A Versatile Approach for the Synthesis of Antimicrobial Polymer Brushes on Natural Rubber/Graphene Oxide Composite Films via Surface-Initiated Atom-Transfer Radical Polymerization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of NR/GO Film, NR/GO-Br Film, and NR/GO-PSBMA Film
2.2. Antibacterial Activity of NR/GO Films
3. Experimental Section
3.1. Materials
3.2. Preparation of Brominated NR/GO Composite Films
3.3. Preparation of Brominated NR/GO-Br Composite Films
3.4. Preparation of PSBMA-Modified NR/GO Composite Films (NR/GO-PSBMA) Using SI-ATRP Methods
3.5. Evaluation of Antibacterial Properties
3.5.1. Antibacterial Activity by Disc Diffusion Assay
3.5.2. Antimicrobial Activity Assessment of NR Films by Co-Culture and Plate Coating Count Test
3.5.3. The Adhesion of Bacteria on the Composite Films Was Evaluated Using Scanning Electron Microscopy
3.6. Measurement of Toxicity toward Mammalian Cells
3.7. Characterizations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yip, E.; Cacioli, P. The manufacture of gloves from natural rubber latex. J. Allergy Clin. Immunol. 2002, 110, S3–S14. [Google Scholar] [CrossRef] [PubMed]
- Sarih, N.M.; Dzulkafly, N.S.; Maher, S.; Rashid, A.A. Wearable Natural Rubber Latex Gloves with Curcumin for Torn Glove Detection in Clinical Settings. Polymers 2022, 14, 3048. [Google Scholar] [CrossRef] [PubMed]
- Bó, M.C.; Gerofi, J.P.; Visconte, L.L.Y.; Nunes, R.C.R. Prediction of shelf life of natural rubber male condoms—A necessity. Polym. Test. 2007, 26, 306–314. [Google Scholar] [CrossRef]
- Bó, M.C.; Lopes, L.; Visconte, L.L.Y.; Nunes, R.C.R. Thermal Degradation of Natural Rubber Male Condoms. Macromol. Symp. 2006, 245–246, 668–676. [Google Scholar] [CrossRef]
- Lambert, S.; Johnson, C.; Keller, V.D.J.; Sinclair, C.J.; Williams, R.J.; Boxall, A.B.A. Do natural rubber latex condoms pose a risk to aquatic systems? Environ. Sci. Process. Impacts 2013, 15, 2312–2320. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, Q.; Lin, C.; Lin, Z.; Chang, L.; Shao, X.; Li, Y.; Zhang, J.; Fan, Z.; Wen, X. Infection prevention with natural protein-based coating on the surface of Foley catheters: A randomised controlled clinical trial. Lancet 2016, 388, S7. [Google Scholar] [CrossRef]
- Cheo, S.H.Y.; Wang, P.; Tan, K.L.; Ho, C.C.; Kang, E.T. Surface modification of natural rubber latex films via grafting of poly(ethylene glycol) for reduction in protein adsorption and platelet adhesion. J. Mater. Sci. Mater. Med. 2001, 12, 377–384. [Google Scholar] [CrossRef]
- Kerdlap, W.; Thongpitak, C.; Keawmaungkom, S.; Warakulwit, C.; Klangprapan, S.; Choowongkomon, K.; Chisti, Y.; Hansupalak, N. Natural rubber as a template for making hollow silica spheres and their use as antibacterial agents. Microporous Mesoporous Mater. 2019, 273, 10–18. [Google Scholar] [CrossRef]
- Li, T.; Su, Y.; Wang, D.; Mao, Y.; Wang, W.; Liu, L.; Wen, S. High antibacterial and barrier properties of natural rubber comprising of silver-loaded graphene oxide. Int. J. Biol. Macromol. 2022, 195, 449–455. [Google Scholar] [CrossRef]
- Zhang, N.; Cao, H. Enhancement of the Antibacterial Activity of Natural Rubber Latex Foam by Blending It with Chitin. Materials 2020, 13, 1039. [Google Scholar] [CrossRef]
