Progressive Insights into Metal-Organic Frameworks and Metal-Organic Framework-Membrane Composite Systems for Wastewater Management
Abstract
:1. Introduction
- (i)
- Non-reactivity with both adsorbates and the medium;
- (ii)
- Robust chemical, thermal stability, and mechanical resilience;
- (iii)
- Expansive specific surface area combined with an apt pore and functional surface structure;
- (iv)
- Pronounced affinity towards adsorbates;
- (v)
- Ease of preparation and regeneration.
2. Strategy for Boosting Adsorption Performance and Water Stability of MOFs
2.1. Enhancing Adsorption Capacity or Removal Rate
2.1.1. Adjusting the Specific Surface Area
- (1)
- Metal doping
- (2)
- Hierarchical MOFs
- (3)
- Etching
2.1.2. Active Site Optimization
- (1)
- Constructing composites
- (2)
- Functionalization
- (3)
- Shape adjustment
2.2. Improving Water Stability
2.2.1. Metal Doping
2.2.2. Introducing Building Blocks
3. Application Strategy of MOF Membranes
3.1. Bare MOF Membrane
3.1.1. Growth of MOF Membrane on Unmodified Support
3.1.2. Growth of MOF Membrane on Metal Supports
3.2. MOF-Based Mixed Matrix Membrane
3.2.1. Membrane Permeability
De Novo Control Synthesis
Modification of MOFs
3.2.2. Membrane Selectivity
De Novo Control Synthesis
Modification of MOFs
Shape Control
3.2.3. Membrane Stability
De Novo Control Synthesis
MOF or Membrane Material Modification
4. Discussion on Material Costs and Related Full-Scale Applications
5. Conclusions and Outlook
- (i)
- Preparation and Modification: The synthesis of MOFs for composite membranes should prioritize enhancing their porosity, flexibility, and stability. When modifying these membranes, efforts should be directed towards achieving optimal membrane thickness and permeability, potentially aiming for even thinner membranes. Additionally, achieving a seamless bond between MOFs and the membrane is paramount.
- (ii)
- Operational Stability: In real-world wastewater treatment scenarios, a membrane’s water stability is of utmost importance. Thus, when fabricating MOF composite membranes, emphasis should be placed on ensuring their long-term stability, especially in challenging aqueous environments such as those with strong acids, strong bases, or elevated temperatures.
- (iii)
- Recyclability and Economic Viability: Post-wastewater treatment, the recyclability of MOF composite membranes emerges as a significant consideration. Beyond the environmental implications, economic factors play a pivotal role. As such, there’s a need to devise cost-effective synthesis methods and strategies for recycling MOFs, ensuring the sustainability of the entire process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dutta, D.; Arya, S.; Kumar, S. Industrial wastewater treatment: Current trends, bottlenecks, and best practices. Chemosphere 2021, 285, 131245. [Google Scholar] [CrossRef] [PubMed]
- Dickin, S.K.; Schuster-Wallace, C.J.; Qadir, M.; Pizzacalla, K. A review of health risks and pathways for exposure to wastewater use in agriculture. Environ. Health Perspect. 2016, 124, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.M.; Xu, L.M.; Xu, P.C.; Wang, X. Elimination of viruses from domestic wastewater: Requirements and technologies. World J. Microbiol. Biotechnol. 2016, 32, 69. [Google Scholar] [CrossRef] [PubMed]
- Dawson, I.J.G.; Johnson, J.E.V. Does size matter? A study of risk perceptions of global population growth. Risk Anal. 2016, 37, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M. Global water shortage and potable water safety; today’s concern and tomorrow’s crisis. Environ. Int. 2021, 158, 106936. [Google Scholar] [CrossRef]
- Tortajada, C. Contributions of recycled wastewater to clean water and sanitation sustainable development goals. Clean Water 2020, 3, 22. [Google Scholar] [CrossRef]
- Alvaro, M.; Carbonell, E.; Ferrer, B.; Xamena, X.L.; Garcia, H. Semiconductor behavior of a metal-organic framework (MOF). Chemistry 2007, 13, 5106–5112. [Google Scholar] [CrossRef]
- Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. ChemInform 2006, 110, 17790–17797. [Google Scholar]
- Zhou, L.; Wang, W.; Zhang, L. Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M = W, Mo) photocatalysts. J. Mol. Catal. A Chem. 2007, 268, 195–200. [Google Scholar] [CrossRef]
- Zhang, Y.; Duoerkun, G.; Shi, Z.; Cao, W.; Liu, T.; Liu, J.; Zhang, L.; Li, M.; Chen, Z. Construction of TiO2/Ag3PO4 nanojunctions on carbon fiber cloth for photocatalytically removing various organic pollutants in static or flowing wastewater. J. Colloid Interface Sci. 2020, 571, 213–221. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, R.; We, Q.; Yang, M.; Cao, R.; Zong, X. Photocatalytic degradation of organic pollutants in wastewater by heteropolyacids: A review. J. Coord. Chem. 2021, 74, 1751–1764. [Google Scholar]
