Detection of 26 Drugs of Abuse and Metabolites in Quantitative Dried Blood Spots by Liquid Chromatography–Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. LC–MS/MS Optimization
2.2. Optimization of qDBS Sample Treatment
2.3. Drugs Screening
2.3.1. Sensitivity, LOD, and LOQ
2.3.2. Extraction Recovery (ER%), Hematocrit Effect
2.3.3. Stability
3. Materials and Methods
3.1. Reagents, Materials, and Chemicals
3.2. Working Standard Solutions and Quality Control Samples (QCs)
3.3. Instrumentation and Analytical Conditions
3.4. qDBS Sample Extraction Optimization
3.5. Final qDBS Sample Treatment Protocol
3.6. qDBS Drugs Screening
3.6.1. Sensitivity, LOD, and LOQ
3.6.2. Extraction Recovery (ER%) and Hematocrit Effect
3.6.3. Stability of qDBS Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmidt, V. Ivar Christian Bang (1869–1918), Founder of Modern Clinical Microchemistry. Clin. Chem. 1986, 32, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, R.; Susi, A. A Simple Phenylalanine Method for Detecting Phenylketonuria in Large Populations of Newborn Infants. Pediatrics 1963, 32, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Tse, F.L.S. Dried Blood Spot Sampling in Combination with LC-MS/MS for Quantitative Analysis of Small Molecules. Biomed. Chromatogr. 2010, 24, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Hannon, W.H.; Therrell, B.L. Overview of the History and Applications of Dried Blood Samples; Li, W., Lee, M.S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 1–15. [Google Scholar]
- Eshghi, A.; Pistawka, A.J.; Liu, J.; Chen, M.; Sinclair, N.J.T.; Hardie, D.B.; Elliott, M.; Chen, L.; Newman, R.; Mohammed, Y.; et al. Concentration Determination of >200 Proteins in Dried Blood Spots for Biomarker Discovery and Validation. Mol. Cell. Proteom. 2020, 19, 540–553. [Google Scholar] [CrossRef] [PubMed]
- Edelbroek, P.M.; van der Heijden, J.; Stolk, L.M.L. Dried Blood Spot Methods in Therapeutic Drug Monitoring: Methods, Assays, and Pitfalls. Ther. Drug Monit. 2009, 31, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Stove, C.P.; Ingels, A.-S.M.E.; De Kesel, P.M.M.; Lambert, W.E. Dried Blood Spots in Toxicology: From the Cradle to the Grave? Crit. Rev. Toxicol. 2012, 42, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Kolmonen, M.; Leinonen, A.; Pelander, A.; Ojanperä, I. A General Screening Method for Doping Agents in Human Urine by Solid Phase Extraction and Liquid Chromatography/Time-of-Flight Mass Spectrometry. Anal. Chim. Acta 2007, 585, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Ho, C.S.; Iu, Y.P.H.; Lai, P.S.J.; Shek, C.C.; Lo, Y.-C.; Klinke, H.B.; Wood, M. Development of a Broad Toxicological Screening Technique for Urine Using Ultra-Performance Liquid Chromatography and Time-of-Flight Mass Spectrometry. Anal. Chim. Acta 2009, 649, 80–90. [Google Scholar] [CrossRef]
- Bjørk, M.K.; Simonsen, K.W.; Andersen, D.W.; Dalsgaard, P.W.; Sigurðardóttir, S.R.; Linnet, K.; Rasmussen, B.S. Quantification of 31 Illicit and Medicinal Drugs and Metabolites in Whole Blood by Fully Automated Solid-Phase Extraction and Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 2607–2617. [Google Scholar] [CrossRef]
- Gomes, D.; de Pinho, P.G.; Pontes, H.; Ferreira, L.; Branco, P.; Remião, F.; Carvalho, F.; Bastos, M.L.; Carmo, H. Gas Chromatography–Ion Trap Mass Spectrometry Method for the Simultaneous Measurement of MDMA (Ecstasy) and Its Metabolites, MDA, HMA, and HMMA in Plasma and Urine. J. Chromatogr. B 2010, 878, 815–822. [Google Scholar] [CrossRef]