- Ye, X.; Feng, J.; Zhang, J.; Yang, X.; Liao, X.; Shi, Q.; Tan, S. Controlled release and long-term antibacterial activity of reduced graphene oxide/quaternary ammonium salt nanocomposites prepared by non-covalent modification. Colloids Surf. B Biointerfaces 2017, 149, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Arakkal, A.; Rathinam, P.; Sirajunnisa, P.; Gopinathan, H.; Vengellur, A.; Bhat, S.G.; Sailaja, G. Antibacterial natural rubber latex films with surface-anchored quaternary poly(4-vinylpyridine) polyelectrolyte. React. Funct. Polym. 2022, 172, 105190. [Google Scholar] [CrossRef]
- Arakkal, A.; Aazem, I.; Honey, G.; Vengellur, A.; Bhat, S.G.; Sailaja, G.C.S. Antibacterial Polyelectrolytic chitosan derivatives conjugated natural rubber latex films with minimized bacterial adhesion. J. Appl. Polym. Sci. 2020, 138, 49608. [Google Scholar] [CrossRef]
- Schlenoff, J.B. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir 2014, 30, 9625–9636. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; DeGrado, W.F. Amphiphilic Polymethacrylate Derivatives as Antimicrobial Agents. J. Am. Chem. Soc. 2005, 127, 4128–4129. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.-N.; Wen, T.-C.; Chang, Y. Zwitterionic surface grafting of epoxylated sulfobetaine copolymers for the development of stealth biomaterial interfaces. Acta Biomater. 2016, 40, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Wu, S.; Wang, L.; Shi, X.; Li, G. Effects of the morphology of sulfobetaine zwitterionic layers grafted onto a silicone surface on improving the hydrophilic stability, anti-bacterial adhesion properties, and biocompatibility. J. Appl. Polym. Sci. 2018, 135, 46860. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, W.; Dai, T.; He, J.; Ye, H.; Wang, Y. Facile fabrication of water-soluble polyacrylic acid encapsulated core@shell upconversion nanoparticles via metal-free light induced surface initiated atom transfer radical polymerization. Mater. Lett. 2020, 273, 127874. [Google Scholar] [CrossRef]
- Golriz, A.A.; Kaule, T.; Untch, M.B.; Kolman, K.; Berger, R.; Gutmann, J.S. Redox Active Polymer Brushes with Phenothiazine Moieties. ACS Appl. Mater. Interfaces 2013, 5, 2485–2494. [Google Scholar] [CrossRef]
- Randall, J.D.; Stanfield, M.K.; Eyckens, D.J.; Pinson, J.; Henderson, L.C. Expanding the Scope of Surface Grafted Polymers Using Electroinitiated Polymerization. Langmuir 2020, 36, 7217–7226. [Google Scholar] [CrossRef]
- Xu, X.; He, J.; Zeng, Y.; Yu, C.; Zhang, F. Controllable surface-initiated metal-free atom transfer radical polymerization of methyl methacrylate on mesoporous SBA-15 via reductive quenching. Eur. Polym. J. 2020, 131, 109724. [Google Scholar] [CrossRef]
- Zhang, Z.; Tam, K.C.; Sèbe, G.; Wang, X. Convenient characterization of polymers grafted on cellulose nanocrystals via SI-ATRP without chain cleavage. Carbohydr. Polym. 2018, 199, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Fromel, M.; Pester, C.W. Polycarbonate Surface Modification via Aqueous SI-PET-RAFT. Macromolecules 2022, 55, 4907–4915. [Google Scholar] [CrossRef]
