The Impact of Glycolysis and Its Inhibitors on the Immune Response to Inflammation and Autoimmunity
Abstract
:1. Introduction
2. Metabolic Reprogramming of T Cells during Immune Responses
3. Metabolic Reprogramming of B Cells during Immune Responses
4. Metabolic Reprogramming of Macrophages during Immune Responses
5. Metabolic Reprogramming of Dendritic Cells during Immune Responses
6. Hyper-Inflammatory Response—The Potential of Glycolysis Inhibition
7. 2-Deoxy-D-glucose as an Anti-Inflammatory Agent
7.1. The Importance of 2-Deoxy-D-glucose Interreference with Protein Glycosylation
7.2. 2-Deoxy-2-(18F)fluoro-D-glucose (18FDG) as a Tracker for Inflammation and Infection
8. 2-DG as a Drug-Candidate
Novel 2-DG Analogs and Their Potential for Immunomodulatory Applications
9. Other Glycolysis Inhibitors and Their Anti-Inflammatory Potential
9.1. 4-Octyl Itaconate
9.2. (E)-1-(Pyridin-4-yl)-3-(quinolin-2-yl)prop-2-en-1-one (PFK15)
9.3. 3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO)
9.4. Dichloroacetate (DCA)
9.5. 3-Bromopyruvate (BrPA)
9.6. Small Molecules Inhibitors of GLUTs
9.7. Koningic Acid (Heptelidic Acid)
10. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mookerjee, S.A.; Gerencser, A.A.; Nicholls, D.G.; Brand, M.D. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J. Biol. Chem. 2017, 292, 7189–7207. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Zhang, B.; Lin, X.; Fu, X.; An, Y.; Zou, Y.; Wang, J.X.; Wang, Z.; Yu, T. Lactate metabolism in human health and disease. Signal Tranduct. Target. Ther. 2022, 7, 305. [Google Scholar] [CrossRef] [PubMed]
- Akram, M. Mini-review on glycolysis and cancer. J. Cancer Educ. 2013, 28, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Zhang, W.; Zhang, J.; Zhang, J.; Zhang, H.; Zhu, Y.; Meng, X.; Yi, Z.; Wang, R. Influenza A virus (H1N1) infection induces glycolysis to facilitate viral replication. Virol. Sin. 2021, 36, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- Soto-Heredero, G.; Gomez de las Heras, M.M.; Gabande-Rodriguez, E.; Oller, J.; Mittelbrunn, M. Glycolysis—A key player in the inflammatory response. FEBS J. 2020, 287, 3347–3602. [Google Scholar] [CrossRef] [PubMed]
- Bishop, E.L.; Gudgeon, N.; Dimeloe, S. Control of T cell metabolism by cytokines and hormones. Front. Immunol. 2021, 12, 653605. [Google Scholar] [CrossRef]
- Spolski, R.; Gromer, D.; Leonard, W.J. The yc family of cytokines: Fine-tuning signals from IL-2 and IL-21 in the regulation of the immune response. F1000Research 2017, 6, 1872. [Google Scholar] [CrossRef]
- Van der Windt, G.J.W.; Pearce, E.L. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 2012, 249, 27–42. [Google Scholar] [CrossRef]
- Tao, J.H.; Barbi, J.; Pan, F. Hypoxia-inducible factors in T lymphocyte differentiation and function. A review in the there: Cellular responses to hypoxia. Am. J. Physiol. Cell. Physiol. 2015, 309, C580–C589. [Google Scholar] [CrossRef]
- Sinclair, L.V.; Rolf, J.; Emslie, E.; Shi, Y.B.; Taylor, P.M.; Cantrell, D.A. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 2013, 14, 500–508. [Google Scholar] [CrossRef]
- Blagih, J.; Coulombe, F.; Vincent, E.E.; Dupuy, F.; Galicia-Vazquez, G.; Yurchenko, E.; Raissi, T.C.; van der Windt, G.J.W.; Viollet, B.; Pearce, E.L.; et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 2015, 42, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Chi, H. Metabolic control of Treg cell stability, plasticity, and tissue-specific heterogeneity. Front. Immunol. 2019, 10, 2716. [Google Scholar] [CrossRef] [PubMed]
- Cluxton, D.; Petrasca, A.; Moran, B.; Fletcher, J.M. Differential regulation of human Treg and Th17 cells by fatty acid synthesis and glycolysis. Front. Immunol. 2019, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Tian, T.; Park, C.O.; Lofftus, S.Y.; Mei, S.; Liu, X.; Luo, C.; O’Malley, J.T.; Gehad, A.; Teague, J.E.; et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 2017, 543, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Geltink, R.I.K.; Kyle, R.L.; Pearce, E.L. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 2018, 36, 461–488. [Google Scholar] [CrossRef] [PubMed]