- Spooner, N.; Lad, R.; Barfield, M. Dried Blood Spots as a Sample Collection Technique for the Determination of Pharmacokinetics in Clinical Studies: Considerations for the Validation of a Quantitative Bioanalytical Method. Anal. Chem. 2009, 81, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Barfield, M.; Spooner, N.; Lad, R.; Parry, S.; Fowles, S. Application of Dried Blood Spots Combined with HPLC-MS/MS for the Quantification of Acetaminophen in Toxicokinetic Studies. J. Chromatogr. B 2008, 870, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Alfazil, A.A.; Anderson, R.A. Stability of Benzodiazepines and Cocaine in Blood Spots Stored on Filter Paper. J. Anal. Toxicol. 2008, 32, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Jantos, R.; Vermeeren, A.; Sabljic, D.; Ramaekers, J.G.; Skopp, G. Degradation of Zopiclone during Storage of Spiked and Authentic Whole Blood and Matching Dried Blood Spots. Int. J. Leg. Med. 2013, 127, 69–76. [Google Scholar] [CrossRef]
- Ambach, L.; Menzies, E.; Parkin, M.C.; Kicman, A.; Archer, J.R.H.; Wood, D.M.; Dargan, P.I.; Stove, C. Quantification of Cocaine and Cocaine Metabolites in Dried Blood Spots from a Controlled Administration Study Using Liquid Chromatography-Tandem Mass Spectrometry. Drug Test. Anal. 2019, 11, 709–720. [Google Scholar] [CrossRef]
- Chepyala, D.; Tsai, I.-L.; Liao, H.-W.; Chen, G.-Y.; Chao, H.-C.; Kuo, C.-H. Sensitive Screening of Abused Drugs in Dried Blood Samples Using Ultra-High-Performance Liquid Chromatography-Ion Booster-Quadrupole Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2017, 1491, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Moretti, M.; Visonà, S.D.; Freni, F.; Tomaciello, I.; Vignali, C.; Groppi, A.; Tajana, L.; Osculati, A.M.M.; Morini, L. A Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Cocaine and Metabolites in Blood and in Dried Blood Spots Collected from Postmortem Samples and Evaluation of the Stability over a 3-Month Period. Drug Test. Anal. 2018, 10, 1430–1437. [Google Scholar] [CrossRef]
- Moretti, M.; Freni, F.; Tomaciello, I.; Vignali, C.; Groppi, A.; Visonà, S.D.; Tajana, L.; Osculati, A.M.M.; Morini, L. Determination of Benzodiazepines in Blood and in Dried Blood Spots Collected from Post-Mortem Samples and Evaluation of the Stability over a Three-Month Period. Drug Test. Anal. 2019, 11, 1403–1411. [Google Scholar] [CrossRef]
- Kacargil, C.U.; Daglioglu, N.; Goren, I.E. Determination of Illicit Drugs in Dried Blood Spots by LC–MS/MS Method: Validation and Application to Real Samples. Chromatographia 2020, 83, 885–892. [Google Scholar] [CrossRef]
- Sadler Simões, S.; Castañera Ajenjo, A.; Dias, M.J. Dried Blood Spots Combined to an UPLC-MS/MS Method for the Simultaneous Determination of Drugs of Abuse in Forensic Toxicology. J. Pharm. Biomed. Anal. 2018, 147, 634–644. [Google Scholar] [CrossRef]