- Joshi, T.; Nebhani, L. Light-regulated growth of polymer chains from the surface of RAFT agent primed mesoporous silica nanoparticles. Surf. Interfaces 2022, 29, 101764. [Google Scholar] [CrossRef]
- Li, M.; Fromel, M.; Ranaweera, D.; Rocha, S.; Boyer, C.; Pester, C.W. SI-PET-RAFT: Surface-Initiated Photoinduced Electron Transfer-Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Macro Lett. 2019, 8, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zeng, G.; Xu, D.; Liu, M.; Wang, K.; Li, Z.; Fu, L.; Zhang, Q.; Zhang, X.; Wei, Y. Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization. Mater. Sci. Eng. C 2017, 80, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Lönnberg, H.; Zhou, Q.; Brumer, H.; Teeri, T.T.; Malmström, E.; Hult, A. Grafting of Cellulose Fibers with Poly(ε-caprolactone) and Poly(l-lactic acid) via Ring-Opening Polymerization. Biomacromolecules 2006, 7, 2178–2185. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Z.; Li, J.; Li, Z.; Si, F.; Yang, H.; Kong, J. Dual signal amplification based on polysaccharide-initiated ring-opening polymerization and click polymerization for exosomes detection. Talanta 2021, 233, 122531. [Google Scholar] [CrossRef]
- Jordi, M.A.; Seery, T.A.P. Quantitative Determination of the Chemical Composition of Silica−Poly(norbornene) Nanocomposites. J. Am. Chem. Soc. 2005, 127, 4416–4422. [Google Scholar] [CrossRef]
- Krohm, F.; Kind, J.; Savka, R.; Janßen, M.A.; Herold, D.; Plenio, H.; Thiele, C.M.; Andrieu-Brunsen, A. Photochromic spiropyran- and spirooxazine-homopolymers in mesoporous thin films by surface initiated ROMP. J. Mater. Chem. C 2016, 4, 4067–4076. [Google Scholar] [CrossRef]
- Zhu, T.; Rahman, A.; Benicewicz, B.C. Synthesis of Well-Defined Polyolefin Grafted SiO2 Nanoparticles with Molecular Weight and Graft Density Control. ACS Macro Lett. 2020, 9, 1255–1260. [Google Scholar] [CrossRef]
- Ye, Q.; He, B.; Zhang, Y.; Zhang, J.; Liu, S.; Zhou, F. Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling. ACS Appl. Mater. Interfaces 2019, 11, 39171–39178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, S.; Chang, Y.; Jiang, S. Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings. J. Phys. Chem. B 2006, 110, 10799–10804. [Google Scholar] [CrossRef] [PubMed]
- Zoppe, J.O.; Ataman, N.C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H.-A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017, 117, 1105–1318. [Google Scholar] [CrossRef] [PubMed]
- Choothong, N.; Kosugi, K.; Yamamoto, Y.; Kawahara, S. Characterization of brominated natural rubber by solution-state 2D NMR spectroscopy. React. Funct. Polym. 2017, 113, 6–12. [Google Scholar] [CrossRef]
- Yang, X.; Liu, J.; Fan, D.; Cao, J.; Huang, X.; Zheng, Z.; Zhang, X. Scalable manufacturing of real-time self-healing strain sensors based on brominated natural rubber. Chem. Eng. J. 2020, 389, 124448. [Google Scholar] [CrossRef]
- Kawahara, S.; Shioyama, S.; Nuorn, C.; Fukuhara, L.; Ishii, H.; Yamamoto, Y.; Takenaka, K. Preparation and properties of phenyl-modified natural rubber. Polym. Adv. Technol. 2015, 26, 546–554. [Google Scholar] [CrossRef]