- Hussain, M.Z.; Yang, Z.; Huang, Z.; Jia, Q.; Zhu, Y.; Xia, Y. Recent Advances in metal–organic frameworks derived nanocomposites for photocatalytic applications in energy and environment. Adv. Sci. Lett. 2021, 8, 2100625. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.W.; Cong, Y.; Chen, X.; Wang, W.; Che, L. Developing fine-tuned metal-organic frameworks for photocatalytic treatment of wastewater: A review. Chem. Eng. J. 2022, 433, 133605. [Google Scholar] [CrossRef]
- Lü, T.; Luo, C.; Qi, D.; Zhang, D.; Zhao, H. Efficient treatment of emulsified oily wastewater by using amphipathic chitosan-based flocculant. React. Funct. Polym. 2019, 139, 133–141. [Google Scholar] [CrossRef]
- Kumar, S.; Ghosh, N.C.; Kazmi, N.N. Ballasted sand flocculation for water, wastewater and CSO treatment. Environ. Technol. Rev. 2016, 5, 57–67. [Google Scholar] [CrossRef]
- Cui, H.; Huang, X.; Yu, Z.; Chen, P.; Cao, X. Application progress of enhanced coagulation in water treatment. RSC Adv. 2020, 10, 20231–20244. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.R.; Machado, A.E.H.; Trovo, A.G. Treatment of a biodiesel effluent by coupling coagulation-flocculation, membrane filtration and fenton reactions. J. Clean. Prod. 2016, 142, 1918–1921. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci. Total Environ. 2020, 765, 142795. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 2018, 26, 289–300. [Google Scholar] [CrossRef]
- Bianchi, L.; Kirwan, K.; Alibardi, L.; Pidou, M.; Coles, S.R. Recovery of ammonia from wastewater through chemical precipitation. J. Therm. Anal. Calorim. 2019, 142, 1303–1314. [Google Scholar] [CrossRef]
- Sun, W.; Ma, G.; Sun, Y.; Liu, Y.; Song, N.; Xu, Y.; Zheng, H. Effective treatment of high phosphorus pharmaceutical wastewater by chemical precipitation. Can. J. Chem. Eng. 2017, 95, 1585–1593. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, H.; Sun, Y.; Zhao, C.; Zhou, Y.; Tang, X.; Zhao, C. A combined process of chemical precipitation and flocculation for treating phosphating wastewater. Desalination Water Treat. 2016, 57, 25520–25531. [Google Scholar] [CrossRef]
- Yan, J.; Yuan, W.; Liu, J.; Ye, W.; Lin, J.; Xie, J.; Huang, X.; Gao, S.; Xie, J.; Liu, S.; et al. An integrated process of chemical precipitation and sulfate reduction for treatment of flue gas desulphurization wastewater from coal-fired power plant. J. Clean. Prod. 2019, 228, 63–72. [Google Scholar] [CrossRef]
- Hansen, H.K.; Pena, S.F.; Gutierrez, C.; Lazo, A.; Lazo, P.; Ottosen, L.M. Selenium removal from petroleum refinery wastewater using an electrocoagulation technique. J. Hazard. Mater. 2019, 364, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, Z.; Liu, S.; Peng, Y.; Chen, J.; Ki, S.Y. Ultrasound-assisted electrochemical treatment for phenolic wastewater. Ultrason. Sonochem. 2020, 65, 105058. [Google Scholar] [CrossRef] [PubMed]
- Ltaïef, A.H.; Sabatino, S.; Proietto, F.; Ammar, S.; Gadri, A.; Galia, A.; Scialdone, O. Electrochemical treatment of aqueous solutions of organic pollutants by electro-Fenton with natural heterogeneous catalysts under pressure using Ti/IrO2-Ta2O5 or BDD anodes. Chemosphere 2018, 202, 111–118. [Google Scholar] [CrossRef]
- Barhoumi, N.; Olvera-Vargas, H.; Oturan, N.; Huguenot, D.; Gadri, A.; Ammar, S.; Brillas, E.; Oturan, M.A. Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite. Appl. Catal. B 2017, 209, 637–647. [Google Scholar] [CrossRef]
- Li, X.L.; Zhang, W.; Huang, Y.; Wang, Q.; Yang, J. Superior adsorptive removal of azo dyes from aqueous solution by a Ni (II)-doped metal–organic framework. Colloids Surf. A 2021, 619, 126549. [Google Scholar] [CrossRef]
- Guo, J.; Huang, M.; Gao, P.; Zhang, Y.; Chen, H.; Zheng, S.; Mu, T.; Luo, X. Simultaneous robust removal of tetracycline and tetracycline resistance genes by a novel UiO/TPU/PSF forward osmosis membrane. Chem. Eng. J. 2020, 398, 125604. [Google Scholar] [CrossRef]
- Hameed, B.H.; El-Khaiary, M.I. Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. J. Hazard. Mater. 2008, 157, 344–351. [Google Scholar] [CrossRef]
- Hameed, B.H.; Rahman, A.A. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater. 2008, 160, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Eliodorio, K.P.; Andolfatto, V.S.; Martins, M.R.G.; Sa, B.P.; Umeki, E.R.; Morandim-Giannetti, A. Treatment of chromium effluent by adsorption on chitosan activated with ionic liquids. Cellulose 2017, 24, 2559–2570. [Google Scholar] [CrossRef]
- Sessarego, S.; Rodrigues, S.C.G.; Xiao, Y.; Lu, Q.; Hill, J.M. Phosphonium-Enhanced chitosan for Cr(VI) adsorption in wastewater treatment. Carbohydr. Polym. 2019, 211, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, U.; Sreedhar, I.; Singh, S.A.; Patel, C.M.; Anitha, K.L. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr. Polym. 2021, 251, 117000. [Google Scholar] [CrossRef] [PubMed]
- Futalan, C.M.; Phatai, P.; Kim, J.S.; Maulana, A.Y.; Yee, J.J. Treatment of soil washing wastewater via adsorption of lead and zinc using graphene oxide. Environ. Sci. Pollut. Res. Int. 2019, 26, 17292–17304. [Google Scholar] [CrossRef] [PubMed]
- Teow, Y.H.; Nordin, N.I.; Mohammad, A.W. Green synthesis of palm oil mill effluent-based graphenic adsorbent for the treatment of dye-contaminated wastewater. Environ. Sci. Pollut. Res. Int. 2018, 26, 33747–33757. [Google Scholar] [CrossRef] [PubMed]
