Design of Molecularly Imprinted Polymers Using Supercritical Carbon Dioxide Technology
Abstract
:1. Introduction
2. Dry–Powder Molecularly Imprinted Polymers (MIPs)
Template | Nature of Template | Functional Monomer(s) | Crosslinker | Cosolvent | Initiator | T (°C) | p (bar) | IF | Application | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
Acetylsalicylic acid | Drug | - | EGDMA | - | AIBN AIBN | 65 | 190 | - | Drug delivery | 2006 | [19] |
Salicylic acid | Drug | - | |||||||||
(R,S)–Propranolol | Drug | MAA | DVB | - | AIBN | 80 | 250 | - | Separation | 2006 | [30] |
- | 60 | 125 | 1.5 | ||||||||
ACN | AIBN | 15.7 | |||||||||
(S)–Propranolol | - | 20.7 | |||||||||
Boc–L–tryptophan | Amino acid | - | EGDMA | - | AIBN | 65 | 210 | - | Separation | 2010 | [21] |
NIPAAm | |||||||||||
Flufenamic acid | Drug | MAA | EGDMA | - | AIBN | 65 | 210 | - | Drug delivery | 2011 | [28] |
NIPAAm | |||||||||||
Ibuprofen | Drug | DMAEMA | EGDMA | - | AIBN | 65 | 210 | - | Drug delivery | 2011 | [31] |
Bisphenol A | Impurity | - | EGDMA | ACN | AIBN | 65 | 210 | 2.3 | Wastewater treatment | 2012 | [32] |
Bisphenol A | Impurity | MMA; MAA | EGDMA | - | AIBN | 70 | 300 | 5.8 | Separation | 2012 | [25] |
2,4–dichlorophenoxyacetic acid | 5.3 | ||||||||||
Acetaminophen | Drug | MMA; MAA | EGDMA | - | AIBN | 65 | 300 | - | Wastewater treatment | 2013 | [23] |
MMA; 4VP | 3.8 | ||||||||||
Aspirin | Drug | MMA; MAA | - | ||||||||
MMA; 4VP | 3.9 | ||||||||||
Carbamazepine | Drug | MAA | EGDMA | - | AIBN | 65 | 300 | 3.8 | Wastewater treatment | 2014 | [33] |
Labdanolic acid | Natural drug | DMAEMA | EGDMA | ACN | AIBN | 65 | 222 | - | Separation | 2014 | [34] |
Dibenzothiophene sulfone | Impurity | MAA | EGDMA | - | AIBN | 65 | 222 | 1.3 | Separation | 2014 | [35] |
Gallic acid | Drug | MAA; MMA | EGDMA | THF | AIBN | 65 | 300 | 3.6 | Separation | 2017 | [22] |
Acetamide | Impurity | MAA | EGDMA | - | AIBN | 65 | 210 | 1.4 | Separation | 2017 | [26] |
MAM | ACN | 2.5 | |||||||||
MAA | - | 4.5 | |||||||||
MAM | ACN | 1.8 | |||||||||
Acetamide | Impurity | ITA | EGDMA | - | AIBN | 65 | 210 | 1.3 | Separation | 2017 | [29] |
HEMA | 1.1 | ||||||||||
Metronidazole | Drug | ITA | EGDMA | - | AIBN | 65 | 210 | - | Drug delivery | 2018 | [27] |
Bisphenol A | Impurity | FMMA | EGDMA | - | AIBN | 65 | 220 | 8.5 | Wastewater treatment/ Sensing | 2018 | [36] |
Benzamide | Impurity | MAM | EGDMA | - | AIBN | 65 | 210 | 1.2 | Separation | 2018 | [37] |
Pivalamide | 1.1 | ||||||||||
Vanillic acid | Drug | MAA; MMA | EGDMA | THF | AIBN | 65 | 300 | 2.7 | Separation | 2021 | [24] |
Cholesterol | Steroid | MAA | DVB | DMF | AIBN | 65 | 280 | - | Catalysis | 2022 | [38] |
4–Dimethylaminopiridine | Impurity | MAA | EGDMA | - | AIBN | 65 | 210 | 1.7 | Separation | 2023 | [39] |
L–leucine | Amino acid | 2VP | EGDMA | EtOAc | V–65 | 45 | 200 | 12.0 | Separation | 2023 | [12] |
AM | 3.9 | ||||||||||
2V; AM | 2.2 |
3. Molecularly Imprinted 3D Porous Structures and Supported Devices
MIP–Based Membranes | Template | T (°C) | p (bar) | Reaction Time (h) | Cosolvent | IF | Application | Year | Ref. |
---|---|---|---|---|---|---|---|---|---|
PSMA | Uracil | 35 to 50 | 160 | 2 | DMF or DMSO, or NMP | 5.0 | Separation | 2008 | [40] |
PA6/PSMA | Oleanolic acid | 35 to 50 | 120 to 170 | 1.5 to 2.5 | THF | 1.1 | Separation | 2011 | [41] |