- Vivas-Garcia, Y.; Efeyan, A. The metabolic plasticity of B cells. Front. Mol. Biosci. 2022, 9, 991188. [Google Scholar] [CrossRef] [PubMed]
- Caro-Maldonado, A.; Wang, R.; Nichols, A.G.; Kuraoka, M.; Milasta, S.; Sun, L.D.; Gavin, A.L.; Abel, E.D.; Kelsoe, G.; Green, D.R.; et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol. 2014, 192, 3626–3636. [Google Scholar] [CrossRef]
- Skiraz, A.K.; Panther, E.J.; Reilly, C.M. Altered germinal-center metabolism in B cells in autoimmunity. Metabolites 2022, 12, 40. [Google Scholar]
- Viola, A.; Munari, F.; Sanchez-Rodriguez, R.; Scolaro, T.; Castegna, A. The metabolic signature of macrophage responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef]
- Rodriguez-Prados, J.C.; Traves, P.G.; Cuenca, J.; Roco, D.; Aragones, J.; Martin-Sanz, P.; Cascante, M.; Bosca, L. Substrate fate in activated macrophages: A comparison between innate, classic, and alternative activation. J. Immunol. 2010, 185, 605–6134. [Google Scholar] [CrossRef]
- Palsson-McDermott, E.M.; Curtis, A.M.; Goel, G.; Lauterbach, M.A.R.; Sheedy, F.J.; Gleeson, L.E.; van den Bosch, M.W.M.; Quinn, S.R.; Domingo-Fernandez, R.; Johnson, D.G.W.; et al. Pyruvate kinase M2 regulates Hif-1a activity and IL-1b induction, and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 2015, 21, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.X.; Xu, X.H.; Jin, L. Effects of metabolism on macrophage polarization under different backgrounds. Front. Immunol. 2022, 13, 8800286. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.; O’Neill, L.A.J. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015, 25, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Wculek, S.K.; Khouili, S.C.; Priego, E.; Heras-Murillo, I.; Sancho, D. Metabolic control of dendritic cell functions: Digesting information. Front. Immunol. 2019, 10, 00775. [Google Scholar] [CrossRef] [PubMed]
- Adamik, J.; Munson, P.V.; Hartmann, F.J.; Combes, A.J.; Pierre, P.; Krummel, M.F.; Bendall, S.C.; Arguello, R.J.; Butterfield, L.H. Distinct metabolic states guide maturation of inflammatory and tolerogenic dendritic cells. Nat. Commun. 2022, 13, 5184. [Google Scholar] [CrossRef] [PubMed]
- Patente, T.A.; Pelgrom, L.R.; Everts, B. Dendritic cells are what they eat: How their metabolism shapes T helper cells polarization. Curr. Opin. Immunol. 2019, 58, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Moller, S.H.; Wang, L.; Ho, P.C. Metabolic programming in dendritic cells tailor immune response and homeostasis. Cell. Mol. Immunol. 2022, 19, 370–383. [Google Scholar] [CrossRef]
- Lawless, S.J.; Kedia-Mehta, N.; Walls, J.F.; McGarrigle, R.; Convery, O.; Sinclair, L.V.; Navarro, M.N.; Murray, J.; Finlay, D.K. Glucose repress dendritic cell-induced T cell responses. Nat. Commun. 2017, 8, 15620. [Google Scholar] [CrossRef]
- Rezaei, R.; Tahmasebi, S.; Atashzar, M.R.; Amani, D. Glycolysis and autoimmune diseases: A growing relationship. Biochemistry 2020, 14, 91–106. [Google Scholar] [CrossRef]
- Zhang, P.; Pan, S.; Yuan, S.; Shang, Y.; Shu, H. Abnormal glucose metabolism in virus associated sepsis. Front. Cell. Infect. Microbiol. 2023, 13, 1120769. [Google Scholar] [CrossRef]
- Pająk, B.; Siwiak, E.; Sołtyka, M.; Priebe, A.; Zieliński, R.; Fokt, I.; Ziemniak, M.; Jaśkiewicz, A.; Borowski, R.; Domoradzki, T.; et al. 2-deoxy-D-glucose and its analogs: From diagnostic to therapeutic agents. Int. J. Mol. Sci. 2020, 21, 234. [Google Scholar] [CrossRef]
