Micron-Sized Thiol-Functional Polysilsesquioxane Microspheres with Open and Interconnected Macropores: Preparation, Characterization and Formation Mechanism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of TMPSQ Microspheres
2.2. Morphology of the TMPSQ Microspheres
2.3. Composition of the TMPSQ Microspheres
2.4. Thermal Stability of the TMPSQ Microspheres
2.5. Pore Structure of the TMPSQ Microspheres
2.6. Morphological Evolution of the TMPSQ Microspheres
3. Materials and Methods
3.1. Materials
3.2. Preparation of TMPSQ Microspheres
3.3. Characterization of TMPSQ Microspheres
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, N.; Fan, H.; Dubois, P.; Zhang, X.W.; Fahad, S.; Aziz, T.; Wan, J.T. Nano-engineering and micromolecular science of polysilsesquioxane materials and their emerging applications. J. Mater. Chem. A 2019, 7, 21577–21604. [Google Scholar] [CrossRef]
- Lu, X.; Yin, Q.F.; Xin, Z.; Li, Y.; Han, T. Synthesis of poly(aminopropyl/methyl)silsesquioxane particles as effective Cu(II) and Pb(II) adsorbents. J. Hazard. Mater. 2011, 196, 234–241. [Google Scholar] [CrossRef]
- Nakamura, M.; Hayashi, K.; Nakamura, J.; Mochizuki, C.; Murakami, T.; Miki, H.; Ozaki, S.; Abe, M. Near-infrared fluorescent thiol-organosilica nanoparticles that are functionalized with IR-820 and their applications for long-term imaging of in situ labeled cells and depth-dependent tumor in vivo imaging. Chem. Mater. 2020, 32, 7201–7214. [Google Scholar] [CrossRef]
- Li, J.L.; Huo, Z.X.; Chen, L.; Wan, Q.H. Mercaptopropyl functionalized polymethylsilsesquioxane microspheres prepared by co-condensation method as organosilica-based chromatographic packings. Chromatographia 2017, 80, 1287–1297. [Google Scholar] [CrossRef]
- Yao, B.; Zhang, X.P.; Yang, F.; Li, C.X.; Sun, G.Y.; Zhang, G.Z.; Mu, Z.H. Morphology-controlled synthesis of polymethylsilsesquioxane (PMSQ) microsphere and its applications in enhancing the thermal properties and flow improving ability of ethylene-vinyl acetate copolymer. Powder Technol. 2018, 329, 137–148. [Google Scholar] [CrossRef]
- Ouyang, X.; Lei, S.; Liu, X.F.; Chen, D.Z.; Tang, J.N. Preparation of refractive-index-controlled silicone microspheres and their application in polycarbonate light diffusing materials. Polym.-Plast. Technol. Mater. 2019, 58, 1766–1780. [Google Scholar] [CrossRef]
- Guo, X.H.; Zhang, C.C.; Bai, Y.; Che, Q.S.; Cao, H.; Guo, J.; Su, Z.Q. Synthesis of chitosan oligosaccharide-loaded glycyrrhetinic acid functionalized mesoporous silica nanoparticles and in vitro verification of the treatment of APAP-induced liver injury. Molecules 2023, 28, 4147. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.; Vale, M.; Vicente, D.; Schreck, M.; Tervoort, E.; Niederberger, M. Porous silica microspheres with immobilized titania nanoparticles for in-flow solar-driven purification of wastewater. Glob. Chall. 2021, 5, 2000116. [Google Scholar] [CrossRef] [PubMed]
- Noman, M.T.; Amor, N.; Ali, A.; Petrik, S.; Coufal, R.; Adach, K.; Fijalkowski, M. Aerogels for biomedical, energy and sensing applications. Gels 2021, 7, 264. [Google Scholar] [CrossRef]