Poly(MAA–co–EGDMA) | Bisphenol A | 45 | 200 | 3 | DMF | 1.3 | Separation | 2012 | [42] |
Poly(DM–co–EGDMA) | Bisphenol A | 45 | 200 | 3 | DMF | 2.1 | Separation | 2012 | [32] |
MIP–supported particles | |||||||||
CdTe | Bisphenol A | 65 | 280 | 24 | - | 1.3 | Sensing | 2014 | [43] |
Large MIP–layered silica core–shell beads | Acetamide | 65 | 210 | 24 | - | - | Separation | 2017 | [44] |
4. Material Design Tools
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Acronyms
ACET—Acetamide |
ACN—Acetonitrile |
AIBN—Azobisisobutyronitrile |
AM—Acrylamide |
API—Active Pharmaceutical Ingredient |
BIS—Bisacrylamide |
BPA—Bisphenol A |
CdTe—Cadmium telluride |
DM—Dimethacrylate |
DMAEMA—2–(Dimethylamino)ethyl methacrylate |
DMAP—4–Dimethylaminopiridine |
DMF—Dimethylformamide |
DMSO—Dimethyl sulfoxide |
DOE—Design of experiments |
DVB—Divinylbenzene |
EDM—Electric dipole moment |
EGDMA—Ethylene glycol dimethacrylate |
EtOAc—Ethyl acetate |
FMMA—Ferrocenylmethyl methacrylate |
HEMA—2–Hydroxyethyl methacrylate |
IF—Imprinting factor = binding capacity from MIP divided by the binding capacity from NIP |
ITA—Itaconic acid |
LEU—L–Leucine |
MAA—Methacrylic acid |
MAM—Methacrylamide |
MD—Molecular dynamics |
MIM—Molecular imprinted membrane |
MIP—Molecular imprinted polymer |
ML—Machine learning |
MM—Molecular mechanics |
MMA—Methyl Methacrylate |
NIP—Non–Imprinted Polymer |
NIPAAm—N–Isopropylacrylamide |
NMP—N–Methyl–2–pyrrolidone |
p—Pressure |
PA6—Polyamide–6 |
pc—Critical pressure |
polyDEGDMA—Poly(diethylene glycol dimethacrylate) |
PSMA—Poly(styrene-co-maleic acid) |
Q—Binding capacity |
QDs—Quantum dots |
QM—Quantum mechanics |
scCO2—Supercritical carbon dioxide |
T—Temperature |
Tc—Critical temperature |
T:M—Template−monomer |
TEMPO—2,2,6,6–Tetramethyl–1–piperidinyloxy |
THF—Tetrahydrofuran |
V–65—2,2’–Azobis(2,4–dimethylvaleronitrile) |
2VP—2–Vinylpyridine |
4VP—4–Vinylpyridine |
References
- Dabrowski, M.; Lach, P.; Cieplak, M.; Kutner, W. Nanostructured Molecularly Imprinted Polymers for Protein Chemosensing. Biosens. Bioelectron. 2018, 102, 17–26. [Google Scholar] [CrossRef]
- Zeng, F.; Zimmerman, S.C. Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. Chem. Rev. 1997, 97, 1681–1712. [Google Scholar] [CrossRef]
- Wei, Z.; Duan, H.; Weng, G.; He, J. Metals in Polymers: Hybridization Enables New Functions. J. Mater. Chem. C Mater. 2020, 8, 15956–15980. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, N.; Xu, Y.; Li, Z.; Yan, C.; Mei, K.; Ding, M.; Ding, S.; Guan, P.; Qian, L.; et al. Molecularly Imprinted Materials for Selective Biological Recognition. Macromol. Rapid Commun. 2019, 40, 1900096. [Google Scholar] [CrossRef]
- Fresco-Cala, B.; Batista, A.D.; Cárdenas, S. Molecularly Imprinted Polymer Micro- And Nano-Particles: A Review. Molecules 2020, 25, 4740. [Google Scholar] [CrossRef]
- Polaris Market Research Chromatography Resin Market Share, Size, Trends, Industry Analysis Report, By Type (Synthetic Polymer, Natural Polymer, Others); By Application (Food & Beverage, Pharmaceutical & Biotechnology, Water & Environmental Analysis, Others); By Technology; By Region; Segment Forecast, 2021–2028. Available online: https://www.polarismarketresearch.com/industry-analysis/chromatography-resin-market (accessed on 28 November 2023).