- Pająk, B.; Zieliński, R.; Manning, J.T.; Matejin, S.; Paessler, S.; Fokt, I.; Emmett, M.R.; Priebe, W. The antiviral effects of 2-deoxy-D-glucose (2-DG), a dual D-glucose and D-mannose mimetic, against SARS-CoV-2 and other highly pathogenic viruses. Molecules 2022, 27, 5928. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Chu, Z.; Zhu, L.; Yang, T.; Wang, P.; Liu, F.; Huang, Y.; Zhang, F.; Zhang, X.; Ding, W.; et al. 2-deoxy-D-glucose treatment decreases anti-inflammatory M2 macrophages polarization in mice with tumor and allergic airway inflammation. Front. Immunol. 2017, 8, 637. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Cheng, J.; Zong, S.; Yu, Y.; Wang, Y.; Song, Y.; He, R.; Yuan, S.; Chen, T.; Hu, M.; et al. The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner. Mol. Immunol. 2021, 140, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, S.; Vuckovic, I.; Jeon, R.; Lerman, A.; Folmes, C.D.; Dzeja, P.P.; Herrmann, J. Glycolytic stimulation in not required for M2 macrophage differentiation. Cell Metab. 2018, 28, 463–475.e4. [Google Scholar] [CrossRef] [PubMed]
- Ząbczyńska, M.; Pocheć, E. The role of protein glycosylation in immune system. Postepy Biochem. 2015, 61, 129–137. [Google Scholar] [PubMed]
- Krautter, F.; Iqbal, A.J. Glycans and glycan-binding proteins as regulators and potential targets in leukocyte recruitment. Front. Cell. Dev. Biol. 2021, 9, 624082. [Google Scholar] [CrossRef]
- Dewald, J.H.; Colomb, F.; Bobowski-Gerard, M.; Groux-Degroote, S.; Delannoy, P. Role of cytokine-induced glycosylation changes in regulating cell interactions and cell signaling in inflammatory diseases and cancer. Cells 2016, 5, 43. [Google Scholar] [CrossRef]
- Van Dijk, W.; Mackiewicz, A. Interleukin-6-type cytokine-induced changes in acute phase protein glycosylation. Ann. N. Y. Acad. Sci. 1995, 762, 319–330. [Google Scholar] [CrossRef]
- Radovani, B.; Gudelj, I. N-glycosylation and inflammation: The not-so-sweet relation. Front. Immunol. 2022, 13, 893365. [Google Scholar] [CrossRef]
- Canvin, J.M.; el-Gabalawy, H.S. Anti-inflammatory therapy. Phys. Med. Rehabil. Clin. N. Am. 1999, 10, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Uehara, I.; Kajita, M.; Tanimura, A.; Hida, S.; Onda, M.; Naito, Z.; Taki, S.; Tanaka, N. 2-deoxy-D-glucose induces deglycosylation of proinflammatory cytokine receptors and strongly reduces immunological responses in mouse models of inflammation. Pharmacol. Res. Perspect. 2022, 10, e00940. [Google Scholar] [CrossRef] [PubMed]
- Castelnovo, L.; Tamburello, A.; Lurati, A.; Zaccara, E.; Marrazza, M.G.; Olivetti, M.; Mumoli, N.; Mastroiacovo, D.; Colombo, D.; Ricchiuti, E.; et al. Anti-IL6 treatment of serious COVID-19 disease: A monocentric retrospective experience. Medicine 2021, 100, e23582. [Google Scholar] [CrossRef] [PubMed]
- Sambuceti, G.; Cossu, V.; Bauckneht, M.; Morbelli, S.; Orengo, A.; Carta, S.; Ravera, S.; Bruno, S.; Marini, C. 18F-fluoro-2-deoxy-d-glucose (FDG) uptake. What are we looking at? Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.; Townsend, D. History and future technical innovation in positron emission tomography. J. Med. Imaging 2017, 4, 011013. [Google Scholar] [CrossRef] [PubMed]
- Jamar, F.; Buscombe, J.; Chiti, A.; Christian, P.E.; Delbeke, D.; Donohoe, K.J.; Israel, O.; Martin-Comin, J.; Signore, A. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J. Nucl. Med. 2013, 54, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Keijsers, R.G.M.; Grutters, J.C. In which patients with sarcoidosis is FDG PET/CT indicated? J. Clin. Med. 2020, 9, 890. [Google Scholar] [CrossRef] [PubMed]
- Hulsen, D.J.W.; Mitea, C.; Arts, J.J.; Loeffen, D.; Geurts, J. Diagnostic value of hybrid FDG-PET/MR imaging of chronic osteomyelitis. Eur. J. Hybrid Imaging 2022, 6, 15. [Google Scholar] [CrossRef]
- Minamimoto, R. Optimal use of the FDG-PET/CT in the diagnostic process of fever of unknown origin (FUO): A comprehensive review. Jpn. J. Radiol. 2022, 40, 1121–1137. [Google Scholar] [CrossRef]