- Tévenot, Q.; Kawahara, S. ATRP-ARGET of a Styrene Monomer onto Modified Natural Rubber Latex as an Initiator. Langmuir 2021, 37, 6151–6157. [Google Scholar] [CrossRef]
- Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N.V.; Coote, M.L.; Matyjaszewski, K. Understanding Atom Transfer Radical Polymerization: Effect of Ligand and Initiator Structures on the Equilibrium Constants. J. Am. Chem. Soc. 2008, 130, 10702–10713. [Google Scholar] [CrossRef]
- Hernández, M.; Sanz, A.; Nogales, A.; Ezquerra, T.A.; López-Manchado, M.A. Structure and Segmental Dynamics Relationship in Natural Rubber/Layered Silicate Nanocomposites during Uniaxial Deformation. Macromolecules 2013, 46, 3176–3182. [Google Scholar] [CrossRef]
- Wu, X.; Lin, T.F.; Tang, Z.H.; Guo, B.C.; Huang, G.S. Natural rubber/graphene oxide composites: Effect of sheet size on mechanical properties and strain-induced crystallization behavior. Express Polym. Lett. 2015, 9, 672–685. [Google Scholar] [CrossRef]
- Sethulekshmi, A.S.; Saritha, A.; Joseph, K. A comprehensive review on the recent advancements in natural rubber nanocomposites. Int. J. Biol. Macromol. 2022, 194, 819–842. [Google Scholar] [CrossRef]
- Jereb, M.; Zupan, M.; Stavber, S. Visible-Light-Promoted Wohl–Ziegler Functionalization of Organic Molecules with N-Bromosuccinimide under Solvent-Free Reaction Conditions. Helv. Chim. Acta 2009, 92, 555–566. [Google Scholar] [CrossRef]
- Podgoršek, A.; Stavber, S.; Zupan, M.; Iskra, J. Visible light induced ‘on water’ benzylic bromination with N-bromosuccinimide. Tetrahedron Lett. 2006, 47, 1097–1099. [Google Scholar] [CrossRef]
- Saikia, I.; Borah, A.J.; Phukan, P. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis. Chem. Rev. 2016, 116, 6837–7042. [Google Scholar] [CrossRef] [PubMed]
- Kalelkar, P.P.; Geng, Z.; Cox, B.; Finn, M.; Collard, D.M. Surface-initiated atom-transfer radical polymerization (SI-ATRP) of bactericidal polymer brushes on poly(lactic acid) surfaces. Colloids Surf. B Biointerfaces 2022, 211, 112242. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wu, X.; Long, L.; Yuan, X.; Zhang, Q.; Xue, S.; Wen, S.; Yan, C.; Wang, J.; Cong, W. Improved antifouling properties of photobioreactors by surface grafted sulfobetaine polymers. Biofouling 2017, 33, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Pranantyo, D.; Xu, L.Q.; Neoh, K.G.; Kang, E.T.; Ng, Y.X.; Teo, S.L.M. Tea Stains-Inspired Initiator Primer for Surface Grafting of Antifouling and Antimicrobial Polymer Brush Coatings. Biomacromolecules 2015, 16, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Cao, Z. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Adv. Mater. 2010, 22, 920–932. [Google Scholar] [CrossRef]
- Li, G.; Xue, H.; Cheng, G.; Chen, S.; Zhang, F.; Jiang, S. Ultralow Fouling Zwitterionic Polymers Grafted from Surfaces Covered with an Initiator via an Adhesive Mussel Mimetic Linkage. J. Phys. Chem. B 2008, 112, 15269–15274. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Wu, Z.; Chen, H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater. 2015, 16, 1–13. [Google Scholar] [CrossRef]