- de Lima Feltraco Lizot, L.; da Silva, A.C.C.; Bastiani, M.F.; Hahn, R.Z.; Bulcão, R.; Perassolo, M.S.; Antunes, M.V.; Linden, R. Simultaneous Determination of Cocaine, Ecgonine Methyl Ester, Benzoylecgonine, Cocaethylene and Norcocaine in Dried Blood Spots by Ultra-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. Forensic Sci. Int. 2019, 298, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Saussereau, E.; Lacroix, C.; Gaulier, J.M.; Goulle, J.P. On-Line Liquid Chromatography/Tandem Mass Spectrometry Simultaneous Determination of Opiates, Cocainics and Amphetamines in Dried Blood Spots. J. Chromatogr. B 2012, 885–886, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, C.; Marchei, E.; Scaravelli, G.; García-Algar, O.; Supervía, A.; Graziano, S. Identification and Quantification of Psychoactive Drugs in Whole Blood Using Dried Blood Spot (DBS) by Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2016, 128, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Odoardi, S.; Anzillotti, L.; Strano-Rossi, S. Simplifying Sample Pretreatment: Application of Dried Blood Spot (DBS) Method to Blood Samples, Including Postmortem, for UHPLC-MS/MS Analysis of Drugs of Abuse. Forensic Sci. Int. 2014, 243, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Ellefsen, K.N.; da Costa, J.L.; Concheiro, M.; Anizan, S.; Barnes, A.J.; Pirard, S.; Gorelick, D.A.; Huestis, M.A. Cocaine and Metabolite Concentrations in DBS and Venous Blood after Controlled Intravenous Cocaine Administration. Bioanalysis 2015, 7, 2041–2056. [Google Scholar] [CrossRef] [PubMed]
- Stöth, F.; Martin Fabritius, M.; Weinmann, W.; Luginbühl, M.; Gaugler, S.; König, S. Application of Dried Urine Spots for Non-Targeted Quadrupole Time-of-Flight Drug Screening. J. Anal. Toxicol. 2023, 47, 332–337. [Google Scholar] [CrossRef]
- Scheidweiler, K.B.; Barnes, A.J.; Huestis, M.A. A Validated Gas Chromatographic–Electron Impact Ionization Mass Spectrometric Method for Methamphetamine, Methylenedioxymethamphetamine (MDMA), and Metabolites in Mouse Plasma and Brain. J. Chromatogr. B 2008, 876, 266–276. [Google Scholar] [CrossRef]
- Abarca, R.; Gerona, R. Development and Validation of an LC-MS/MS Assay for the Quantitative Analysis of Alprazolam, α-Hydroxyalprazolam and Hydrocodone in Dried Blood Spots. J. Chromatogr. B 2023, 1220, 123639. [Google Scholar] [CrossRef]
- Gaugler, S.; Al-Mazroua, M.K.; Issa, S.Y.; Rykl, J.; Grill, M.; Qanair, A.; Cebolla, V.L. Fully Automated Forensic Routine Dried Blood Spot Screening for Workplace Testing. J. Anal. Toxicol. 2019, 43, 212–220. [Google Scholar] [CrossRef]
- Joye, T.; Sidibé, J.; Déglon, J.; Karmime, A.; Sporkert, F.; Widmer, C.; Favrat, B.; Lescuyer, P.; Augsburger, M.; Thomas, A. Liquid Chromatography-High Resolution Mass Spectrometry for Broad-Spectrum Drug Screening of Dried Blood Spot as Microsampling Procedure. Anal. Chim. Acta 2019, 1063, 110–116. [Google Scholar] [CrossRef]
- Gaugler, S.; Rykl, J.; Grill, M.; Cebolla, V. Fully Automated Drug Screening of Dried Blood Spots Using Online LC-MS/MS Analysis. J. Appl. Bioanal. 2018, 4, 7–15. [Google Scholar] [CrossRef]
- Stelmaszczyk, P.; Gacek, E.; Wietecha-Posłuszny, R. Optimized and Validated DBS/MAE/LC-MS Method for Rapid Determination of Date-Rape Drugs and Cocaine in Human Blood Samples-A New Tool in Forensic Analysis. Separations 2021, 8, 249. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, L.; Yuan, Y.; Xie, F. A Validated UHPLC–MS/MS Method to Quantify Eight Antibiotics in Quantitative Dried Blood Spots in Support of Pharmacokinetic Studies in Neonates. Antibiotics 2023, 12, 199. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chace, D.H.; Garrett, T.J. Quantitation of Phenylalanine and Tyrosine from Dried Blood/Plasma Spots with Impregnated Stable Isotope Internal Standards (SIIS) by FIA-SRM. Clin. Chim. Acta 2023, 549, 117551. [Google Scholar] [CrossRef]