- Hess, S. [18F]FDG-PET/CT in patients with bacteremia: Clinical impact on patient management and outcome. Front. Med. 2023, 10, 1157692. [Google Scholar] [CrossRef]
- Vaidyanathan, S.; Chattopadhyay, A.; Mackie, S.L.; Scarsbrook, A.F. Comparative effectiveness of 18F-FDG PET-CT and contrast-enhanced CT in the diagnosis of suspected large-vessel vasculitis. Br. J. Radiol. 2018, 91, 20180247. [Google Scholar] [CrossRef] [PubMed]
- Albano, D.; Bosio, G.; Bertagna, F. 18F-FDG PET/CT demonstrated renal and hepatic cyst infection in a patient with autosomal dominant polycystic kidney disease. Nucl. Med. Rev. 2016, 19 (Suppl. B), B26–B28. [Google Scholar] [CrossRef] [PubMed]
- Van Roeden, S.; Hartog, H.; Boners, V.; Thijsen, S.; Sankatsing, S. 18F-FDG-PET scanning confirmed infected intracardiac device-leads with Abiotrophia defective. Case Rep. Cardiol. 2016, 2016, 6283581. [Google Scholar] [PubMed]
- Tatar, G.; Cermik, T.F.; Alcin, G.; Fenercioglu, O.E.; Inci, A.; Beyhan, E.; Ergul, N. Contribution of 18F-FDG PET/CT imaging in the diagnosis and management of HIV-positive patients. Rev. Española Med. Nucl. E Imagen Mol. 2022, 41, 275–283. [Google Scholar] [CrossRef]
- Harkirat, S.; Anana, S.S.; Indrajit, L.K.; Dash, A.K. Pictorial essay: PET/CT in tuberculosis. Indian J. Radiol. Imaging 2008, 18, 141–147. [Google Scholar] [CrossRef]
- Altini, C.; Lavelli, V.; Ruta, R.; Ferrari, C.; Nappi, A.G.; Pisani, A.; Sardaro, A.; Rubini, G. Typical and atypical PET/CT findings in non-cancerous conditions. Hell. J. Nucl. Med. 2020, 23, 48–59. [Google Scholar]
- Park, P.S.U.; Resto, D.A.; Khurana, N.; Raynor, W.Y.; Werner, T.J.; Hoilund-Carlsen, P.F.; Alvi, A. The utility of 18F-NaF-positron emission tomography/computed tomography in measurement the metabolic activity of the aging spine: Implications for osteoporosis. Spine 2023, 48, 1064–1071. [Google Scholar] [CrossRef]
- Lafford, H.W.; Stewart, E.E.; Koslowsky, I.L.; Rabin, H.R.; Kloiber, R. The routine clinical use of fluorodeoxyglucose PET/CT to confirm treatment response in pyogenic spine infection. Skelet. Radiol. 2023, 53, 161–170. [Google Scholar] [CrossRef]
- Otsuka, H.; Morita, N.; Yamashita, K.; Nishitani, H. FDG-PET/CT findings of autoimmune pncreatitis associated with idiopathic retroperitoneal fibrosis. Ann. Nucl. Med. 2007, 21, 593–596. [Google Scholar] [CrossRef]
- Cheng, Y.; Diao, D.; Zhang, H.; Guo, Q.; Wu, X.; Song, Y.; Dang, C. High glucose-induced resistance to 5-fluorouracil in pancreatic cancer cells alleviated by 2-deoxy-d-glucose. Biomed. Rep. 2014, 2, 188–192. [Google Scholar] [CrossRef]
- Bhatt, A.N.; Shenoy, S.; Munjal, S.; Chinnadurai, V.; Agarwal, A.; Kumar, A.V.; Shanavas, A.; Kanwar, R.; Chandna, S. 2-deoxy-D-glucose as an adjunct to standard of care in the medical management of COVID-19: A proof of concept and dose-ranging randomized phase II clinical trial. BMC Infect. Dis. 2022, 22, 669. [Google Scholar] [CrossRef] [PubMed]
- Hansen, I.L.; Levy, M.M.; Kerr, D.S. The 2-deoxyglucose test a supplement to fasting for detection of childhood hypoglycemia. Pediatr. Res. 1984, 18, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Strandberg, A.Y.; Pienimaki, T.; Pitkala, K.H.; Tilvis, R.S.; Salomaa, V.V.; Strandberg, T.E. Comparison of normal fsting and one-hour glucose levels as predictors of future diabetes during a 34-year follow-up. Ann. Med. 2013, 45, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.; Lin, H.; Jeyamohan, C.; Dvorzhinski, D.; Gounder, M.; Bray, K.; Eddy, S.; Goodin, S.; White, E.; Dipaola, R.S. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate 2010, 70, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Raez, L.E.; Papadopoulos, K.; Ricart, A.D.; Chiorean, E.G.; Dipaola, R.S.; Stein, M.N.; Rocha Lima, C.M.; Schlesselman, J.J.; Tolba, K.; Langmuir, V.K.; et al. A phase I dose-escalation trial of 2-deoxy-d-glucose alone or combined with docetaxel in patients with advanced solid tumors. Cancer Chemother. Pharmacol. 2013, 71, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Churchill, G.C.; Strupp, M.; Factor, C.; Bremova-Ertl, T.; Factor, M.; Patterson, M.C.; Platt, F.M.; Galione, A. Acetylation turns leucin into a drug by membrane transporter switching. Sci. Rep. 2021, 11, 15812. [Google Scholar] [CrossRef] [PubMed]