- Mashkoor, F.; Nasar, A.; Inamuddin. Carbon nanotube-based adsorbents for the removal of dyes from waters: A review. Environ. Chem. Lett. 2020, 18, 605–629. [Google Scholar] [CrossRef]
- Zare, K.; Sadegh, H.; Shahryari-ghoshekandi, R.; Maazinejad, B.; Ali, V.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Enhanced removal of toxic Congo red dye using multi walled carbon nanotubes: Kinetic, equilibrium studies and its comparison with other adsorbents. J. Mol. Liq. 2015, 18, 605–629. [Google Scholar] [CrossRef]
- Chelu, M.; Musuc, A.M.; Popa, M.; Moreno, J.M.C. Chitosan hydrogels for water purification applications. Gels 2023, 9, 664. [Google Scholar] [CrossRef]
- Chelu, M.; Popa, M.; Moreno, J.C.; Ruxandra Leonties, A.; Ozon, E.A.; Cusu, J.P.; Surdu, V.A.; Aricov, L.; Musuc, A.M. Green synthesis of hydrogel-based adsorbent material for the effective removal of diclofenac sodium from wastewater. Gels 2023, 9, 454. [Google Scholar] [CrossRef]
- Yaghi, O.M.; Hailian, L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. Am. Chem. Soc. 1995, 117, 10401–10402. [Google Scholar] [CrossRef]
- Hailian, L.; Mohamed, E.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. letters to nature. Nature 1999, 402, 276–279. [Google Scholar]
- Hupp, J.T.; Poeppelmeier, K.R. Better living through nanopore chemistry. Science 2005, 309, 2008–2009. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Ni, Z.; Cote, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10187. [Google Scholar] [CrossRef] [PubMed]
- Chui, S.S.Y.; Lo, S.M.F.; Charmant, J.P.H.; Orpen, A.G.; Williams, I.D. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150. [Google Scholar] [CrossRef] [PubMed]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef]
- Lin, H.; Jie, B.; Ye, J.; Zhai, Y.; Luo, Z.; Shao, G.; Chen, R.; Zhang, X.; Yang, Y. Recent advance of macroscopic metal-organic frameworks for water treatment: A review. Surf. Interfaces 2023, 36, 102564. [Google Scholar] [CrossRef]
- Kumara, P.; Bansalb, V.; Kimc, K.-H.; Kwon, E.E. Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment. J. Ind. Eng. Chem. 2018, 62, 130–145. [Google Scholar] [CrossRef]
- Lorignon, F.; Gossard, A.; Carboni, M. Hierarchically porous monolithic MOFs: An ongoing challenge for industrial-scale effluent treatment. Chem. Eng. J. 2020, 393, 124765. [Google Scholar] [CrossRef]
- Fu, Q.; Wen, L.; Zhang, L.; Chen, X.; Pun, D.; Ahmed, A.; Yang, Y.; Zhang, H. Preparation of Ice-templated MOF-polymer composite monoliths and their application for wastewater treatment with high capacity and easy recycling. ACS Appl. Mater. Interfaces 2017, 9, 33979–33988. [Google Scholar] [CrossRef]
- James, S.L. Metal-organic frameworks. Chem. Soc. Rev. 2003, 32, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Kuppler, R.J.; Timmons, D.J.; Fang, Q.R.; Li, J.R.; Makal, T.A.; Young, M.D.; Yuan, D.; Zhao, D.; Zhuang, W.; Zhou, H.C. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 2009, 253, 3042–3066. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, G.; Xu, Z.; Li, H.; Dhôtel, A.; Zeng, X.C.; Chen, B.; Saiter, J.M.; Tan, L. Metal–Organic frameworks: Metal–organic frameworks capable of healing at low temperatures. Adv. Mater. 2013, 25, 6148. [Google Scholar] [CrossRef]
- Dhaka, S.; Kumar, R.; Deep, A.; Kurade, M.B.; Ji, S.W.; Jeon, B.H. Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord. Chem. Rev. 2019, 380, 330–352. [Google Scholar] [CrossRef]
- Jhung, S.H.; Lee, J.H.; Yoon, J.W.; Serre, C.; Férey, G.; Chang, J.S. Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability. Adv. Mater. 2007, 19, 121–124. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Ahmed, I.; Kim, S.; Jhung, S.H. Adsorptive removal of ibuprofen and diclofenac from water using metal-organic framework-derived porous carbon. Chem. Eng. J. 2017, 314, 50–58. [Google Scholar] [CrossRef]
- Jung, B.K.; Jun, J.W.; Hasan, Z.; Jhung, S.H. Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8. Chem. Eng. J. 2015, 267, 9–15. [Google Scholar] [CrossRef]
- Akpinar, I.; Yazaydin, A.O. Adsorption of atrazine from water in metal-organic framework materials. J. Chem. Eng. Data 2018, 63, 2368–2375. [Google Scholar] [CrossRef]
- Lv, X.L.; Wang, K.; Wang, B.; Su, J.; Zou, X.; Xie, Y.; Li, J.R.; Zhou, H.C. A base-resistant metalloporphyrin metal-organic framework for C-H bond halogenation. J. Am. Chem. Soc. 2017, 139, 211–217. [Google Scholar] [CrossRef]
- Hasan, Z.; Khan, N.A.; Jhung, S.H. Adsorptive removal of diclofenac sodium from water with Zr-based metal–organic frameworks. Chem. Eng. J. 2016, 284, 1406–1413. [Google Scholar] [CrossRef]
- Chen, C.; Chen, D.; Xie, S.; Quan, H.; Luo, X.; Guo, L. Adsorption behaviors of organic micropollutants on zirconium metal-organic framework UiO-66: Analysis of surface interactions. ACS Appl. Mater. Interfaces 2017, 9, 41043–41054. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, J.; Zhang, W.; Liu, F.; Yue, X.; Liu, Y.; Yang, M.; Li, Z.; Wang, J. Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide. Chem. Eng. J. 2016, 313, 19–26. [Google Scholar] [CrossRef]