- The Sustainable Development Agenda. Available online: https://sdgs.un.org/goals (accessed on 7 December 2023).
- Chen, T.L.; Kim, H.; Pan, S.Y.; Tseng, P.C.; Lin, Y.P.; Chiang, P.C. Implementation of Green Chemistry Principles in Circular Economy System towards Sustainable Development Goals: Challenges and Perspectives. Sci. Total Environ. 2020, 716, 136998. [Google Scholar] [CrossRef]
- Viveiros, R.; Rebocho, S.; Casimiro, T. Green Strategies for Molecularly Imprinted Polymer Development. Polymers 2018, 10, 306. [Google Scholar] [CrossRef]
- Wu, X.; Du, J.; Li, M.; Wu, L.; Han, C.; Su, F. Recent Advances in Green Reagents for Molecularly Imprinted Polymers. RSC Adv. 2018, 8, 311–327. [Google Scholar] [CrossRef]
- Donato, L.; Nasser, I.I.; Majdoub, M.; Drioli, E. Green Chemistry and Molecularly Imprinted Membranes. Membranes 2022, 12, 472. [Google Scholar] [CrossRef] [PubMed]
- Furtado, A.I.; Viveiros, R.; Bonifácio, V.D.B.; Melo, A.; Casimiro, T. Biomolecular Fishing: Design, Green Synthesis, and Performance of L-Leucine-Molecularly Imprinted Polymers. ACS Omega 2023, 8, 9179–9186. [Google Scholar] [CrossRef] [PubMed]
- Madikizela, L.M.; Ncube, S.; Nomngongo, P.N.; Pakade, V.E. Molecular Imprinting with Deep Eutectic Solvents: Synthesis, Applications, Their Significance, and Benefits. J. Mol. Liq. 2022, 362, 119696. [Google Scholar] [CrossRef]
- Boyère, C.; Jérôme, C.; Debuigne, A. Input of Supercritical Carbon Dioxide to Polymer Synthesis: An Overview. Eur. Polym. J. 2014, 61, 45–63. [Google Scholar] [CrossRef]
- Yadav, P.; Agrawal, M.; Alexander, A.; Patel, R.; Siddique, S.; Saraf, S.; Ajazuddin. Polymer Production and Processing Using Supercritical Carbon Dioxide. In Green Sustainable Process for Chemical and Environmental Engineering and Science: Supercritical Carbon Dioxide as Green Solvent; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–16. [Google Scholar] [CrossRef]
- Tutek, K.; Masek, A.; Kosmalska, A.; Cichosz, S. Application of Fluids in Supercritical Conditions in the Polymer Industry. Polymers 2021, 13, 729. [Google Scholar] [CrossRef] [PubMed]
- Furtado, A.I.; Viveiros, R.; Casimiro, T. MIP Synthesis and Processing Using Supercritical Fluids. Methods Mol. Biol. 2021, 2359, 19–42. [Google Scholar] [CrossRef] [PubMed]
- CleanMIPTech Group. Available online: https://sites.fct.unl.pt/clean-mip-tech/home (accessed on 7 December 2023).