- Franco, D.S.; Georgin, J.; Ramos, C.G.; Eljaiek, S.M.; Badillo, D.R.; de Oliveira, A.H.; Allasia, D.; Meili, L. The synthesis and evaluation of porous carbon material from corozo fruit (bactris guineensis) for efficient propranolol hydrochloride adsorption. Molecules 2023, 28, 5232. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.X.; Shi, Z.G.; Chen, F.; Feng, Y.Q.; Guo, Q.Z. Synthesis of penetrable macroporous silica spheres for high-performance liquid chromatography. J. Chromatogr. A 2009, 1216, 7388–7393. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Li, J.; Li, L.; Yuan, X.T.; Xu, L.; Shi, Z.G. Fast separation of water-soluble vitamins by hydrophilic interaction liquid chromatography based on submicrometer flow-through silica microspheres. Food Chem. 2020, 307, 125531. [Google Scholar] [CrossRef]
- Vale, M.; Loureiro, M.V.; Ferreira, M.J.; Marques, A.C. Silica-based microspheres with interconnected macroporosity by phase separation. J. Sol-Gel Sci. Technol. 2020, 95, 746–759. [Google Scholar] [CrossRef]
- Fortuniak, W.; Chojnowski, J.; Mizerska, U.; Pospiech, P.; Zakrzewska, J.; Slomkowski, S. Polysiloxane derived macroporous silicon oxycarbide microspheroidal particles and their decoration with 1D structures. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3574–3585. [Google Scholar] [CrossRef]
- Bai, J.Q.; Zhu, Q.Y.; Tang, C.W.; Liu, J.W.; Yi, Y.K.; Bai, Q. Synthesis and application of 5 μm monodisperse porous silica microspheres with controllable pore size using polymeric microspheres as templates for the separation of small solutes and proteins by high-performance liquid chromatography. J. Chromatogr. A 2022, 1675, 463165. [Google Scholar] [CrossRef]
- Liang, R.; Zou, H. Removal of aqueous Hg(ii) by thiol-functionalized nonporous silica microspheres prepared by one-step sol–gel method. RSC Adv. 2020, 10, 18534–18542. [Google Scholar] [CrossRef] [PubMed]
- Du, G.Q.; Peng, J.X.; Zhang, Y.Y.; Zhang, H.X.; Lü, J.L.; Fang, Y. One-step synthesis of hydrophobic multicompartment organosilica microspheres with highly interconnected macro-mesopores for the stabilization of liquid marbles with excellent catalysis. Langmuir 2017, 33, 5223–5235. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.X.; Wu, K.Y.; Liu, T.H.; Cheng, Z.K.; Liu, Y.; Liu, Y.F.; Niu, Y.Z. Feasible synthesis of bifunctional polysilsesquioxane microspheres for robust adsorption of Hg(II) and Ag(I): Behavior and mechanism. J. Hazard. Mater. 2023, 442, 130121. [Google Scholar] [CrossRef] [PubMed]
- Kirren, P.; Barka, L.; Rahmani, S.; Bondon, N.; Donzel, N.; Trens, P.; Bessière, A.; Raehm, L.; Charnay, C.; Durand, J.-O. Periodic mesoporous organosilica nanoparticles for CO2 adsorption at standard temperature and pressure. Molecules 2022, 27, 4245. [Google Scholar] [CrossRef]
- Johnston, A.P.R.; Battersby, B.J.; Lawrie, G.A.; Trau, M. Porous functionalised silica particles: A potential platform for biomolecular screening. Chem. Commun. 2005, 7, 848–850. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.P.R.; Battersby, B.J.; Lawrie, G.A.; Lambert, L.K.; Trau, M. A Mechanism for Forming Large Fluorescent Organo-Silica Particles: Potential Supports for Combinatorial Synthesis. Chem. Mater. 2006, 18, 6163–6169. [Google Scholar] [CrossRef]
- Han, C.L.; Ma, L.; Tang, T.Y.; Deng, J.; Luo, G.S. Microdroplet-based synthesis of polymethylsilsesquioxane microspheres with controllable size, surface morphology, and internal structure. Chem. Eng. Sci. 2022, 262, 118054. [Google Scholar] [CrossRef]