- Deprez, S.; Van Uytfanghe, K.; Stove, C.P. Liquid Chromatography-Tandem Mass Spectrometry for Therapeutic Drug Monitoring of Immunosuppressants and Creatinine from a Single Dried Blood Spot Using the Capitainer® qDBS Device. Anal. Chim. Acta 2023, 1242, 340797. [Google Scholar] [CrossRef]
- Carling, R.S.; Barclay, Z.; Cantley, N.; Emmett, E.C.; Hogg, S.L.; Finezilber, Y.; Schulenburg-Brand, D.; Murphy, E.; Moat, S.J. Investigation of the Relationship between Phenylalanine in Venous Plasma and Capillary Blood Using Volumetric Blood Collection Devices. JIMD Rep. 2023, 64, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Meikopoulos, T.; Begou, O.; Theodoridis, G.; Gika, H. Ceramides Biomarkers Determination in Quantitative Dried Blood Spots by UHPLC-MS/MS. Anal. Chim. Acta 2023, 1255, 341131. [Google Scholar] [CrossRef]
- Orfanidis, A.; Gika, H.G.; Theodoridis, G.; Mastrogianni, O.; Raikos, N. A UHPLC-MS-MS Method for the Determination of 84 Drugs of Abuse and Pharmaceuticals in Blood. J. Anal. Toxicol. 2021, 45, 28–43. [Google Scholar] [CrossRef]
- Sadones, N.; Capiau, S.; De Kesel, P.M.; Lambert, W.E.; Stove, C.P. Spot Them in the Spot: Analysis of Abused Substances Using Dried Blood Spots. Bioanalysis 2014, 6, 2211–2227. [Google Scholar] [CrossRef]
- Pablo, A.; Breaud, A.R.; Clarke, W. Automated Analysis of Dried Urine Spot (DUS) Samples for Toxicology Screening. Clin. Biochem. 2020, 75, 70–77. [Google Scholar] [CrossRef]
- De Kesel, P.M.; Sadones, N.; Capiau, S.; Lambert, W.E.; Stove, C.P. Hemato-Critical Issues in Quantitative Analysis of Dried Blood Spots: Challenges and Solutions. Bioanalysis 2013, 5, 2023–2041. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, Y.; Jo, J.; In, S.; Park, Y.; Kim, E.; Pyo, J.; Choe, S. Analysis of Benzodiazepines and Their Metabolites Using DBS Cards and LC-MS/MS. Forensic Sci. Int. 2015, 255, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, P.; White, S.; Globig, S.; Lüdtke, S.; Brunet, L.; Smeraglia, J. EBF Recommendation on the Validation of Bioanalytical Methods for Dried Blood Spots. Bioanalysis 2011, 3, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, P.; White, S.; Cobb, Z.; de Vries, R.; Thomas, E.; van Baar, B. European Bioanalysis Forum Update of the EBF Recommendation for the Use of DBS in Regulated Bioanalysis Integrating the Conclusions from the EBF DBS-Microsampling Consortium. Bioanalysis 2013, 5, 2129–2136. [Google Scholar] [CrossRef]
- Velghe, S.; Stove, C.P. Evaluation of the Capitainer-B Microfluidic Device as a New Hematocrit-Independent Alternative for Dried Blood Spot Collection. Anal. Chem. 2018, 90, 12893–12899. [Google Scholar] [CrossRef]
- Carling, R.S.; Emmett, E.C.; Moat, S.J. Evaluation of Volumetric Blood Collection Devices for the Measurement of Phenylalanine and Tyrosine to Monitor Patients with Phenylketonuria. Clin. Chim. Acta 2022, 535, 157–166. [Google Scholar] [CrossRef]
- Guideline on Bioanalytical Method Validation. EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2** Committee for Medicinal Products for Human Use (CHMP). 2011. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 15 February 2024).