- Duarte, A.R.C.; Casimiro, T.; Aguiar-Ricardo, A.; Simplício, A.L.; Duarte, C.M.M. Supercritical Fluid Polymerisation and Impregnation of Molecularly Imprinted Polymers for Drug Delivery. J. Supercrit. Fluids 2006, 39, 102–106. [Google Scholar] [CrossRef]
- Ellwanger, A.; Berggren, C.; Bayoudh, S.; Crecenzi, C.; Karlsson, L.; Owens, P.K.; Ensing, K.; Cormack, P.; Sherrington, D.; Sellergren, B. Evaluation of Methods Aimed at Complete Removal of Template from Molecularly Imprinted Polymers. Analyst 2001, 126, 784–792. [Google Scholar] [CrossRef]
- Da Silva, M.S.; Vão, E.R.; Temtem, M.; Mafra, L.; Caldeira, J.; Aguiar-Ricardo, A.; Casimiro, T. Clean Synthesis of Molecular Recognition Polymeric Materials with Chiral Sensing Capability Using Supercritical Fluid Technology. Appl. HPLC Station. Phases. Biosens. Bioelectron. 2010, 25, 1742–1747. [Google Scholar] [CrossRef]
- Byun, H.S.; Chun, D. Adsorption and Separation Properties of Gallic Acid Imprinted Polymers Prepared Using Supercritical Fluid Technology. J. Supercrit. Fluids 2017, 120, 249–257. [Google Scholar] [CrossRef]
- Do Yoon, S.; Byun, H.S. Molecularly Imprinted Polymers for Selective Separation of Acetaminophen and Aspirin by Using Supercritical Fluid Technology. Chem. Eng. J. 2013, 226, 171–180. [Google Scholar] [CrossRef]
- Byun, H.S.; Chun, D.; Shim, W.G. Separation and Recognition Characteristics by MIP Manufacture Using Supercritical CO2 Technology. J. Ind. Eng. Chem. 2021, 97, 356–367. [Google Scholar] [CrossRef]
- Byun, H.S.; Yang, D.S.; Cho, S.H. Synthesis and Characterization of High Selective Molecularly Imprinted Polymers for Bisphenol A and 2,4-Dichlorophenoxyacetic Acid by Using Supercritical Fluid Technology. Polymer 2013, 54, 589–595. [Google Scholar] [CrossRef]
- Viveiros, R.; Lopes, M.I.; Heggie, W.; Casimiro, T. Green Approach on the Development of Lock-and-Key Polymers for API Purification. Chem. Eng. J. 2017, 308, 229–239. [Google Scholar] [CrossRef]
- Marcelo, G.; Ferreira, I.C.; Viveiros, R.; Casimiro, T. Development of Itaconic Acid-Based Molecular Imprinted Polymers Using Supercritical Fluid Technology for PH-Triggered Drug Delivery. Int. J. Pharm. 2018, 542, 125–131. [Google Scholar] [CrossRef]
- Da Silva, M.S.; Nobrega, F.L.; Aguiar-Ricardo, A.; Cabrita, E.J.; Casimiro, T. Development of Molecularly ImprintedCo-Polymeric Devices for Controlled Delivery of Flufenamic Acid Using Supercritical Fluid Technology. J. Supercrit. Fluids 2011, 58, 150–157. [Google Scholar] [CrossRef]
- Viveiros, R.; Karim, K.; Piletsky, S.A.; Heggie, W.; Casimiro, T. Development of a Molecularly Imprinted Polymer for a Pharmaceutical Impurity in Supercritical CO2: Rational Design Using Computational Approach. J. Clean Prod. 2017, 168, 1025–1031. [Google Scholar] [CrossRef]
- Ye, L.; Yoshimatsu, K.; Kolodziej, D.; Da Cruz Francisco, J.; Dey, E.S. Preparation of Molecularly Imprinted Polymers in Supercritical Carbon Dioxide. J. Appl. Polym. Sci. 2006, 102, 2863–2867. [Google Scholar] [CrossRef]
- Da Silva, M.S.; Viveiros, R.; Morgado, P.I.; Aguiar-Ricardo, A.; Correia, I.J.; Casimiro, T. Development of 2-(Dimethylamino)Ethyl Methacrylate-Based Molecular Recognition Devices for Controlled Drug Delivery Using Supercritical Fluid Technology. Int. J. Pharm. 2011, 416, 61–68. [Google Scholar] [CrossRef]
- Da Silva, M.S.; Viveiros, R.; Aguiar-Ricardo, A.; Bonifácio, V.D.B.; Casimiro, T. Supercritical Fluid Technology as a New Strategy for the Development of Semi-Covalent Molecularly Imprinted Materials. RSC Adv. 2012, 2, 5075–5079. [Google Scholar] [CrossRef]