- Nakanishi, K.; Soga, N. Phase-separation in gelling silica organic polymer-solution—Systems containing poly(sodium styrenesulfonate). J. Am. Ceram. Soc. 1991, 74, 2518–2530. [Google Scholar] [CrossRef]
- Dong, H.J.; Brook, M.A.; Brennan, J.D. A new route to monolithic methylsilsesquioxanes: Gelation behavior of methyltrimethoxysilane and morphology of resulting methylsilsesquioxanes under one-step and two-step processing. Chem. Mater. 2005, 17, 2807–2816. [Google Scholar] [CrossRef]
- Marques, A.C.; Vale, M. Macroporosity Control by Phase Separation in Sol-Gel Derived Monoliths and Microspheres. Materials 2021, 14, 4247. [Google Scholar] [CrossRef] [PubMed]
- Kaji, H.; Nakanishi, K.; Soga, N. Polymerization-induced phase separation in silica sol-gel systems containing formamide. J. Sol-Gel Sci. Technol. 1993, 1, 35–46. [Google Scholar] [CrossRef]
- Kanamori, K.; Kodera, Y.; Hayase, G.; Nakanishi, K.; Hanada, T. Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane sol–gel system. J. Colloid Interface Sci. 2011, 357, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, G.; Kanamori, K.; Nakanishi, K.; Hanada, T. A new route to monolithic macroporous SiC/C composites from biphenylene-bridged polysilsesquioxane gels. Chem. Mater. 2010, 22, 2541–2547. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Shi, Z.G. Waxberry-like hierarchically porous ethyl-bridged hybrid silica microsphere: A substrate for enzyme catalysis and high-performance liquid chromatography. J. Chromatogr. A 2019, 1587, 79–87. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wang, X.P.; Luo, Z.Y.; Xue, Y.W.; Shi, Z.G. Hierarchically macro/mesoporous hybrid silica spheres for fast capture of heavy metal ions. Mater. Lett. 2014, 128, 140–143. [Google Scholar] [CrossRef]
- Shi, Z.G.; Feng, Y.Q. Synthesis and characterization of hierarchically porous silica microspheres with penetrable macropores and tunable mesopores. Microporous Mesoporous Mater. 2008, 116, 701–704. [Google Scholar] [CrossRef]
- Dong, H.J.; Brennan, J.D. Controlling the morphology of methylsilsesquioxane monoliths using a two-step processing method. Chem. Mater. 2006, 18, 541–546. [Google Scholar] [CrossRef]
- Lu, X.; Hasegawa, G.; Kanamori, K.; Nakanishi, K. Hierarchically porous monoliths prepared via sol–gel process accompanied by spinodal decomposition. J. Sol.-Gel. Sci. Technol. 2020, 95, 530–550. [Google Scholar] [CrossRef]
- Flory, P.J. Thermodynamics of high polymer solutions. J. Chem. Phys. 1941, 9, 660–661. [Google Scholar] [CrossRef]
- Huggins, M.L. Solutions of long chain compounds. J. Chem. Phys. 1941, 9, 440. [Google Scholar] [CrossRef]
- Nakanishi, K.; Soga, N. Phase-separation in silica sol-gel system containing polyacrylic-acid I. Gel formation behavior and effect of solvent composition. J. Non-Cryst. Solids 1992, 139, 1–13. [Google Scholar] [CrossRef]
- Nakanishi, K.; Komura, H.; Takahashi, R.; Soga, N. Phase-separation in silica sol-gel system containing poly(ethylene oxide) I. Phase relation and gel morphology. Bull. Chem. Soc. Jpn. 1994, 67, 1327–1335. [Google Scholar] [CrossRef]
- Nakanishi, K.; Tanaka, N. Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 2007, 40, 863–873. [Google Scholar] [CrossRef]
- Nakanishi, K.; Kanamori, K. Organic-inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. J. Mater. Chem. 2005, 15, 3776–3786. [Google Scholar] [CrossRef]