Analyte | Molecular Weight | Parent Ion | Daughter Ions | Collision Energy (eV) | Retention Time (min) | LOQ (ng/mL) | LOD (ng/mL) |
---|---|---|---|---|---|---|---|
Bromazepam | 316.2 | 317.0 | 228.0|209.0 | 40 | 6.69 | 5.00 | 1.50 |
Temazepam | 300.7 | 301.3 | 255.1|282.9 | 35 | 8.42 | 5.00 | 1.50 |
Oxazepam | 286.7 | 287.3 | 241.1|269.1 | 35 | 8.02 | 5.00 | 1.50 |
Alprazolam | 308.8 | 309.8 | 281.2|274.1 | 25 | 8.13 | 5.00 | 1.50 |
7-aminoflunitrazepam (7-AF) | 283.3 | 284.0 | 226.9|135.1 | 32 | 4.48 | 5.00 | 1.50 |
Methadone | 309.4 | 310.0 | 265.0|105.0 | 14 | 7.84 | 5.00 | 1.50 |
Cathine | 151.2 | 152.0 | 134.0|117.0 | 10 | 2.86 | 5.00 | 1.50 |
Mescaline | 211.3 | 212.0 | 195.1|180.1 | 22 | 2.93 | 5.00 | 1.50 |
25B-NB2OMe | 380.3 | 381.0 | 121.3|91.2 | 25 | 6.69 | 5.00 | 1.50 |
25C-NB2OMe | 335.8 | 336.8 | 121.3|91.2 | 20 | 7.28 | 5.00 | 1.50 |
25I-NB2OMe | 427.3 | 428.3 | 121.3|91.2 | 20 | 7.78 | 5.00 | 1.50 |
Mephedrone | 177.2 | 178.1 | 160.3|147.3 | 10 | 3.56 | 5.00 | 1.50 |
AH-7921 | 329.3 | 329.2 | 173.2|95.3 | 30 | 6.56 | 5.00 | 1.50 |
1-Benzylpiperazine | 176.3 | 177.0 | 91.2|85.2 | 20 | 3.33 | 5.00 | 1.50 |
Methylone | 207.2 | 208.1 | 132.2|160.3 | 25 | 2.91 | 5.00 | 1.50 |
3,4-Methylenedioxypyrovalerone (MDPV) | 275.3 | 276.2 | 135.2|126.3 | 25 | 4.35 | 5.00 | 1.50 |
JWH-018 | 341.5 | 342.3 | 214.4|155.3 | 25 | 11.5 | 5.00 | 1.50 |
Diazepam | 284.7 | 285.5 | 154.0|193.0 | 28 | 9.45 | 2.50 | 0.75 |
Cocaine | 303.4 | 304.0 | 182.0|82.0 | 20 | 3.99 | 2.50 | 0.75 |
Benzoylecgonine | 289.3 | 290.0 | 105.0|168.0 | 18 | 3.58 | 2.50 | 0.75 |
Methylecgonine | 199.3 | 200.0 | 82.0|182.0 | 18 | 1.98 | 2.50 | 0.75 |
Cocaethylene | 317.4 | 318.3 | 196.2|82.0 | 18 | 4.77 | 2.50 | 0.75 |
3,4-methylenedioxymethamphetamine (MDMA) | 193.3 | 194.0 | 163.0|135.0 | 12 | 3.17 | 2.50 | 0.75 |
Tetrahydrocannabinol (THC) | 314.4 | 313.0 | 245.2|191.0 | 25 | 11.7 | 2.50 | 0.75 |
Cannabinol (CBN) | 310.4 | 311.2 | 223.2|240.0 | 20 | 11.6 | 2.50 | 0.75 |
Cannabidiol (CBD) | 314.5 | 315.0 | 193.0|92.7 | 25 | 11.5 | 2.50 | 0.75 |
(A) | ||||||
---|---|---|---|---|---|---|
Analyte | Fortified Concentration | |||||