- Lee, J.C.; Kim, C.R.; Byun, H.S. Synthesis and Adsorption Properties of Carbamazepine Imprinted Polymer by Dispersion Polymerization in Supercritical Carbon Dioxide. Korean J. Chem. Eng. 2014, 31, 2266–2273. [Google Scholar] [CrossRef]
- Martins, A.N.C.; Simeonov, S.P.; Frija, L.M.T.; Viveiros, R.; Lourenço, A.; da Silva, M.S.; Casimiro, T.; Afonso, C.A.M. Isolation, Analytical Quantification and Seasonal Variation of Labdanolic Acid from the Portuguese-Grown Cistus Ladaniferus. Ind. Crops Prod. 2014, 60, 226–232. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Viveiros, R.; Lourenço, A.; Da Silva, M.S.; Rosatella, A.; Casimiro, T.; Afonso, C.A.M. Integrated Desulfurization of Diesel by Combination of Metal-Free Oxidation and Product Removal by Molecularly Imprinted Polymers. RSC Adv. 2014, 4, 54948–54952. [Google Scholar] [CrossRef]
- Rebocho, S.; Cordas, C.M.; Viveiros, R.; Casimiro, T. Development of a Ferrocenyl-Based MIP in Supercritical Carbon Dioxide: Towards an Electrochemical Sensor for Bisphenol A. J. Supercrit. Fluids 2018, 135, 98–104. [Google Scholar] [CrossRef]
- Viveiros, R.; Bonifácio, V.D.B.; Heggie, W.; Casimiro, T. Green Development of Polymeric Dummy Artificial Receptors with Affinity for Amide-Based Pharmaceutical Impurities. ACS Sustain. Chem. Eng. 2019, 7, 15445–15451. [Google Scholar] [CrossRef]
- Viveiros, R.; Maia, L.B.; Corvo, M.C.; Bonifácio, V.D.B.; Heggie, W.; Casimiro, T. Enzyme-Inspired Dry-Powder Polymeric Catalyst for Green and Fast Pharmaceutical Manufacturing Processes. Catal. Commun. 2022, 172, 106537. [Google Scholar] [CrossRef]
- Viveiros, R.; Pinto, J.J.; Costa, N.; Heggie, W.; Casimiro, T. Development of Affinity Polymeric Particles for the Removal of 4-Dimethylaminopyridine (DMAP) from Active Pharmaceutical Ingredient Crude Streams Using a Green Technology. J. Supercrit. Fluids 2023, 194, 105853. [Google Scholar] [CrossRef]
- Kobayashi, T.; Leong, S.S.; Zhang, Q. Using Polystyrene-Co-Maleic Acid for Molecularly Imprinted Membranes Prepared in Supercritical Carbon Dioxide. J. Appl. Polym. Sci. 2008, 108, 757–768. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.; Zhang, W.; Pan, J.; Liu, L.; Zhang, H.; Zhao, D.; Li, Z. Preparation and Adsorption Properties of PA6/PSMA-OA Molecularly Imprinted Composite Membranes in Supercritical CO2. Bull. Korean Chem. Soc. 2011, 32, 3348–3354. [Google Scholar] [CrossRef]
- Soares da Silva, M.; Viveiros, R.; Coelho, M.B.; Aguiar-Ricardo, A.; Casimiro, T. Supercritical CO2-Assisted Preparation of a PMMA Composite Membrane for Bisphenol A Recognition in Aqueous Environment. Chem. Eng. Sci. 2012, 68, 94–100. [Google Scholar] [CrossRef]
- Lourenço, A.; Viveiros, R.; Mouro, A.; Lima, J.C.; Bonifácio, V.D.B.; Casimiro, T. Supercritical CO2-Assisted Synthesis of an Ultrasensitive Amphibious Quantum Dot-Molecularly Imprinted Sensor. RSC Adv. 2014, 4, 63338–63341. [Google Scholar] [CrossRef]
- Viveiros, R.; Dias, F.M.; Maia, L.B.; Heggie, W.; Casimiro, T. Green Strategy to Produce Large Core–Shell Affinity Beads for Gravity-Driven API Purification Processes. J. Ind. Eng. Chem. 2017, 54, 341–349. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, S.; Ma, X.; Wilson, G.; Zong, R.; Fu, Q. Antibody Mimics for Precise Identification of Proteins Based on Molecularly Imprinted Polymers: Developments and Prospects. Chem. Eng. J. 2024, 480, 148115. [Google Scholar] [CrossRef]
- Shi, W.; He, G.; Liu, H.; Ju, J.; Wang, T.; Li, X.; Nie, F. Fabrication of Polyetherimide Microporous Membrane Using Supercritical CO2 Technology and Its Application for Affinity Membrane Matrix. J. Supercrit. Fluids 2014, 85, 151–158. [Google Scholar] [CrossRef]
