Microelectrode Voltammetric Analysis of Low Concentrations of Se(IV) Ions in Environmental Waters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preliminary Studies
2.2. Optimization Studies
2.2.1. The Effect of Supporting Electrolyte Composition
2.2.2. The Effect of Activation Conditions on the Electrode Performance
2.2.3. The Effect of Accumulation Conditions on the Electrode Performance
2.3. Analytical Figures of Merit
2.4. Stability of Measurements
2.5. Tolerance to Interfering Factors
2.6. Accuracy and Analytical Usefulness
3. Materials and Experimental Work
3.1. Apparatus and Instruments
3.2. Chemicals
3.3. Measurement Procedure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciba, J.; Trojanowska, J.; Zołotajkin, M. Mała Encyklopedia Pierwiastków; Wydawnictwo Naukowo-Techniczne: Warsaw, Poland, 1996. [Google Scholar]
- Bielański, A. Chemia Ogólna i Nieorganiczna, 6th ed.; Wydawnictwo PWN: Warsaw, Poland, 1981. [Google Scholar]
- Zachara, B.; Wąsowicz, W.; Gromadzińska, J.; Skłodowska, M. Stężenie selenu i aktywność peroksydazy glutationowej we krwi mieszkańców Łodzi i okolic, badania wstępne. Roczn. PZH 1983, 34, 359–368. [Google Scholar]
- Sunde, R.A. Selenium. In Present Knowledge in Nutrition, 9th ed.; Bowman, B., Ryssell, R., Eds.; International Life Science Institute: Washington, DC, USA, 2006; Volume 1, pp. 480–497. [Google Scholar]
- Sunde, R.A. Selenium. In Modern Nutrition in Health and Disease, 11th ed.; Ross, A.G., Caballero, B., Cousins, R.J., Tucker, K.L., Ziegler, T.R., Eds.; Wolters Kluwer Health Adis (ESP), Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; pp. 225–237. [Google Scholar]
- Brown, K.M.; Arthur, J.R. Selenium, selenoproteins and human health: A review. Public Health Nutr. 2001, 4, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Seńczuk, W. Toksykologia; Wydawnictwo Lekarskie PZWL: Warsaw, Poland, 1994. [Google Scholar]
- Wiąckowski, S.K. Próba Ekologicznej Oceny Żywienia, Żywności i Składników Pokarmowych; Wydawnictwo PWN: Warsaw, Poland, 1995. [Google Scholar]
- Carvalho, D.C.; Coelho, L.M.; Acevedo, M.S.M.S.F.; Coelho, N.M.M. The oligoelements. In Handbook of Mineral Elements in Food, 1st ed.; de la Guardia, M., Garrigues, S., Eds.; Wiley: Chichester, UK, 2015; pp. 109–122. [Google Scholar]
- Furowicz, A.J.; Czernomysy-Furowicz, D.; Dąbrowski, W. Właściwości biologiczne selenu i witaminy E. Cz. I. Selen. Med. Wet. 1993, 49, 304–306. [Google Scholar]
- Wawer, I.; Paradowska, K. Selenium Supplementation at the Time of COVID-19. Almanach 2020, 15, 69–75. [Google Scholar]
- Smrkolj, P.; Pograjc, L.; Hlastan-Ribić, C.; Stibilj, V. Selenium content in selected Slovenian foodstuffs and estimated daily intakes of selenium. Food Chem. 2005, 90, 691–697. [Google Scholar] [CrossRef]
- World Health Organization. Health criteria and other supporting information. In Guidelines for Drinking-Water Quality, 2nd ed.; World Health Organization: Geneva, Switzerland, 1996; Volume 2. [Google Scholar]
- Nikonorow, M.; Urbanek-Karłowska, B. Toksykologia Żywności; Wydawnictwo Lekarskie PZWL: Warsaw, Poland, 1987. [Google Scholar]
- Gawłoska, A.; Masłowska, J. Spektralne metody oznaczania śladowych ilości selenu w wodach naturalnych oraz sokach owocowych. Bromat. Chem. Toksykol. 2000, 33, 91–97. [Google Scholar]
- Zhang, J.; Taylor, E.T.; Kate Bennett, K.; Saad, R.; Rayman, M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr. 2020, 111, 1297–1299. [Google Scholar] [CrossRef]
- Bryce, D.W.; Izquierdo, A.; Castro, M.D. Flow-injection anodic stripping voltammetry at a gold electrode for selenium(IV) determination. Anal. Chim. Acta 1995, 308, 96–101. [Google Scholar] [CrossRef]
- Beni, V.; Collins, G.; Arrigan, D.W.M. Investigation into the voltammetric behaviour and detection of selenium(IV) at metal electrodes in diverse electrolyte media. Anal. Chim. Acta 2011, 699, 127–133. [Google Scholar] [CrossRef]
- Andrews, R.W.; Johnson, D.C. Voltammetric deposition and stripping of selenium(IV) at a rotating gold-disk electrode in 0.1 M perchloric acid. Anal. Chem. 1975, 47, 294–299. [Google Scholar] [CrossRef]