5 ng/mL | 50 ng/mL | |||||
LH (ER% ± sd) | FH (ER% ± sd) | HH (ER% ± sd) | LH (ER% ± sd) | FH (ER% ± sd) | HH (ER% ± sd) | |
Bromazepam | 85.3 ± 0.5 | 91.6 ± 0.9 | 93.9 ± 0.5 | 89.7 ± 0.8 | 92.9 ± 1.6 | 95.2 ± 0.8 |
Temazepam | 90.6 ± 0.4 | 92.6 ± 0.9 | 91.7 ± 1.2 | 90.1 ± 0.6 | 94.4 ± 1.2 | 94.2 ± 0.2 |
Oxazepam | 87.7 ± 0.6 | 89.7 ± 0.2 | 96.0 ± 0.7 | 88.4 ± 0.8 | 93.3 ± 0.3 | 104 ± 0.6 |
Alprazolam | 90.7 ± 0.4 | 100 ± 0.5 | 109 ± 1.7 | 86.3 ± 0.2 | 101 ± 1.0 | 106 ± 1.3 |
7-aminoflunitrazepam (7-AF) | 86.7 ± 0.5 | 93.7 ± 0.2 | 87.3 ± 0.7 | 88.1 ± 1.2 | 96.1 ± 0.1 | 96.4 ± 0.5 |
Methadone | 84.6 ± 0.8 | 105 ± 1.9 | 99.6 ± 0.7 | 86.0 ± 0.5 | 96.2 ± 0.9 | 94.8 ± 0.3 |
Cathine | 85.7 ± 0.4 | 89.3 ± 0.4 | 97.4 ± 0.6 | 86.2 ± 0.5 | 88.2 ± 0.6 | 97.2 ± 0.3 |
Mescaline | 88.4 ± 0.8 | 94.6 ± 0.6 | 102 ± 1.0 | 90.2 ± 0.7 | 89.8 ± 0.9 | 98.5 ± 0.7 |
25B-NB2OMe | 89.3 ± 0.7 | 92.7 ± 0.3 | 92.9 ± 0.7 | 88.8 ± 0.6 | 94.7 ± 0.5 | 103 ± 1.3 |
25C-NB2OMe | 86.2 ± 0.8 | 88.7 ± 1.0 | 94.6 ± 0.8 | 86.6 ± 0.2 | 96.6 ± 0.9 | 88.8 ± 0.8 |
25I-NB2OMe | 86.8 ± 0.1 | 95.1 ± 0.3 | 96.9 ± 0.3 | 89.0 ± 0.4 | 86.3 ± 0.2 | 97.4 ± 0.8 |
Mephedrone | 88.9 ± 0.3 | 89.2 ± 0.6 | 101 ± 0.8 | 87.9 ± 0.6 | 96.4 ± 0.4 | 95.0 ± 0.1 |
AH-7921 | 91.5 ± 0.6 | 92.7 ± 1.2 | 88.2 ± 0.4 | 93.6 ± 0.7 | 95.5 ± 1.3 | 99.9 ± 1.1 |
1-Benzylpiperazine | 88.3 ± 1.5 | 92.6 ± 0.5 | 85.6 ± 0.3 | 86.6 ± 0.3 | 94.8 ± 0.6 | 93.9 ± 0.4 |
Methylone | 86.5 ± 0.6 | 88.2 ± 0.4 | 90.1 ± 0.4 | 89.0 ± 0.3 | 92.1 ± 0.4 | 98.0 ± 0.2 |
3,4-Methylenedioxypyrovalerone (MDPV) | 89.2 ± 0.7 | 91.5 ± 0.5 | 96.2 ± 0.3 | 90.8 ± 0.5 | 95.0 ± 0.6 | 97.7 ± 0.8 |
JWH-018 | 85.1 ± 0.4 | 95.8 ± 0.6 | 88.6 ± 0.4 | 85.5 ± 0.3 | 87.3 ± 0.3 | 90.6 ± 0.4 |
(B) | ||||||
Analyte | Fortified Concentration (ng/mL) | |||||
2.5 ng/mL | 25 ng/mL | |||||
LH (ER% ± sd) | FH (ER% ± sd) | HH (ER% ± sd) | LH (ER% ± sd) | FH (ER% ± sd) | HH (ER% ± sd) | |
Diazepam | 92.3 ± 1.2 | 86.3 ± 0.2 | 108 ± 1.0 | 89.1 ± 0.8 | 90.5 ± 0.8 | 105 ± 0.8 |
Cocaine | 88.4 ± 0.4 | 93.4 ± 0.9 | 102 ± 1.5 | 85.9 ± 0.5 | 87.7 ± 0.9 | 103 ± 1.0 |
Benzoylecgonine | 86.6 ± 0.2 | 98.7 ± 0.8 | 94.2 ± 0.2 | 85.2 ± 0.4 | 89.5 ± 0.4 | 91.6 ± 0.8 |