- Zhu, X.; Li, B.; Yang, J.; Li, Y.; Zhao, W.; Shi, J.; Gu, J. Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-based MOFs of UiO-67. ACS Appl. Mater. Interfaces 2015, 7, 223–231. [Google Scholar] [CrossRef]
- Pankajakshan, A.; Sinha, M.; Ohja, A.A.; Mandal, S. Water-Stable nanoscale zirconium-based metal–organic frameworks for the effective removal of glyphosate from aqueous media. ACS Omega 2018, 3, 7832–7839. [Google Scholar] [CrossRef]
- Uddin, M.J.; Ampiaw, R.E.; Lee, W. Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere 2021, 284, 131314. [Google Scholar] [CrossRef] [PubMed]
- Pabby, A.K.; Rizvi, S.S.H.; Sastre, A.M. Handbook of membrane separations: Chemical, pharmaceutical, food, and biotechnological applications. Int. J. Food Sci. Technol. 2010, 44, 1464–1466. [Google Scholar]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, 1138–1148. [Google Scholar] [CrossRef]
- Chen, L.; Wang, H.F.; Li, C.; Xu, Q. Bimetallic metal–organic frameworks and their derivatives. Chem. Sci. 2020, 11, 5369–5403. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xu, Q. Bimetallic metal−organic frameworks for gas storage and separation. Cryst. Growth Des. 2017, 17, 1450–1455. [Google Scholar] [CrossRef]
- Fu, G.; Wu, P.; Yang, J.; Zhang, S.; Huai, X. Cr-doped UiO-66 with enhanced water adsorption for adsorption heat transformation. Microporous Mesoporous Mater. 2022, 331, 111642. [Google Scholar] [CrossRef]
- Cao, J.; Yang, Z.; Xiong, W.; Zhou, Y.; Peng, Y.; Li, X.; Zhou, C.; Xu, R.; Zhang, Y. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis. Chem. Eng. J. 2018, 353, 126–137. [Google Scholar] [CrossRef]
- Dong, X.; Lin, Y.; Ma, Y.; Zhao, L. Ce-doped UiO-67 nanocrystals with improved adsorption property for removal of organic dyes. RSC Adv. 2019, 9, 27674–27683. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Jin, X.; Owens, G.; Chen, Z. Remediation of malachite green in wastewater by ZIF-8@Fe/Ni nanoparticles based on adsorption and reduction. J. Colloid Interface Sci. 2021, 594, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Su, S.; Rao, J.; Li, S.; Lei, T.; Bai, H.; Wang, S.; Yang, X. Magnetic metal-organic framework (Fe3O4@ZIF-8) core-shell composite for the efficient removal of Pb (II) and Cu (II) from water. J. Environ. Chem. Eng. 2021, 9, 105959. [Google Scholar] [CrossRef]
- Qu, Y.; Qin, L.; Liu, X.; Yang, Y. Magnetic Fe3O4/ZIF-8 composite as an effective and recyclable adsorbent for phenol adsorption from wastewater. Sep. Purif. Technol. 2022, 294, 121169. [Google Scholar] [CrossRef]
- Feng, L.; Wang, K.Y.; Willman, J.; Zhou, H.C. Hierarchy in metal−organic frameworks. ACS Cent. Sci. 2020, 6, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Wang, K.Y.; Lv, X.L.; Yan, T.H.; Zhou, H.C. Hierarchically porous metal–organic frameworks: Synthetic strategies and applications. Natl. Sci. Rev. 2020, 7, 1743–1758. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Zou, L.; Qin, J.S.; Li, J.; Huang, L.; Feng, L.; Wang, X.; Bosch, M.; Alsalme, A.; Cagin, T.; et al. Construction of hierarchically porous metal–organic frameworks through linker labilization. Nat. Commun. 2017, 8, 15356. [Google Scholar] [CrossRef]
- Cheng, P.; Jing, P.; Zhang, Y.; Chen, W.; Wang, L.; Shi, W. A macroporous metal-organic framework with enhanced hydrophobicity for efficient oil adsorption. Chem. Eur. J. 2017, 24, 3754–3759. [Google Scholar]
- Zhang, P.; Xu, Y.; Guo, K.; Yin, Y.; Wang, J.; Zeng, Y. Hierarchical-pore UiO-66 modified with Ag+ for π-complexation adsorption desulfurization. J. Hazard. Mater. 2021, 418, 126247. [Google Scholar] [CrossRef]
- Poudel, M.B.; Awasthi, G.P.; Kim, H.J. Novel insight into the adsorption of Cr (VI) and Pb (II) ions by MOF derived Co-Al layered double hydroxide @hematite nanorods on 3D porous carbon nanofiber network. Chem. Eng. J. 2021, 417, 129312. [Google Scholar] [CrossRef]
- Feng, Y.; Yao, J. Tailoring the structure and function of metal organic framework by chemical etching for diverse applications. Coord. Chem. Rev. 2020, 470, 214699. [Google Scholar] [CrossRef]
- Hu, M.; Ju, Y.; Liang, K.; Suma, T.; Cui, J.; Caruso, F. Void engineering in metal–organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 2016, 26, 5827–5834. [Google Scholar] [CrossRef]
- Xu, Y.; Lv, J.; Song, Y.; Zhou, X.; Tian, C.; Hong, X.; Cai, Y.; Zhao, C.; Lin, Z. Efficient removal of low-concentration organoarsenic by Zr-based metal-organic frameworks: Cooperation of defects and hydrogen bonds. Environ. Sci. Nano 2019, 6, 3590–3600. [Google Scholar] [CrossRef]
- Wang, P.; Sun, L.; Ye, J.; Liu, Q.; Fei, Z.; Chen, X.; Zhang, Z.; Tang, J.; Cui, M.; Qiao, X. Construction of crystal defect sites in UiO-66 for adsorption of dimethyl phthalate and phthalic acid. Microporous Mesoporous Mater. 2021, 312, 110778. [Google Scholar] [CrossRef]