- do Nascimento, F.H.; Masini, J.C. An electrochemical sequential injection method to investigate the adsorption of selenite on Fe(III) polyhydroxy cations intercalated vermiculite. Water Sci. Technol. 2017, 1, 134–143. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, K.; Boyd, D.; Chi, H.; Smyth, R. Anodic stripping voltammetry of selenium(IV) at a gold fiber working electrode. Electroanalysis 1992, 4, 689–693. [Google Scholar] [CrossRef]
- Pereira, C.F.; Gonzaga, F.B.; Guaritá-Santos, A.M.; Souza De, J.R. Determination of Se(IV) by anodic stripping voltammetry using gold electrodes made from recordable CDs. Talanta 2006, 69, 877–881. [Google Scholar] [CrossRef]
- Tan, S.H.; Kounaves, S.P. Determination of selenium(IV) at a microfabricated gold ultramicroelectrode array using square wave anodic stripping voltammetry. Electroanalysis 1998, 10, 364–368. [Google Scholar] [CrossRef]
- Ochab, M.; Gęca, I.; Korolczuk, M. Determination of trace Se(IV) by anodic stripping voltammetry following double deposition and stripping steps. Talanta 2017, 165, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, A.A.; Mandil, H.; Shikh-Debes, A. Differential Pulse Anodic Stripping Voltammetric Analysis of Selenium (IV) at a Gold Electrode Modified with O-Phenylenediamine-Nafion. Res. J. Pharm. Technol. 2018, 11, 2030–2035. [Google Scholar] [CrossRef]
- Cai, Q.; Khoo, S.B. Poly(3,30-diaminobenzidine) film on a gold electrode for selective preconcentration and stripping analysis of selenium(IV). Anal. Chem. 1994, 66, 4543–4550. [Google Scholar] [CrossRef]
- Gęca, I.; Ochab, M.; Robak, A.; Mergo, P.; Korolczuk, P. Anodic stripping voltammetric determination of Se(IV) by means of a novel reusable gold microelectrodes array. Desalin. Water Treat. 2023, 286, 248–256. [Google Scholar] [CrossRef]
- Idris, A.O.; Mabuba, N.; Arotiba, O.A. Electroanalysis of selenium in water on an electrodeposited gold-nanoparticle modified glassy carbon electrode. J. Electroanal. Chem. 2015, 758, 7–11. [Google Scholar] [CrossRef]
- Segura, R.; Pizarro, J.; Díaz, K.; Placencio, A.; Godoy, F.; Pino, E.; Recio, F. Development of electrochemical sensors for the determination of selenium using gold nanoparticles modified electrodes. Sens. Actuators B 2015, 220, 263–269. [Google Scholar] [CrossRef]
- Wei, H.; Pan, D.; Cui, Y.; Liu, H.; Gao, G.; Xia, J. Anodic Stripping Determination of Selenium in Seawater Using an Electrode Modified with Gold Nanodendrites/Perforated Reduced Graphene Oxide. Int. J. Electrochem. Sci. 2020, 15, 1669–1680. [Google Scholar] [CrossRef]
- Idris, A.O.; Mabuba, N.; Nkosi, D.; Maxakato, N.; Arotiba, O.A. Electrochemical detection of selenium using glassy carbon electrode modified with reduced graphene oxide. Int. J. Environ. Anal. Chem. 2017, 97, 534–547. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Adamczyk, M. New Strategies for the Simple and Sensitive Voltammetric Direct Quantification of Se(IV) in Environmental Waters Employing Bismuth Film Modified Glassy Carbon Electrode and Amberlite Resin. Molecules 2021, 26, 4130. [Google Scholar] [CrossRef] [PubMed]
- Sharifian, P.; Aliakbar, A. Determination of Se(IV) as a 5-nitropiazselenol complex by adsorptive stripping voltammetry at an in situ plated bismuth film electrode. Anal. Methods 2015, 7, 4321–4327. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.; Shi, H.; Yuan, Z. Determination of trace selenium by differential pulse adsorptive stripping voltammetry at a bismuth film electrode. Electrochim. Acta 2010, 55, 4717–4721. [Google Scholar] [CrossRef]
- Stozhko, N.Y.; Morosanova, E.I.; Kolyadina, L.I.; Fomina, S.V. Ceramic composite electrode for the determination of selenium(IV) by stripping voltammetry. J. Anal. Chem. 2006, 61, 158–165. [Google Scholar] [CrossRef]
- Ishiyama, T.; Tanaka, T. Cathodic stripping voltammetry of selenium(IV) at a silver disk electrode. Anal. Chem. 1996, 68, 3789–3792. [Google Scholar] [CrossRef]
