, 10, 1039–1047. [Google Scholar]
- Liang, X.M.; Zhang, W.Y.; Zhang, W.; Xie, S.B.; He, R.Y.; Xu, J.; Su, L.J.; Sun, B.L.; Zhang, J. Simultaneous determination of residues of 38 pesticides in fruits by QuEChERS combined with high performance liquid chromatography-tandem mass spectrometry. Food Sci. 2020, 41, 288–296. [Google Scholar]
- Wu, C.X.; Zhang, Q.P.; Xu, H.R.; Wang, C.M. Rapid determination of 4 pesticide residues in vegetables by QuEChERS and ultra performance liquid chromatography tandem mass spectrometry. J. Food Saf. Qual. 2020, 11, 909–914. [Google Scholar]
- Yang, S.; Wang, Y.; He, L.F.; Huang, X.P.; Mu, W. Residue and dissipation dynamics of six insecticides in fresh tea by QuEChERS-gas chromatography tandem mass spectrometry. Chin. J. Anal. Lab. 2019, 38, 1459–1464. [Google Scholar]
- Ji, B.C.; Zhao, W.H.; Xu, X.; Han, Y.; Jie, M.S.; Xu, G.G.; Bai, Y.H. Development of a modified quick, easy, cheap, effective, rugged, and safe method based on melamine sponge for multi-residue analysis of veterinary drugs in milks by ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2021, 1651, 462333. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhang, Z.B.; Fang, N.; Hou, Z.G.; Li, Y.R.; Lu, Z.B. Simultaneous determination of five diamide insecticides in food matrices using carbon nanotube multiplug filtration cleanup and ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2019, 67, 10977–10983. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Bian, C.F.; Rao, L.; Zhou, W.W.; Li, Y.Q.; Li, B.T. Determination of the residue behavior of isocycloseram in Brassica and soil using the QuEChERS method coupled with HPLC. Food Chem. 2022, 367, 130734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.C.; Pan, L.X.; Jing, J.; Zhuang, M.; Xin, J.N.; Zhou, Y.; Feng, X.X.; Zhang, H.Y. Development, optimization, and validation of a method for detection of cartap, thiocyclam, thiosultap-monosodium, and thiosultap-disodium residues in plant foods by GC-ECD. Food Chem. 2022, 371, 131198. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.; Mbrus, A.; Dieterle, R.; Felsot, A.; Harris, C. Pesticide resicues in food acute dietary exposure. Pest Manag. Sci. 2004, 60, 311–339. [Google Scholar] [CrossRef]
- Farag, M.; Badawy, H.M.A.; Barakat, D.A.; Saber, A.N. Residues, dissipation and safety evaluation of chromafenozide in strawberry under open field conditions. Food Chem. 2014, 152, 18–22. [Google Scholar]
- Ma, C.; Zhang, Q.; Liu, C.H.; Duan, Y. Distribution of pesticide residue in mango fruits and chronic dietary risk. Sci. Technol. Food Ind. 2022, 43, 231–239. [Google Scholar]
- Huang, Y.N.; Zhang, S.L.; Fang, J.B.; Wu, S.Y.; Wu, F.K. Study on residue trends of imidacloprid in pear fruit. J. Fruits Sci. 2010, 27, 453–456. [Google Scholar]
- Jin, S.G. The Tenth Report of Nutrition and Health Status for China Residents: Nutrition and Health Status of Annual 2002; People’s Medical Publishing House: Beijing, China, 2008. [Google Scholar]
- WHO. Principles and Methods for the Risk Assessment of Chemicals in Food EHC 240; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- SANTE/11813/2017; Directorate General for Health and Food Safety. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. European Commission: Brussels, Belgium, 2017.
Matrix | Fortified Level (mg/kg) | Average Recovery (%, n = 5) | RSDa (%) | RSDr (%) | Correlation Coefficient | LOQ (mg/kg) |
---|---|---|---|---|---|---|
lychee | 0.001 | 83 | 7 | 10 | 1 | 0.001 |
0.01 | 90 | 5 | 8 | |||
0.1 | 77 | 3 | 6 | |||
pulp | 0.001 | 89 | 4 | 11 | 0.9995 | 0.001 |
0.01 | 89 | 5 | 10 | |||
0.1 | 92 | 3 | 8 |
Dosage (mg/kg) | Spray Times | Mean, Median, and HR Residues in Whole Lychee (mg/kg) | Mean, Median, and HR Residues in Pulp (mg/kg) | ||||
---|---|---|---|---|---|---|---|