- Lv, Z.; Yang, S.; Chen, L.; Li, Y.; Chen, C. Enhanced removal of uranium(VI) from aqueous solution by a novel LDH@MOF-76 composite. Sci. Sin. 2019, 49, 53–64. [Google Scholar] [CrossRef]
- Xuan, K.; Wang, J.; Gong, Z.; Wang, X.; Li, J.; Guo, Y.; Sun, Z. Hydroxyapatite modified ZIF-67 composite with abundant binding groups for the highly efficient and selective elimination of uranium (VI) from wastewater. J. Hazard. Mater. 2022, 426, 127834. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Yang, W.; Hui, Y.F.; Gao, C.Y.; Dang, S.; Sun, Z.M. Fe3O4@ ZIF-8: A magnetic nanocomposite for highly efficient UO22+ adsorption and selective UO22+/Ln (3+) separation. Chem. Commun. 2017, 53, 4199–4202. [Google Scholar] [CrossRef]
- Masoumi, S.; Tabrizi, F.F.; Sardarian, A.R. Efficient tetracycline hydrochloride removal by encapsulated phosphotungstic acid (PTA) in MIL–53 (Fe): Optimizing the content of PTA and recycling study—ScienceDirect. J. Environ. Chem. Eng. 2019, 8, 103601. [Google Scholar] [CrossRef]
- Zheng, M.; Xu, L.; Chen, C.; Labiadh, L.; Yuan, B.; Fu, M.L. MOFs and GO-based composites as deliberated materials for the adsorption of various water contaminants. Sep. Purif. Technol. 2022, 294, 121187. [Google Scholar] [CrossRef]
- Rahimi, E.; Mohaghegh, N. New hybrid nanocomposite of copper terephthalate MOF-graphene oxide: Synthesis, characterization and application as adsorbents for toxic metal ion removal from sungun acid mine drainage. Environ. Sci. Pollut. Res. Int. 2017, 24, 22353–22360. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.Z.; Huang, T.; Zhang, N.; Lei, Y.Z.; Wang, Y. Enhanced removal of lead ions and methyl orange from wastewater using polyethyleneimine grafted UiO-66-NH2 nanoparticles. Sep. Purif. Technol. 2022, 297, 121470. [Google Scholar] [CrossRef]
- Li, Z.J.; Zhang, L.; Li, Y.L.; Zhou, L.L.; Han, J.L.; Xu, H.; Yun, J.; Shen, S.F.; Liu, R.J. Highly efficient adsorptive removal of tannic acid from aqueous solutions by nitro-functionalized MIL-101(Cr). J. Porous Mater. 2023, 30, 311–325. [Google Scholar] [CrossRef]
- Kea, F.; Qiu, L.G.; Yuan, Y.P.; Peng, F.M.; Jiang, X.; Xie, A.J.; Shen, Y.H.; Zhu, J.F. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water. J. Hazard. Mater. 2011, 196, 36–43. [Google Scholar] [CrossRef]
- Luo, X.; Shen, T.; Ding, L.; Zhong, W.; Luo, J.; Luo, S. Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg2+ from water. J. Hazard. Mater. 2016, 306, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ding, L.; Luo, J. Adsorptive removal of Pb (II) ions from aqueous samples with amino-functionalization of metal–organic frameworks MIL-101(Cr). J. Chem. Eng. Data 2015, 60, 1732–1743. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, Z.; Wang, S.; Zhang, L.; Wang, C. Experimental and DFT study on the selective adsorption mechanism of Au(Ⅲ) using amidinothiourea-functionalized UiO-66-NH2—ScienceDirect. Microporous Mesoporous Mater. 2020, 294, 109905. [Google Scholar] [CrossRef]
- Sheta, S.M.; Hamoud, M.A.; Ali, O.I.; Kandil, A.T.; Sheha, R.R.; El-Sheikh, S.M. Recent progress in high-performance environmental impacts of the removal of radionuclides from wastewater based on metal–organic frameworks: A review. RSC Adv. 2023, 13, 25182. [Google Scholar] [CrossRef] [PubMed]
- Sheha, R.R.; Sheta, S.M.; Hamouda, M.A.; El-Sheikh, S.M.; Kandil, A.T.; Ali, O.I. A comprehensive study for the potential removal of 152+154Eu radionuclides using a promising modified strontium-based MOF. J. Environ. Radioact. 2023, 270, 107287. [Google Scholar] [CrossRef]
- Yang, F.; Mu, H.; Wang, C.; Xiang, L.; Yao, K.X.; Liu, L.; Yang, Y.; Han, Y.; Li, Y.S.; Pan, Y.C. Morphological map of ZIF-8 crystals with five distinctive shapes: Feature of filler in mixed-matrix membranes on C3H6/C3H8 separation. Chem. Mater. 2018, 30, 3467–3473. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, H.; Zheng, K.; Zhang, Z.; Jiang, Q.; Li, J. Two-dimensional hydrophilic ZIF-L as a highly-selective adsorbent for rapid phosphate removal from wastewater. Sci. Total Environ. 2021, 785, 147382. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Molavi, H.; Rezakazemi, M.; Tajahmadi, S.; Bahi, A.; Ko, F.; Aminabhavi, T.M.; Li, J.R.; Arjmand, M. UiO-66 metal–organic frameworks in water treatment: A critical review. Prog. Mater. Sci. 2021, 125, 100904. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Xie, L.H.; Li, X.; Li, J.R. Construction and application of base-stable MOFs: A critical review. Chem. Soc. Rev. 2022, 51, 6417–6441. [Google Scholar] [CrossRef]
- Lan, Y.Q.; Guo, Y.; Zhang, J.; Dong, L.Z.; Xu, Y.; Han, W.; Fang, M.; Liu, H.K.; Wu, Y.; Lan, Y.-Q. Syntheses of exceptionally stable Al(III) metal-organic frameworks: How to grow high quality large single crystals? Chemistry 2017, 23, 15518–15528. [Google Scholar]
- Chen, Y.; Wang, B.; Wang, X.; Xie, L.H.; Li, J.; Xie, Y.; Li, J.R.J. A copper (II)-paddlewheel metal-organic framework with exceptional hydrolytic stability and selective adsorption and detection ability of aniline in water. ACS Appl. Mater. Interfaces 2017, 9, 27027–27035. [Google Scholar] [CrossRef] [PubMed]