- Huo, Z.X.; Chen, L. Base-deactivated and alkaline-resistant chromatographic stationary phase based on functionalized polymethylsilsesquioxane microspheres. J. Sep. Sci. 2020, 43, 389–397. [Google Scholar] [CrossRef]
- Hench, L.L.; West, J.K. The sol-gel process. Chem. Rev. 1990, 90, 33–72. [Google Scholar] [CrossRef]
- Deng, T.S.; Zhang, Q.F.; Zhang, J.Y.; Shen, X.; Zhu, K.T.; Wu, J.L. One-step synthesis of highly monodisperse hybrid silica spheres in aqueous solution. J. Colloid Interface Sci. 2009, 329, 292–299. [Google Scholar] [CrossRef]
- Han, L.; Nie, Z.Y.; Gao, R.S.; Kan, C.Y. Facile synthesis of micron-sized thiol-functional polysilsesquioxane microspheres through a one-step sol-gel method. J. Sol-Gel Sci. Technol. 2023, 109, 330–345. [Google Scholar] [CrossRef]
- Li, Y.S.; Church, J.S.; Woodhead, A.L.; Moussa, F. Preparation and characterization of silica coated iron oxide magnetic nano-particles. Spectrochim. Acta Part A 2010, 76, 484–489. [Google Scholar] [CrossRef]
- Sert Çok, S.; Koç, F.; Gizli, N. Lightweight and highly hydrophobic silica aerogels dried in ambient pressure for an efficient oil/organic solvent adsorption. J. Hazard. Mater. 2021, 408, 124858. [Google Scholar] [CrossRef]
- Sorarù, G.D.; Pederiva, L.; Latournerie, J.; Raj, R. Pyrolysis Kinetics for the Conversion of a Polymer into an Amorphous Silicon Oxycarbide Ceramic. J. Am. Ceram. Soc. 2002, 85, 2181–2187. [Google Scholar] [CrossRef]
- Ma, W.S.; Zhang, D.Q.; Duan, Y.; Wang, H. Highly monodisperse polysilsesquioxane spheres: Synthesis and application in cotton fabrics. J. Colloid Interface Sci. 2013, 392, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Jaszcz, K. Photocrosslinked poly(ester-anhydride) microspheres with macroporous structure. Polym. Adv. Technol. 2013, 24, 873–880. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Kanamori, K.; Nakanishi, K. Controlled pore formation in organotrialkoxysilane-derived hybrids: From aerogels to hierarchically porous monoliths. Chem. Soc. Rev. 2011, 40, 754–770. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xie, Y.; Hao, G.S.; Cai, W.W.; Guo, X.Z. Preparation of porous alumina microspheres via an oil-in-water emulsion method accompanied by a sol–gel process. New J. Chem. 2016, 40, 589–595. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Nie, Z.; Gao, R.; Jiang, Z.; Kan, C. Micron-Sized Thiol-Functional Polysilsesquioxane Microspheres with Open and Interconnected Macropores: Preparation, Characterization and Formation Mechanism. Molecules 2024, 29, 1204. https://doi.org/10.3390/molecules29061204
Han L, Nie Z, Gao R, Jiang Z, Kan C. Micron-Sized Thiol-Functional Polysilsesquioxane Microspheres with Open and Interconnected Macropores: Preparation, Characterization and Formation Mechanism. Molecules. 2024; 29(6):1204. https://doi.org/10.3390/molecules29061204
Chicago/Turabian StyleHan, Lu, Zhenyu Nie, Rongsheng Gao, Zhengyang Jiang, and Chengyou Kan. 2024. "Micron-Sized Thiol-Functional Polysilsesquioxane Microspheres with Open and Interconnected Macropores: Preparation, Characterization and Formation Mechanism" Molecules 29, no. 6: 1204. https://doi.org/10.3390/molecules29061204
APA StyleHan, L., Nie, Z., Gao, R., Jiang, Z., & Kan, C. (2024). Micron-Sized Thiol-Functional Polysilsesquioxane Microspheres with Open and Interconnected Macropores: Preparation, Characterization and Formation Mechanism. Molecules, 29(6), 1204. https://doi.org/10.3390/molecules29061204