- Fokt, I.; Cybulski, M.; Skóra, S.; Pająk, B.; Ziemniak, M.; Woźniak, K.; Zieliński, R.; Priebe, W. D-glucose and D-mannose-based antimetabolities. Part 4: Facile synthesis of mono- and di-acetates of 2-deoxy-D-glucose prodrugs as potent useful antimetabolities. Carbohydr. Res. 2023, 531, 108861. [Google Scholar] [CrossRef]
- Priebe, W.; Zielinski, R.; Fokt, I.; Felix, E.; Radjendirane, V.; Armugam, J.; Khuong, M.T.; Krasinski, M.; Skora, S. Design and evaluation of WP1122, an inhibitor of glycolysis with increased CNS uptake. Neuro Oncol. 2018, 20 (Suppl. 6), vi86. [Google Scholar] [CrossRef]
- Keith, M.; Zielinski, R.; Walker, C.M.; Le Roux, L.; Priebe, W.; Bankson, J.A.; Schellingerhout, D. Hyperpolarized pyruvate MR spectroscopy depicts glycolytic inhibition in a mouse model of glioma. Radiology 2019, 293, 168–173. [Google Scholar]
- Pająk, B.; Siwiak-Niedbalska, E.; Jaśkiewicz, A.; Sołtyka, M.; Zielinski, R.; Domoradzki, T.; Fokt, I.; Skóra, S.; Priebe, W. Synergistic anticancer effect of glycolysis and histone deacetylases inhibitors in a glioblastoma model. Biomedicines 2021, 9, 1749. [Google Scholar] [CrossRef]
- Liao, S.T.; Xu, D.Q.; Fu, X.W.; Wang, J.S.; Kong, L.Y. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat. Commun. 2019, 10, 5091. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.L.; Ryan, D.G.; Prag, H.A.; Dikovskaya, D.; Menon, D.; Zaslona, Z.; Jedrychowski, M.P.; Costa, A.S.H.; Higgins, M.; Hams, E.; et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 2018, 556, 113–117. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, L.; Cao, L.; Zhang, J.; Wang, W.; Ma, X. 4-Octyl itaconate inhibits T cells’ proliferation and aerobic glycolysis to prevent immune over activation. Transplantation 2022, 106, PS160. [Google Scholar] [CrossRef]
- Shi, L.; Pan, H.; Liu, Z.; Xie, J.; Han, W. Roles of PFKFB3 in cancer. Signal Transduct. Target. Ther. 2017, 2, 17044. [Google Scholar] [CrossRef] [PubMed]
- Zlacka, J.; Murar, M.; Addova, G.; Moravcik, R.; Bohac, A.; Zeman, M. Synthesis of glycolysis inhibitor PFK15 and its synergistic action with an approved multikinase antiangiogenic drug on human endothelial cell migration and proliferation. Int. J. Mol. Sci. 2022, 23, 14295. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, J.; Yu, P.; Wang, H.; Ye, Z.; Tian, J. PFK15, a small molecule inhibitor of PFKFB3, induces cell cycle arrest, apoptosis and inhibits invasion in gastric cancer. PLoS ONE 2016, 11, e0163768. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.P.; New, L.A.; O’Connor, E.C.; Previte, D.M.; Cargill, K.R.; Tse, I.L.; Sims-Lucas, S.; Piganelli, J.D. Glycolysis Inhibition Induces Functional and Metabolic Exhaustion of CD4+ T Cells in Type 1 Diabetes. Front. Immunol. 2021, 12, 669456. [Google Scholar] [CrossRef]
- Mangal, J.L.; Inamdar, S.; Le, T.; Shi, X.; Curtis, M.; Gu, H.; Acharya, A.P. Inhibition of glycolysis in the presence of antigen generates suppressive antigen-specific responses and restrains rheumatoid arthritis in mice. Biomaterials 2021, 277, 121079. [Google Scholar] [CrossRef]
- Zhou, Z.; Plug, L.G.; Patente, T.A.; de Jonge-Muller, E.S.M.; Elmagd, A.A.; van der Muelen-de Jong, A.E.; Everts, B.; Barnhoorn, M.C.; Hawinkels, L.J.A.C. Increased stromal PFKFB3-mediated glycolysis in inflammatory bowel disease contributes to intestinal inflammation. Front. Immunol. 2022, 13, 966067. [Google Scholar] [CrossRef]
- Clinical Trials. Available online: https://www.clinicaltrials.gov/study/NCT02044861?intr=PFK-158&rank=1&tab=table (accessed on 6 February 2024).