- Panagiotou, N.; Liatsou, I.; Pournara, A.; Angeli, G.; Giappa, R.M.; Tylianakis, E.; Manos, M.J.; Froudakis, G.E.; Trikalitis, P.N.; Pashalidis, I.; et al. Water-stable 2-D Zr MOFs with exceptional UO22+ sorption capability. J. Mater. Chem. A 2020, 8, 18549–18587. [Google Scholar] [CrossRef]
- Li, H.; Shi, W.; Zhao, K.; Li, H.; Bing, Y.; Cheng, P. Enhanced hydrostability in Ni-doped MOF-5. Inorg. Chem. 2012, 51, 9200–9207. [Google Scholar] [CrossRef]
- Goyal, P.; Paruthi, A.; Menon, D.; Behara, R.; Jaiswal, A.; V, K.; Kumar, A.; Krishnan, V.; Misra, S. Fe doped bimetallic HKUST-1 MOF with enhanced water stability for trapping Pb (II) with high adsorption capacity. Chem. Eng. J. 2022, 430, 133088. [Google Scholar] [CrossRef]
- Jiang, S.Y.; He, W.W.; Li, S.L.; Su, Z.M.; Lan, Y.Q. Introduction of molecular building blocks to improve the stability of metal–organic frameworks for efficient mercury removal. Inorg. Chem. 2018, 57, 6118–6123. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Yuan, X.; Zhang, J.; Chew, J.W. Metal-organic framework membranes for wastewater treatment and water regeneration. Coord. Chem. Rev. 2020, 404, 213116. [Google Scholar] [CrossRef]
- Kang, Z.; Xue, M.; Fan, L.; Ding, J.; Guo, L.; Gao, L.; Qiu, S. ‘Single nickel source’ in situ fabrication of a stable homochiral MOF membrane with chiral resolution properties. Chem. Commun. 2013, 49, 10569–10571. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.T.; Jeong, H.K. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 2013, 135, 10763–10768. [Google Scholar] [CrossRef] [PubMed]
- Kasik, A.; Lin, Y.S. Organic solvent pervaporation properties of MOF-5 membranes. Sep. Purif. Technol. 2014, 121, 38–45. [Google Scholar] [CrossRef]
- Pan, Y.; Li, T.; Lestari, G.; Lai, Z. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci. 2012, 390, 93–98. [Google Scholar] [CrossRef]
- Yuan, J.; Hung, W.S.; Zhu, H.; Guan, K.; Ji, Y.; Mao, Y.; Liu, G.; Lee, K.R.; Jin, W. Fabrication of ZIF-300 membrane and its application for efficient removal of heavy metal ions from wastewater. J. Membr. Sci. 2019, 572, 20–27. [Google Scholar] [CrossRef]
- Weckhuysen, B.M.; Ozturk, Z.; Brand, R.; Boereboom, J.; Meirer, F. Vibrational fingerprinting of defects sites in thin films of zeolitic imidazolate frameworks. Chem. Eur. J. 2019, 25, 8070–8084. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gupta, K.M.; Liu, Q.; Jiang, J.; Caro, J.; Huang, A. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. Desalination 2016, 385, 75–82. [Google Scholar] [CrossRef]
- Kasik, A.; James, J.; Lin, Y.S. Synthesis of ZIF-68 membrane on a ZnO modified α-Alumina support by a modified reactive seeding method. Ind. Eng. Chem. Res. 2016, 55, 2831–2839. [Google Scholar] [CrossRef]
- Sorribas, S.; Gorgojo, P.; Tellez, C.; Coronas, J.; Livingston, A.G. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 2013, 135, 15201–15208. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Q.; Zhao, J.; Hua, Y.; Sun, J.; Duan, J.; Jin, W. High efficient water/ethanol separation by a mixed matrix membrane incorporating MOF filler with high water adsorption capacity. J. Membr. Sci. 2017, 544, 68–78. [Google Scholar] [CrossRef]
- Zirehpour, A.; Rahimpour, A.; Ulbricht, M. Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane. J. Membr. Sci. 2017, 531, 59–67. [Google Scholar] [CrossRef]
- Kebria, M.R.S.; Rahimpour, A.; Bakeri, G.; Abedini, R. Experimental and theoretical investigation of thin ZIF-8/chitosan coated layer on air gap membrane distillation performance of PVDF membrane. Desalination 2019, 450, 21–32. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, H.C.; Yasui, T.; Yoshioka, T.; Matsuyama, H. Development of an HKUsT-1 nanofiller-templated poly (ether sulfone) mixed matrix membrane for a highly efficient ultrafiltration process. ACS Appl. Mater. Interfaces 2019, 11, 18782–18796. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.; Zhang, X.; Liu, M.; Wu, Z.; Wang, Z. Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis. J. Membr. Sci. 2018, 573, 46–54. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, L.; Shen, J.; Shi, J.; Chen, G.; Zhao, J.; Zhao, J.; Liu, G.; Jin, W. Improved ethanol recovery through mixed-matrix membrane with hydrophobic MAF-6 as filler. Sep. Purif. Technol. 2017, 178, 105–112. [Google Scholar] [CrossRef]
- Benzaqui, M.; Semino, R.; Carn, F.; Tavares, S.R.; Menguy, N.; Giménez-Marqués, M.; Bellido, E.; Horcajada, P.; Berthelot, T.; Kuzminova, A.I.; et al. Covalent and selective grafting of PEG brushes at the surface of ZIF-8 for the processing of membranes for pervaporation. ACS Sustain. Chem. Eng. 2019, 7, 6629–6639. [Google Scholar] [CrossRef]
- Sun, H.; Tang, B.; Wu, P. Hydrophilic hollow zeolitic imidazolate framework-8 modified ultrafiltration membranes with significantly enhanced water separation properties. J. Membr. Sci. 2018, 551, 283–293. [Google Scholar] [CrossRef]