- Bas, B.; Jedlinska, K.; Wegiel, K. New electrochemical sensor with the renewable silver annular band working electrode: Fabrication and application for determination of selenium(IV) by cathodic stripping voltammetry. Electrochem. Commun. 2014, 49, 79–82. [Google Scholar] [CrossRef]
- Suznjevic, D.; Blagojevic, S.; Vidic, J.; Erceg, M.; Vucelic, D. Determination of selenium(IV) by cathodic stripping voltammetry using a copper microelectrode. Microchem. J. 1997, 57, 255–260. [Google Scholar]
- Bond, A.M. Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection. A review. Analyst 1994, 119, 1R–21R. [Google Scholar] [CrossRef]
- Gęca, I.; Korolczuk, M. Sensitive Determination of Folic Acid using a Solid Bismuth Microelectrode by Adsorptive Stripping Voltammetry. Electroanalysis 2020, 32, 496–502. [Google Scholar] [CrossRef]
- Gęca, I.; Ochab, M.; Korolczuk, M. Anodic Stripping Voltammetry of Tl(I) Determination with the Use of a Solid Bismuth Microelectrode. J. Electrochem. Soc. 2020, 167, 086506. [Google Scholar] [CrossRef]
- Adamczyk, M.; Grabarczyk, M.; Leszko, W. A voltammetric approach to the quantification of tungsten in environmental waters using a solid bismuth microelectrode. Measurement 2022, 194, 111089. [Google Scholar] [CrossRef]
- Adamczyk, M.; Grabarczyk, M. Application of a Solid Bismuth Microelectrode in an Adsorptive Stripping Voltammetric Procedure of Trace Tin Quantification. J. Electrochem. Soc. 2022, 169, 016515. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Wlazlowska, E. An Activated Bismuth Layer Formed In Situ on a Solid Bismuth Microelectrode for Electrochemical Sensitive Determination of Ga(III). Membranes 2022, 12, 1267. [Google Scholar] [CrossRef] [PubMed]
- Grabarczyk, M.; Koper, A. How to determine uranium faster and cheaper by adsorptive stripping voltammetry in water samples containing surface active compounds. Electroanalysis 2011, 23, 1442–1446. [Google Scholar] [CrossRef]
- Piech, R.; Kubiak, W.W. Determination of trace selenium on hanging copper amalgam drop electrode. Electrochim. Acta 2007, 53, 584–589. [Google Scholar] [CrossRef]
Electrode | Method | LOD (nmol L−1) | Linear Range (nmol L−1) | Accumulation Time (s) | Application | Ref. |
---|---|---|---|---|---|---|
BiF/GCE | DPAdSV | 0.63 | 25–633 | 90 | blood and urine samples | [33] |
BiµE | DPSV | 0.70 | 2–3000 | 50 | SPS-SW1 and TM-25.5 CRMs | This work |
BiF/GCE | SWASV | 0.80 | 3–3000 | 65 | SPS-SW1 and TM-25.5 CRMs, river, tap, mineral and rain water | [32] |
AuµEs | SWASV | 0.83 | 3–30 | 180 | SPS-SW1 and TM-25.5 CRMs | [27] |
AuµEs and AuE | SWASV | 0.85 | 5–100 | 300 | SPS-SW1 CRM | [24] |
BiF/GCE | DPAdSV | 1.30 | 25–380 | 300 | real water samples | [34] |
Au UMEs | SWASV | 5.30 | 10–1266.5 | - | - | [23] |
CuµE | SWCSV | - | 5000–50,000 | 15 | - | [38] |
Certified Reference Material | Experimental Value ± SD (n = 3) [µg L−1] | Certified Value ± SD (n = 3) [µg L−1] |
---|---|---|
SPS SW-1 | 2.16 ± 0.14 | 2.00 ± 0.02 |
TM-25.5 | 28.1 ± 3.3 | 29.2 ± 3.5 |
Sample | Se(IV) Added [nmol L−1] | Se(IV) Determined [nmol L−1] | Recovery [%] | RSD (n = 3) [%] |
---|---|---|---|---|
Tap water | 0.0 | 0.0 | - | - |
50.0 | 48.7 | 97.4 | 4.4 | |
100.0 | 91.5 | 91.5 | 6.8 | |
Mineral water | 0.0 | 0.0 | - | - |
50.0 | 46.3 | 92.6 | 5.2 | |
100.0 | 93.9 | 93.9 | 6.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabarczyk, M.; Fialek, M. Microelectrode Voltammetric Analysis of Low Concentrations of Se(IV) Ions in Environmental Waters. Molecules 2024, 29, 1583. https://doi.org/10.3390/molecules29071583
Grabarczyk M, Fialek M. Microelectrode Voltammetric Analysis of Low Concentrations of Se(IV) Ions in Environmental Waters. Molecules. 2024; 29(7):1583. https://doi.org/10.3390/molecules29071583
Chicago/Turabian StyleGrabarczyk, Malgorzata, and Marzena Fialek. 2024. "Microelectrode Voltammetric Analysis of Low Concentrations of Se(IV) Ions in Environmental Waters" Molecules 29, no. 7: 1583. https://doi.org/10.3390/molecules29071583
APA StyleGrabarczyk, M., & Fialek, M. (2024). Microelectrode Voltammetric Analysis of Low Concentrations of Se(IV) Ions in Environmental Waters. Molecules, 29(7), 1583. https://doi.org/10.3390/molecules29071583