- Clem, B.; Telang, S.; Clem, A.; Yalcin, A.; Meier, J.; Simmons, A.; Rasku, M.A.; Arumugam, S.; Dean, W.L.; Eaton, J.; et al. Small-molecule inhibition of 6-fructoso-2-kinase activity suppresses glycolytic flux and tumor growth. Mol. Cancer Ther. 2008, 7, 110–120. [Google Scholar] [CrossRef]
- Kotowski, K.; Supplitt, S.; Wiczew, D.; Przystupski, D.; Bartosik, W.; Saczko, J.; Rossowska, J.; Drąg-Zalesińska, M.; Michel, O.; Kulbacka, J. 3PO as a selective inhibitor of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 in A375 human melanoma cells. Anticancer Res. 2020, 40, 2613–2625. [Google Scholar] [CrossRef]
- Clem, B.; O’Neal, J.; Tapolsky, G.; Clem, A.L.; Imbert-Fernandez, Y.; Kerr, D.A.; Klarer, A.C.; Redman, R.; Miller, D.M.; Trent, J.O.; et al. Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol. Cancer Ther. 2013, 12, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Lan, H.; Yu, Z.; Wang, M.; Wang, S.; Chen, Y.; Rao, H.; Li, J.; Sheng, Z.; Shao, J. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells. Biochem. Biophys. Res. Commun. 2017, 491, 522–529. [Google Scholar] [CrossRef] [PubMed]
- McGarry, T.; Biniecka, M.; Gao, W.; Veale, D.J.; Fearon, U. Reprogramming of metabolic pathways inhibits TLR2-induced inflammation in ra. Ann. Rheum. Dis. 2016, 75, A3. [Google Scholar] [CrossRef]
- Keating, S.; Groh, L.; Thiem, K.; Bekkering, S.; Li, Y.; Matzaraki, V.; van der Heiden, C.D.C.C.; van Puffelen, J.H.; Lachmandas, E.; Jansen, T.; et al. Rewiring of glucose metabolism defines trained immunity induced by oxidized low-density lipoprotein. J. Mol. Med. 2020, 98, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Tawakol, A.; Singh, P.; Mojena, M.; Pimentel-Santillana, M.; Emami, H.; MacNabb, M.; Rudd, J.H.F.; Narula, J.; Enriquez, J.A.; Traves, P.G.; et al. HIF-1a and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Biniecka, M.; Canavan, M.; Teck, C.; Gao, W.; Smith, T.; McGarry, T.; Veale, D.J.; Fearon, U. Abstract No: 2134: Metabolic reprogramming in the inflamed joint inhibits proinflammatory mechanisms. In Proceedings of the 2015 ACR/ARHP Annual Meeting, San Francisco, CA, USA, 6–11 November 2015. [Google Scholar]
- Wik, J.A.; Lundback, P.; la Cour Poulsen, L.; Haraldsen, G.; Skalhegg, B.S.; Hol, J. 3PO inhibits inflammatory NFkB and stress-activated kinase signaling in primary human endothelial cells independently of its target PFKFB3. PLoS ONE 2020, 15, e0229395. [Google Scholar] [CrossRef] [PubMed]
- Veseli, B.E.; Perrotta, P.; Wielendaele, P.; Lambeir, A.M.; Abdali, A.; Bellosta, S.; Monaco, G.; Bultynck, G.; Martinet, W.; De Meyer, G.R.Y. Small molecules 3PO inhibits glycolysis but does not bind to 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3). FEBS Lett. 2020, 594, 3067–3075. [Google Scholar] [CrossRef]
- Sanchez, W.Y.; McGee, S.L.; Connor, T.; Mottram, B.; Wilkinson, A.; Whitehead, J.P.; Vucovic, S.; Catley, L. Dichloroactate inhibits aerobic glycolysis in multiple myeloma cells and increases sensitivity to bortezomib. Br. J. Cancer 2013, 108, 1624–1633. [Google Scholar] [CrossRef]
- Blackshear, P.J.; Fang, L.S.; Axelrod, L. Treatment of severe lactic acidosis with dichloroacetate. Diabetes Care 1982, 5, 391–394. [Google Scholar] [CrossRef]
- Bian, L.; Josefsson, E.; Jonsson, I.M.; Verdrengh, M.; Ohlsson, C.; Bokarewa, M.; Tarkowski, A.; Magnusson, M. Dichloroacetate alleviates development of collagen II-induced arthritis in female DBA/1 mice. Arthritis Res. Ther. 2009, 11, R132. [Google Scholar] [CrossRef] [PubMed]