- Liao, Z.; Fang, X.; Xie, J.; Li, Q.; Wang, D.; Sun, X.; Wang, L.; Li, J. Hydrophilic hollow nanocube-functionalized thin film nanocomposite membrane with enhanced nanofiltration performance. ACS Appl. Mater. Interfaces 2019, 11, 5344–5352. [Google Scholar] [CrossRef]
- Ying, Y.; Liu, D.; Zhang, W.; Ma, J.; Huang, H.; Yang, Q.; Zhong, C. High-Flux graphene oxide membranes intercalated by MOF with highly selective separation of aqueous organic solution. ACS Appl. Mater. Interfaces 2017, 9, 1710–1718. [Google Scholar] [CrossRef]
- Mao, H.; Zhen, H.G.; Ahmad, A.; Zhang, A.S.; Zhao, Z.P. In situ fabrication of MOF nanoparticles in PDMS membrane via interfacial synthesis for enhanced ethanol permselective pervaporation. J. Membr. Sci. 2018, 573, 344–358. [Google Scholar] [CrossRef]
- Ren, C.; Si, Z.; Qu, Y.; Li, S.; Wu, H.; Meng, F.; Zhang, X.; Wang, Y.; Liu, C.; Qin, P. CF3-MOF enhanced pervaporation selectivity of PDMS membranes for butanol separation. Sep. Purif. Technol. 2022, 284, 120255. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Abdel-Gawad, H.; Emam, H.E. Macroporous Cu-MOF@Cellulose acetate membrane serviceable in selective removal of dimethoate pesticide from wastewater. J. Environ. Chem. Eng. 2021, 9, 105121. [Google Scholar] [CrossRef]
- He, Y.R.; Tang, Y.P.; Ma, D.; Chung, T.S. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. J. Membr. Sci. 2017, 541, 262–270. [Google Scholar] [CrossRef]
- He, M.; Wang, L.; Lv, Y.; Wang, X.; Zhu, J.; Zhang, Y.; Liu, T. Novel polydopamine/metal organic framework thin film nanocomposite forward osmosis membrane for salt rejection and heavy metal removal. Chem. Eng. J. 2020, 389, 124452. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, N.; Sun, Z.; Han, Y.; Xu, J.; Xu, Y.; Wu, J.; Meng, H.; Zhang, X. Selective adsorption of malachite green (MG) and fuchsin acid (FA) by ZIF-67 hybridized polyvinylidene fluoride (PVDF) membranes. Dalton Trans. 2021, 50, 8927–8937. [Google Scholar] [CrossRef] [PubMed]
- Gnanasekaran, G.; Sudhakaran, M.S.P.; Kulmatova, D.; Han, J.; Arthanareeswaran, G.; Jwa, E.; Mok, Y.S. Efficient removal of anionic, cationic textile dyes and salt mixture using a novel CS/MIL-100 (Fe) based nanofiltration membrane. Chemosphere 2021, 284, 131244. [Google Scholar] [CrossRef] [PubMed]
- Golpour, M.; Pakizeh, M. Preparation and characterization of new PA-MOF/PPSU-GO membrane for the separation of KHI from water. Chem. Eng. J. 2018, 345, 221–232. [Google Scholar] [CrossRef]
- Xiao, H.; Chai, M.; Abdollahzadeh, M.; Ahmadi, H.; Chen, V.; Gore, D.B.; Asadnia, M.; Razmjou, A. A lithium ion selective membrane synthesized from a double layered Zrbased metalorganic framework (MOF-on-MOF) thin film. Desalination 2022, 532, 115733. [Google Scholar] [CrossRef]
- Xu, T.; Shehzad, M.A.; Yu, D.; Li, Q.; Wu, B.; Ren, X.; Ge, L.; Xu, T. Highly cation permselective metal-organic framework membranes with leaf-like morphology. Chem. Sustain. Energy Mater. 2019, 12, 2593–2597. [Google Scholar] [CrossRef]
- Ali, I.; Wan, P.; Raza, S.; Peng, C.S.; Tan, X.; Sun, H.; Li, J. Development of novel MOF-mixed matrix three-dimensional membrane capsules for eradicating potentially toxic metals from water and real electroplating wastewater. Environ. Res. 2022, 215, 113945. [Google Scholar] [CrossRef]
- Li, H.; Zhu, L.; Zhu, X.; Chao, M.; Xue, J.; Sun, D.; Xia, F.; Xue, Q. Dual-functional membrane decorated with flower-like metal–organic frameworks for highly efficient removal of insoluble emulsified oils and soluble dyes. J. Hazard. Mater. 2020, 408, 124444. [Google Scholar] [CrossRef] [PubMed]
- Alemayehu, H.G.; Liu, C.; Hou, J.; Yang, J.; Fang, M.; Tang, Z.; Li, L. Highly stable membrane comprising MOF nanosheets and graphene oxide for ultra-permeable nanofiltration. J. Membr. Sci. 2022, 652, 120479. [Google Scholar] [CrossRef]
- Lu, X.; Geng, Y.; Jia, Z.; Yang, Y.; Huang, H.; Men, Y.; Hou, L. In situ syntheses of NH2-MIL-53/PVDF composite membranes for dyes separation. Sep. Purif. Technol. 2021, 269, 118760. [Google Scholar] [CrossRef]
- Zhang, H.; James, J.; Zhao, M.; Yao, Y.; Zhang, Y.; Zhang, B.; Lin, Y.S. Improving hydrostability of ZIF-8 membranes via surface ligand exchange. J. Membr. Sci. 2017, 532, 1–8. [Google Scholar] [CrossRef]
- Samari, M.; Zinadini, S.; Zinatizadeh, A.A.; Jafarzadeh, M.; Gholami, F. Designing of a novel polyethersulfone (PES) ultrafiltration (UF) membrane with thermal stability and high fouling resistance using melamine-modified zirconium-based metal-organic framework (UiO-66-NH2/MOF). Sep. Purif. Technol. 2020, 251, 117010. [Google Scholar] [CrossRef]
- Lee, K.R.; Teng, M.Y.; Hsu, T.N.; Lai, J.Y. A study on pervaporation of aqueous ethanol solution by modified polyurethane membrane. J. Membr. Sci. 1999, 162, 173–180. [Google Scholar] [CrossRef]
- Ren, J.; Dyosiba, X.; Musyoka, N.M.; Langmi, H.W.; Mathe, M.; Liao, S. Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coord. Chem. Rev. 2017, 352, 187–219. [Google Scholar] [CrossRef]
- Yang, A.; Wang, Z.; Zhu, Y. Facile preparation and adsorption performance of low-cost MOF@cotton fibre composite for uranium removal. Sci. Rep. 2020, 10, 19271. [Google Scholar] [CrossRef] [PubMed]