- Singh, V.; Patra, S.; Murugan, N.A.; Toncu, D.C.; Tiwari, A. Recent Trends in Computational Tools and Data-Driven Modeling for Advanced Materials. Mater. Adv. 2022, 3, 4069–4087. [Google Scholar] [CrossRef]
- Rajpal, S.; Mishra, P.; Mizaikoff, B. Rational In Silico Design of Molecularly Imprinted Polymers: Current Challenges and Future Potential. Int. J. Mol. Sci. 2023, 24, 6785. [Google Scholar] [CrossRef]
- Nicholls, I.A.; Golker, K.; Wiklander, J.G. Molecular Dynamics in the Study and Development of MolecuLarly Imprinted Materials-Status Quo, Quo Vadis? Preprints 2022, 2022020154. [Google Scholar] [CrossRef]
- Zink, S.; Moura, F.A.; Autreto, P.A.D.S.; Galvão, D.S.; Mizaikoff, B. Virtually Imprinted Polymers (VIPs): Understanding Molecularly Templated Materials: Via Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2018, 20, 13145–13152. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Adutwum, L.A.; Oliynyk, A.O.; Luber, E.J.; Olsen, B.C.; Mar, A.; Buriak, J.M. How to Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics. ACS Nano 2018, 12, 7434–7444. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, S.; Schwalbe-Koda, D.; Mohapatra, S.; Damewood, J.; Greenman, K.P.; Gómez-Bombarelli, R. Learning Matter: Materials Design with Machine Learning and Atomistic Simulations. Acc Mater. Res. 2022, 3, 343–357. [Google Scholar] [CrossRef]
- Ingrosso, F.; Ruiz-López, M.F. Modeling Solvation in Supercritical CO2. ChemPhysChem 2017, 18, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.B.; Shim, J.-J. Solubility in Supercritical Carbon Dioxide; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Antonie, P.; Pereira, C.G. Solubility of Functional Compounds in Supercritical CO2: Data Evaluation and Modelling. J. Food Eng. 2019, 245, 131–138. [Google Scholar] [CrossRef]
- Fat’hi, M.R.; Yamini, Y.; Sharghi, H.; Shamsipur, M. Solubilities of Some 1,4-Dihydroxy-9,10-Anthraquinone Derivatives in Supercritical Carbon Dioxide. J. Chem. Eng. Data 1998, 43, 400–402. [Google Scholar] [CrossRef]
- De Zordi, N.; Kikic, I.; Moneghini, M.; Solinas, D. Solubility of Pharmaceutical Compounds in Supercritical Carbon Dioxide. J. Supercrit. Fluids 2012, 66, 16–22. [Google Scholar] [CrossRef]
- Roach, L.; Rignanese, G.M.; Erriguible, A.; Aymonier, C. Applications of Machine Learning in Supercritical Fluids Research. J. Supercrit. Fluids 2023, 202, 106051. [Google Scholar] [CrossRef]
- Huwaimel, B.; Abouzied, A.S. Development of Green Technology Based on Supercritical Solvent for Production of Nanomedicine: Solubility Prediction Using Computational Methods. J. Mol. Liq. 2023, 376, 121471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furtado, A.I.; Bonifácio, V.D.B.; Viveiros, R.; Casimiro, T. Design of Molecularly Imprinted Polymers Using Supercritical Carbon Dioxide Technology. Molecules 2024, 29, 926. https://doi.org/10.3390/molecules29050926
Furtado AI, Bonifácio VDB, Viveiros R, Casimiro T. Design of Molecularly Imprinted Polymers Using Supercritical Carbon Dioxide Technology. Molecules. 2024; 29(5):926. https://doi.org/10.3390/molecules29050926
Chicago/Turabian StyleFurtado, Ana I., Vasco D. B. Bonifácio, Raquel Viveiros, and Teresa Casimiro. 2024. "Design of Molecularly Imprinted Polymers Using Supercritical Carbon Dioxide Technology" Molecules 29, no. 5: 926. https://doi.org/10.3390/molecules29050926
APA StyleFurtado, A. I., Bonifácio, V. D. B., Viveiros, R., & Casimiro, T. (2024). Design of Molecularly Imprinted Polymers Using Supercritical Carbon Dioxide Technology. Molecules, 29(5), 926. https://doi.org/10.3390/molecules29050926