- Mainali, R.; Zabalawi, M.; Long, D.; Buechler, N.; Quillen, E.; Key, C.C.; Zhu, X.; Parks, J.S.; Furdui, C.; Stacpoole, P.W.; et al. Dichloroacetate reverses sepsis-induced hepatic metabolic dysfunction. eLife 2021, 10, e64611. [Google Scholar] [CrossRef] [PubMed]
- Min, B.K.; Oh, C.J.; Park, S.; Lee, J.M.; Go, Y.; Park, B.Y.; Kang, H.J.; Kim, D.W.; Kim, J.E.; Yoo, E.K.; et al. Therapeutic effect of dichloroacetate against atherosclerosis via hepatic FGF21 induction mediated by acute AMPK activation. Exp. Mol. Med. 2019, 51, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Cong, Y. Metabolic fire-up T cell induction of intestinal inflammation. Cell. Mol. Gastroenterol. Hepatol. 2023, 15, 509–510. [Google Scholar] [CrossRef] [PubMed]
- Tataranni, T.; Piccoli, C. Dichloroacetate (DCA) and cancer: An overview towards clinical applications. Oxid. Med. Cell. Longev. 2019, 2019, 8201079. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shang, P.; Cheng, C.; Wang, D.; Yang, P.; Zhang, F.; Li, T.; Lu, A.; Zhao, Y. Novel N-phenyl dichloroacetamide derivatives as anticancer reagents: Design, synthesis and biological evaluation. Eur. J. Med. Chem. 2010, 45, 4300–4306. [Google Scholar] [CrossRef] [PubMed]
- Fereidoonnezhad, M.; Hossein Tabaei, S.M.; Sakhteman, A.; Seradj, H.; Faghih, Z.; Faghih, Z.; Mojaddami, A.; Sadeghian, B.; Rezaei, Z. Design, synthesis, molecular docking, biological evaluations and QSAR studies of novel dichloroacetate analogues as anticancer agent. J. Mol. Struct. 2020, 1221, 128689. [Google Scholar] [CrossRef]
- Salah, M.E.S.; Walaa, G.M.; Minnat-Allah, H.S.; Al-Shimaa, A.A.; Asmaa, G.M.; Wael, H.A.; Manal, M.H.N.; Ahmed, R.H.; Nagwa, S.A.; Ali, A.R.A.A. Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: A concise literature review and case study. Chin. J. Cancer 2014, 33, 356–364. [Google Scholar]
- Danayu, D.; Chan, L.; Mengyao, Q.; Xiao, Z.; Tao, X.; Shengtao, Y.; Haiping, H.; Jing, X. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm. Sin. B 2022, 12, 558–580. [Google Scholar]
- Okano, T.; Saegusa, J.; Naishimura, K.; Takahashi, S.; Sendo, S.; Ueda, Y.; Morinobu, A. 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation. Sci. Rep. 2017, 10, 42412. [Google Scholar] [CrossRef]
- Chen, Z.; Vaeth, M.; Eckstein, M.; Delgobo, M.; Ramos, G.; Frantz, S.; Hofmann, U.; Gladow, N. Characterization of the effect of the GLUT-1 inhibitor BAY-876 on T cells and macrophages. Eur. J. Pharmacol. 2023, 945, 175552. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Qu, G.; Choi, S.C.; Cornaby, C.; Titiv, A.; Kanda, N.; Teng, X.; Wang, H.; Morel, L. Targeting T cell activation and lupus autoimmune phenotypes by inhibiting glucose transporters. Front. Immunol. 2019, 10, 833. [Google Scholar] [CrossRef] [PubMed]
- Di Dedda, C.; Vignali, D.; Piemonti, L.; Monti, P. Pharmacological targeting of GLUT1 to control autoreactive T cell response. Int. J. Mol. Sci. 2019, 20, 4962. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Sakai, K.; Endo, A. Koningic acid (heptalidic acid) inhibition of glyceraldehyde-3-phosphate dehydrogenases from various sources. Biochim. Biophys. Acta 1992, 1120, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Galvan-Pena, S.; Carroll, R.G.; Newman, C.; Hinchy, E.C.; Palsson-McDermott, E.; Robinson, E.K.; Covarrubias, S.; Nadin, A.; James, A.M.; Haneklaus, M.; et al. Malonylation of GAPDH is an inflammatory signal in macrophages. Nat. Commun. 2019, 10, 338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yuan, Z.; Li, X.; Wang, F.; Wei, X.; Kang, Y.; Mo, C.; Jiang, J.; Liang, H.; Ye, L. Metabolism of M1 Mϕ in HIV-1 infection. Life Sci. Alliance 2023, 6, e202302148. [Google Scholar] [CrossRef] [PubMed]