Methylecgonine | 87.9 ± 0.8 | 105 ± 0.9 | 94.6 ± 0.8 | 85.6 ± 0.5 | 106 ± 0.5 | 89.7 ± 0.4 |
Cocaethylene | 91.2 ± 0.5 | 95.6 ± 1.3 | 91.7 ± 1.2 | 90.5 ± 0.3 | 98.4 ± 1.0 | 88.8 ± 0.8 |
3,4-methylenedioxymethamphetamine (MDMA) | 85.7 ± 0.5 | 98.7 ± 0.6 | 96.6 ± 0.9 | 88.0 ± 0.2 | 95.6 ± 0.6 | 94.8 ± 0.3 |
Tetrahydrocannabinol (THC) | 85.7 ± 0.8 | 87.8 ± 0.6 | 88.2 ± 0.4 | 84.8 ± 0.2 | 96.4 ± 0.2 | 89.9 ± 0.7 |
Cannabinol (CBN) | 85.2 ± 0.6 | 89.9 ± 1.1 | 85.6 ± 0.3 | 86.3 ± 1.1 | 88.9 ± 0.5 | 86.7 ± 1.2 |
Cannabidiol (CBD) | 84.9 ± 0.3 | 90.4 ± 0.7 | 87.9 ± 0.4 | 87.4 ± 0.5 | 87.3 ± 1.2 | 89.3 ± 0.6 |
Analyte | 5 Days in 20 °C | 5 Days in −20 °C | 5 Days in 30 °C | ||||||
---|---|---|---|---|---|---|---|---|---|
LQC (%Er) | MQC (%Er) | HQC (%Er) | LQC (%Er) | MQC (%Er) | HQC (%Er) | LQC (%Er) | MQC (%Er) | HQC (%Er) | |
Bromazepam | −2.10 | −1.20 | 0.98 | −6.77 | −5.90 | −3.83 | −12.9 | −12.1 | −10.1 |
Temazepam | −4.40 | −1.59 | −1.94 | −9.17 | −4.18 | −2.91 | −10.8 | −7.97 | −10.4 |
Oxazepam | −1.86 | −1.60 | −1.50 | −8.53 | −3.80 | −0.80 | −9.28 | −5.00 | −7.60 |
Alprazolam | −6.51 | 0.20 | 0.99 | −5.94 | −3.40 | −1.88 | −7.85 | −4.00 | −5.35 |
7-aminoflunitrazepam (7-AF) | 0.80 | −2.97 | 1.20 | −4.00 | −7.59 | −3.62 | −10.3 | −13.6 | −9.92 |
Methadone | −6.75 | −3.78 | −4.61 | −1.84 | −5.78 | −3.14 | −2.86 | −4.38 | −5.88 |
Cathine | −4.33 | −5.02 | −3.96 | −1.57 | −3.82 | −2.67 | −8.01 | −10.1 | −9.04 |
Mescaline | −5.81 | −4.18 | −7.21 | −7.25 | −5.98 | −4.62 | −8.92 | −10.2 | −10.4 |
25B-NB2OMe | 1.88 | −5.99 | −1.96 | −2.97 | −8.47 | −6.63 | −10.3 | −13.8 | −11.4 |
25C-NB2OMe | −4.82 | −4.38 | −0.99 | −7.60 | −7.17 | −3.87 | −13.6 | −13.2 | −10.2 |
25I-NB2OMe | −6.41 | −2.83 | −6.67 | −5.48 | −1.86 | −5.73 | −9.82 | −10.1 | −8.53 |
Mephedrone | −4.12 | −5.01 | −5.98 | −3.16 | −4.06 | −5.04 | −9.22 | −11.6 | −8.92 |
AH-7921 | 5.03 | −5.99 | −4.16 | 6.08 | −5.05 | −3.20 | 0.63 | −9.18 | −5.94 |
1-Benzylpiperazine | −5.04 | −4.37 | −2.91 | −7.80 | −7.15 | −5.74 | −13.8 | −13.2 | −11.9 |
Methylone | −7.07 | 0.20 | −4.90 | −7.99 | −0.79 | −5.84 | −10.5 | −5.96 | −6.00 |