- Bagi, S.; Yuan, S.; Rojas-Buzo, S.; Shao-Horn, Y.; Román-Leshkov, Y. A continuous flow chemistry approach for the ultrafast and low-cost synthesis of MOF-808. Green Chem. 2021, 23, 9982–9991. [Google Scholar] [CrossRef]
- Boukayouht, K.; Bazzi, L.; Hankari, S.E. Sustainable synthesis of metal-organic frameworks and their derived materials from organic and inorganic wastes. Coord. Chem. Rev. 2023, 478, 214986. [Google Scholar] [CrossRef]
- Severino, M.I.; Gkaniatsou, E.; Nouar, F.; Pinto, M.L.; Serre, C. MOFs industrialization: A complete assessment of production costs. Faraday Discuss. 2021, 231, 326–341. [Google Scholar] [CrossRef] [PubMed]
Modification Strategy | Material Performance Improvement | MOFs | Adsorption Property | References |
---|---|---|---|---|
Mental doping | Specific Surface Area | UiO-67: 1653 m2/g a | RhB: 41.3 mg/g b | [72] |
Ce-UiO-67: 1795 m2/g a | RhB: 754.4 mg/g b | |||
Specific Surface Area | ZIF-8: 246.37 m2/g a | MG: 80% c | [73] | |
ZIF-8@Fe/Ni: 919.05 m2/g a | MG: 99% c | |||
Hierarchical MOFs | Specific Surface Area | 3DPCNF: 24.954 m2/g a | Cr(VI): 94% c Pb(II): 97% c | [81] |
Co-Al-LDHFe2O3/3DPCNF: 49.66 m2/g a | Cr(VI): About 40% c Pb(II): About 40% c | |||
Etching | Specific Surface Area | UiO-66: 1353.1 m2/g a | PA: 174 mg/g b | [85] |
UiO-66-0.2TCA: 1419.3 m2/g a | PA: 205.4 mg/g b | |||
Functionalization | Active site | MIL-101 | Pb (II): 15.7 mg/g b | [96] |
ED-MIL-101 | Pb (II): 87.64 mg/g b | |||
Shape adjustment | Active site | ZIF-8 | Phosphate: 54.82 mg/g b | [101] |
2D ZIF-L | Phosphate: 75.18 mg/g b |
Names of the Explored Composite | Material Performance Improvement | Applications | Performance | References | |
---|---|---|---|---|---|
MOF-based composites | Fe3O4/ZIF-8 | Specific Surface Area | Remove Pb2+ | Adsorption capacity: 719.42 mg/g | [74] |
LDH@MOF-76 | Active site | Remove U(VI) | Adsorption capacity: 433.9 mg/g | [86] | |
HAP/ZIF-67 | Active site | Remove U(VI) | Adsorption capacity: 453.1 mg/g | [87] | |
Fe3O4@ZIF-8 | Active site | Remove U(VI) | Adsorption capacity: 539 mg/g | [88] | |
PTA@MIL-53(Fe) | Active site | Remove tetracycline hydrochloride | Adsorption capacity: 1250 mg/g | [89] | |
Cu(tpa)/GO | Active site | Remove Mental ions (Cu2+, Mn2+, Cd2+, Zn2+, Fe3+ and Pb2+ ) | Adsorption capacity: 235, 150, 53, 89, 78, 37 mg/g | [91] | |
PEI@UiO-66-NH2 | Active site | Remove Pb (II) and methyl orange (MO) | Adsorption capacity: 692.80, 497.51 mg/g | [92] | |
MOF composite membranes | MOF TFC FO membrane | Permeability | Desalination performance | Seawater fluxes: 34 L/m2h | [121] |
ZIF-8/PVDF TFC membrane | Permeability | Desalination performance | Seawater fluxes: 6 Kg/m2h | [122] | |
HKUST-1@mPES MMM | Permeability | Remove bovine serum albumin | Pure water permeability: 490 L·m−2·h−1·bar−1; bovine serum albumin rejection rate: 96% | [123] | |
MAF-9/PDMS membrane | Selectivity | Remove butanol | Butanol flux: 378 g·m−2·h−1; water flux: 471 g·m−2·h−1 | [131] | |
Cu-BTC/CA membrane | Selectivity | Remove pesticides | The adsorption capacity of dimethoate: 282.3–321.9 mg/g | [132] | |
PDA/MOF-TFN membrane | Selectivity | Remove salt rejection and heavy metal ion removal | Salt reverse salt flux: about 3.5 gMH; removal rate of heavy metal ion (Cd2+, Ni2+ and Pb2+) > 94% | [134] | |
UiO-66-NH2 membrane | Selectivity | Mg2+ and Li+ separation in brine | Cation separations (Na+/Mg2+ > 200 and Li+/Mg2+ > 60) | [139] | |
PAN/PEI/MIL membrane | Selectivity | Remove insoluble emulsified oils | Removal rate of insoluble emulsified oils: 99% | [141] | |
GO@Al-MOF membrane | Stability | Remove dye | Congo red rejection rate: 99%; water permeability 51.6 L·m−2·h−1·bar−1 | [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Zhang, H.; Fan, Y.; Zhou, L.; Zhang, Z.; Li, P.; Li, Z.; Du, Y.; Meng, Q. Progressive Insights into Metal-Organic Frameworks and Metal-Organic Framework-Membrane Composite Systems for Wastewater Management. Molecules 2024, 29, 1615. https://doi.org/10.3390/molecules29071615
Han J, Zhang H, Fan Y, Zhou L, Zhang Z, Li P, Li Z, Du Y, Meng Q. Progressive Insights into Metal-Organic Frameworks and Metal-Organic Framework-Membrane Composite Systems for Wastewater Management. Molecules. 2024; 29(7):1615. https://doi.org/10.3390/molecules29071615
Chicago/Turabian StyleHan, Jilong, Hanya Zhang, Yuheng Fan, Lilong Zhou, Zhikun Zhang, Pengfei Li, Zhengjie Li, Yongsheng Du, and Qingfen Meng. 2024. "Progressive Insights into Metal-Organic Frameworks and Metal-Organic Framework-Membrane Composite Systems for Wastewater Management" Molecules 29, no. 7: 1615. https://doi.org/10.3390/molecules29071615
APA StyleHan, J., Zhang, H., Fan, Y., Zhou, L., Zhang, Z., Li, P., Li, Z., Du, Y., & Meng, Q. (2024). Progressive Insights into Metal-Organic Frameworks and Metal-Organic Framework-Membrane Composite Systems for Wastewater Management. Molecules, 29(7), 1615. https://doi.org/10.3390/molecules29071615