PHI = 5 | PHI = 7 | PHI = 10 | PHI = 5 | PHI = 7 | PHI = 10 | ||
266.6 | 2 | 0.57/0.49/1.03 | 0.42/0.37/0.85 | 0.28/0.22/0.62 | 0.054/0.051/0.11 | 0.034/0.035/0.075 | 0.019/0.020/0.042 |
3 | 0.68/0.61/1.21 | 0.52/0.46/0.93 | 0.39/0.35/0.75 | 0.067/0.062/0.13 | 0.049/0.047/0.092 | 0.028/0.041/0.054 | |
399.9 | 2 | 0.92/0.86/1.77 | 0.76/0.75/1.25 | 0.56/0.59/0.96 | 0.096/0.096/0.16 | 0.068/0.062/0.11 | 0.044/0.044/0.064 |
3 | 1.10/1.00/1.99 | 0.89/0.90/1.56 | 0.67/0.68/1.23 | 0.12/0.11/0.18 | 0.083/0.077/0.12 | 0.049/0.050/0.085 |
Application Dosage (mg/kg) | Spray Times | PHI (Days) | ARfD (mg/kg/d) | HR (mg/kg) | %ARfD | |||||
2~4 Male | 2~4 Female | 18~30 Male | 18~30 Female | 60~70 Male | 60~70 Female | |||||
266.6 | 2 | 5 | 0.6 | 0.11 | 0.0568 | 0.0607 | 0.0127 | 0.0184 | 0.0101 | 0.0117 |
7 | 0.075 | 0.0387 | 0.0414 | 0.0086 | 0.0126 | 0.0069 | 0.008 | |||
10 | 0.042 | 0.0217 | 0.0232 | 0.0048 | 0.007 | 0.0039 | 0.0045 | |||
3 | 5 | 0.13 | 0.0671 | 0.0718 | 0.015 | 0.0218 | 0.0119 | 0.0139 | ||
7 | 0.092 | 0.0475 | 0.0508 | 0.0106 | 0.0154 | 0.0085 | 0.0098 | |||
10 | 0.054 | 0.0279 | 0.0298 | 0.0062 | 0.0091 | 0.005 | 0.0058 | |||
399.9 | 2 | 5 | 0.16 | 0.0826 | 0.0884 | 0.0184 | 0.0268 | 0.0147 | 0.0171 | |
7 | 0.11 | 0.0568 | 0.0607 | 0.0127 | 0.0184 | 0.0101 | 0.0117 | |||
10 | 0.064 | 0.0331 | 0.0353 | 0.0074 | 0.0107 | 0.0059 | 0.0068 | |||
3 | 5 | 0.18 | 0.093 | 0.0994 | 0.0207 | 0.0302 | 0.0165 | 0.0192 | ||
7 | 0.12 | 0.062 | 0.0663 | 0.0138 | 0.0201 | 0.011 | 0.0128 | |||
10 | 0.085 | 0.0439 | 0.0469 | 0.0098 | 0.0142 | 0.0078 | 0.0091 | |||
Application dosage (mg/kg) | Spray times | PHI (days) | ADI (mg/kg/d) | MMR (mg/kg) | %ARfD | |||||
2~4 male | 2~4 female | 18~30 male | 18~30 female | 60~70 male | 60~70 female | |||||
266.6 | 2 | 5 | 0.2 | 0.051 | 0.0790 | 0.0845 | 0.0176 | 0.0256 | 0.0141 | 0.0163 |
7 | 0.035 | 0.0542 | 0.0580 | 0.0121 | 0.0176 | 0.0096 | 0.0112 | |||
10 | 0.020 | 0.0310 | 0.0331 | 0.0069 | 0.0101 | 0.0055 | 0.0064 | |||
3 | 5 | 0.062 | 0.0961 | 0.1027 | 0.0214 | 0.0312 | 0.0171 | 0.0199 | ||
7 | 0.047 | 0.0728 | 0.0779 | 0.0162 | 0.0236 | 0.0130 | 0.0151 | |||
10 | 0.041 | 0.0635 | 0.0679 | 0.0142 | 0.0206 | 0.0113 | 0.0131 | |||
399.9 | 2 | 5 | 0.096 | 0.1488 | 0.1590 | 0.0332 | 0.0483 | 0.0265 | 0.0308 | |
7 | 0.062 | 0.0961 | 0.1027 | 0.0214 | 0.0312 | 0.0171 | 0.0199 | |||
10 | 0.044 | 0.0682 | 0.0729 | 0.0152 | 0.0221 | 0.0121 | 0.0141 | |||
2 | 5 | 0.110 | 0.1705 | 0.1822 | 0.0380 | 0.0553 | 0.0303 | 0.0352 | ||
7 | 0.077 | 0.1193 | 0.1276 | 0.0266 | 0.0387 | 0.0212 | 0.0247 | |||
10 | 0.050 | 0.0775 | 0.0828 | 0.0173 | 0.0251 | 0.0138 | 0.0160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, X.; Liu, Y.; He, Q.; Tian, H. Dissipation and Safety Analysis of Dimethomorph Application in Lychee by High-Performance Liquid Chromatography–Tandem Mass Spectrometry with QuEChERS. Molecules 2024, 29, 1860. https://doi.org/10.3390/molecules29081860
Wang S, Wang X, Liu Y, He Q, Tian H. Dissipation and Safety Analysis of Dimethomorph Application in Lychee by High-Performance Liquid Chromatography–Tandem Mass Spectrometry with QuEChERS. Molecules. 2024; 29(8):1860. https://doi.org/10.3390/molecules29081860
Chicago/Turabian StyleWang, Siwei, Xiaonan Wang, Yanping Liu, Qiang He, and Hai Tian. 2024. "Dissipation and Safety Analysis of Dimethomorph Application in Lychee by High-Performance Liquid Chromatography–Tandem Mass Spectrometry with QuEChERS" Molecules 29, no. 8: 1860. https://doi.org/10.3390/molecules29081860
APA StyleWang, S., Wang, X., Liu, Y., He, Q., & Tian, H. (2024). Dissipation and Safety Analysis of Dimethomorph Application in Lychee by High-Performance Liquid Chromatography–Tandem Mass Spectrometry with QuEChERS. Molecules, 29(8), 1860. https://doi.org/10.3390/molecules29081860