- Konishi, H.; Murakami, Y.; Helmke, E.; Lerot, J.M.A.; Satake, N. Probiotic-derived heptelidic acid demonstrates therapeutic efficacy against pediatric B-cell acute lymphoblastic leukemia. Blood 2023, 142 (Suppl. 1), 1433. [Google Scholar] [CrossRef]
- Isozaki, S.; Konishi, H.; Tanaka, H.; Yamamura, C.; Moriichi, K.; Ogawa, N.; Fujiya, M. Probiotic-derived heptelidic acid exerts antitumor effects on extraintestinal melanoma through glyceraldehyde-3-phosphate dehydrogenase activity control. BMC Microbiol. 2022, 22, 110. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Yuan, X.; Sui, R.; Falahati, M. Evaluation of heptelidic acid as a potential inhibitor for tau aggregation-induced Alzheimer’s disease and associated neurotoxicity. Int. J. Biol. Macromol. 2021, 183, 1155–1161. [Google Scholar] [CrossRef]
Inhibitor | Intracellular Target | Biological Action | Refs. |
---|---|---|---|
BAY-876 | GLUTs | ↓ CD4+ T cells ↓ macrophages | [103] |
CD-5 | GLUTs | ↓ CD4+ T cells ↓ Th1 and TH17 polarization ↑ Treg differentiation | [104,105] |
2-DG | Hexokinase | ↓ Macrophages polarization (asthma model and chitin-induced inflammation) ↓ Peritoneal macrophages (adjuvant arthritis model) ↓ IL-6 signaling pathway (bowel disease and rheumatoid arthritis models) ↓ LPS-induced pulmonary inflammation | [33,34,35,42] |
WP1122 | Hexokinase | ↓ Glycolysis (cancer models) | [69,70] |
BrPA | Hexokinase | ↓ Th17 cells ↓ DCs activation ↑ Treg differentiation (rheumatoid arthritis model) | [102] |
PFK15 | PFK1 | ↓ T cells metabolic reprogramming (type 1 diabetes model) ↓ LPS-induced DCs cells ↑ Immunosuppressive T cells (CIA model) ↓ CD45+ cells, chemokines (IBD model) | [77,78,79] |
3PO | PFK1 | ↓ LPS-stimulated activation of human alveolar epithelial cells ↓ Pro-inflammatory cytokines, ROS (sepsis-induced lung injury model) ↓ TLR2-induced NF-κB, STAT3 activation, pro-inflammatory cytokines (rheumatoid arthritis model) ↓ Atherosclerotic macrophages ↓ Synovia inflammation | [84,85,86,87,88] |
Koningic acid | GAPDH | ↓ LPS-stimulated macrophages ↓ M1 macrophages polarization ↓ Pro-inflammatory cytokines (HIV-infected macrophages) | [107,108] |
4-OI | GAPDH | ↓ LPS-stimulated macrophages and IL-1β secretion ↓ CD4+ and CD8+ T cells | [71,72,73] |
DCA | PDK | ↓ CIA-induced arthritis ↓ Sepsis-induced inflammation ↓ Atherosclerosis ↓ Colitis | [93,94,95,96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pająk, B.; Zieliński, R.; Priebe, W. The Impact of Glycolysis and Its Inhibitors on the Immune Response to Inflammation and Autoimmunity. Molecules 2024, 29, 1298. https://doi.org/10.3390/molecules29061298
Pająk B, Zieliński R, Priebe W. The Impact of Glycolysis and Its Inhibitors on the Immune Response to Inflammation and Autoimmunity. Molecules. 2024; 29(6):1298. https://doi.org/10.3390/molecules29061298
Chicago/Turabian StylePająk, Beata, Rafał Zieliński, and Waldemar Priebe. 2024. "The Impact of Glycolysis and Its Inhibitors on the Immune Response to Inflammation and Autoimmunity" Molecules 29, no. 6: 1298. https://doi.org/10.3390/molecules29061298
APA StylePająk, B., Zieliński, R., & Priebe, W. (2024). The Impact of Glycolysis and Its Inhibitors on the Immune Response to Inflammation and Autoimmunity. Molecules, 29(6), 1298. https://doi.org/10.3390/molecules29061298