3,4-Methylenedioxypyrovalerone (MDPV) | −2.90 | −7.31 | −4.55 | −3.86 | −8.23 | −5.50 | −6.46 | −9.09 | −7.43 |
JWH-018 | −1.02 | −3.54 | −2.94 | −2.00 | −4.50 | −3.90 | −5.49 | −5.31 | −5.49 |
Diazepam | 1.70 | −1.98 | −5.69 | −1.26 | −4.83 | −8.43 | −6.38 | −7.91 | −11.8 |
Cocaine | −7.81 | −2.00 | −3.48 | −6.25 | −6.00 | −3.89 | −12.4 | −12.1 | −10.2 |
Benzoylecgonine | −8.64 | −4.38 | −2.21 | −4.94 | −4.78 | −6.84 | −11.5 | −14.3 | −8.25 |
Methylecgonine | −6.51 | −2.02 | −6.25 | −9.24 | −4.87 | −8.98 | −14.8 | −11.1 | −14.9 |
Cocaethylene | −5.49 | −1.63 | 0.40 | −9.02 | −2.04 | −7.24 | −14.5 | −1.22 | −8.85 |
3,4-methylenedioxymethamphetamine (MDMA) | −5.83 | −8.30 | −0.20 | −4.93 | −9.88 | −5.79 | −5.83 | −13.0 | −6.59 |
Tetrahydrocannabinol (THC) | −2.90 | −7.95 | −8.33 | −5.73 | −10.63 | −11.00 | −11.9 | −13.8 | −14.8 |
Cannabinol (CBN) | −4.78 | −6.64 | −8.93 | −8.37 | −8.30 | −12.30 | −14.7 | −11.2 | −13.5 |
Cannabidiol (CBD) | −6.01 | −9.88 | −7.37 | −4.72 | −7.00 | −8.37 | −10.7 | −14.0 | −10.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meikopoulos, T.; Gika, H.; Theodoridis, G.; Begou, O. Detection of 26 Drugs of Abuse and Metabolites in Quantitative Dried Blood Spots by Liquid Chromatography–Mass Spectrometry. Molecules 2024, 29, 975. https://doi.org/10.3390/molecules29050975
Meikopoulos T, Gika H, Theodoridis G, Begou O. Detection of 26 Drugs of Abuse and Metabolites in Quantitative Dried Blood Spots by Liquid Chromatography–Mass Spectrometry. Molecules. 2024; 29(5):975. https://doi.org/10.3390/molecules29050975
Chicago/Turabian StyleMeikopoulos, Thomas, Helen Gika, Georgios Theodoridis, and Olga Begou. 2024. "Detection of 26 Drugs of Abuse and Metabolites in Quantitative Dried Blood Spots by Liquid Chromatography–Mass Spectrometry" Molecules 29, no. 5: 975. https://doi.org/10.3390/molecules29050975
APA StyleMeikopoulos, T., Gika, H., Theodoridis, G., & Begou, O. (2024). Detection of 26 Drugs of Abuse and Metabolites in Quantitative Dried Blood Spots by Liquid Chromatography–Mass Spectrometry. Molecules, 29(5), 975. https://doi.org/10.3390/molecules29050975