- Barbon, S.M.; Truong, N.P.; Elliott, A.G.; Cooper, M.A.; Davis, T.P.; Whittaker, M.R.; Hawker, C.J.; Anastasaki, A. Elucidating the effect of sequence and degree of polymerization on antimicrobial properties for block copolymers11Electronic supplementary information (ESI) available. Polym. Chem. 2020, 11, 84–90. [Google Scholar] [CrossRef]
- Christofferson, A.J.; Elbourne, A.; Cheeseman, S.; Shi, Y.; Rolland, M.; Cozzolino, D.; Chapman, J.; McConville, C.F.; Crawford, R.J.; Wang, P.-Y.; et al. Conformationally tuned antibacterial oligomers target the peptidoglycan of Gram-positive bacteria. J. Colloid Interface Sci. 2020, 580, 850–862. [Google Scholar] [CrossRef] [PubMed]
- Lienkamp, K.; Madkour, A.E.; Musante, A.; Nelson, C.F.; Nüsslein, K.; Tew, G.N. Antimicrobial Polymers Prepared by ROMP with Unprecedented Selectivity: A Molecular Construction Kit Approach. J. Am. Chem. Soc. 2008, 130, 9836–9843. [Google Scholar] [CrossRef] [PubMed]
- El-Mokhtar, M.A.; Daef, E.; Hussein, A.A.R.M.; Hashem, M.K.; Hassan, H.M. Emergence of Nosocomial Pneumonia Caused by Colistin-Resistant Escherichia coli in Patients Admitted to Chest Intensive Care Unit. Antibiotics 2021, 10, 226. [Google Scholar] [CrossRef]
- Gu, G.; Erişen, D.E.; Yang, K.; Zhang, B.; Shen, M.; Zou, J.; Qi, X.; Chen, S.; Xu, X. Antibacterial and anti-inflammatory activities of chitosan/copper complex coating on medical catheters: In vitro and in vivo. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 1899–1910. [Google Scholar] [CrossRef]
- Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano 2011, 5, 6971–6980. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, L.; Li, Q.; Li, J.; Zhu, X.; Jiang, Y.; Sha, O.; Yang, X.; Xin, J.H.; Wang, J.; et al. Durable Antibacterial and Nonfouling Cotton Textiles with Enhanced Comfort via Zwitterionic Sulfopropylbetaine Coating. Small 2016, 12, 3516–3521. [Google Scholar] [CrossRef]
- Zhang, S.B.; Yang, X.H.; Tang, B.; Yuan, L.J.; Wang, K.; Liu, X.Y.; Zhu, X.L.; Li, J.N.; Ge, Z.C.; Chen, S.G. New insights into synergistic antimicrobial and antifouling cotton fabrics via dually finished with quaternary ammonium salt and zwitterionic sulfobetaine. Chem. Eng. J. 2018, 336, 123–132. [Google Scholar] [CrossRef]
- Jin, Y.; Pei, H.; Hu, W.; Zhu, Y.; Xu, H.; Ma, C.; Sun, J.; Li, H. A promising application of chitosan quaternary ammonium salt to removal of Microcystis aeruginosa cells from drinking water. Sci. Total Environ. 2017, 583, 496–504. [Google Scholar] [CrossRef]
- Discekici, E.H.; Anastasaki, A.; de Alaniz, J.R.; Hawker, C.J. Evolution and Future Directions of Metal-Free Atom Transfer Radical Polymerization. Macromolecules 2018, 51, 7421–7434. [Google Scholar] [CrossRef]
Samples | NR | NR/GO | NR/GO-Br | NR/GO-PSBMA |
---|---|---|---|---|
Modulus at 100% (MPa) | 2.05 ± 0.26 | 4.15 ± 0.35 | 4.23 ± 0.25 | 3.65 ± 0.18 |
Modulus at 300% (MPa) | 3.55 ± 0.30 | 6.95 ± 0.41 | 6.96 ± 0.33 | 5.63 ± 0.26 |
Tensile Strength (MPa) | 23.36 ± 0.35 | 33.39 ± 0.56 | 26.67 ± 0.39 | 24.50 ± 0.23 |
Elongation at Break (%) | 796 ± 15 | 700 ± 16 | 690 ± 12 | 705 ± 16 |
Sample | C1s (%) | N1s (%) | O1s (%) | Br3d (%) | S2p (%) | GD a (µg/cm2) | Gr b | WCA (°) |
---|---|---|---|---|---|---|---|---|
NR/GO | 86.68 | 0.51 | 12.81 | - | - | - | - | 118.8 |
NR/GO-Br | 74.41 | 1.67 | 13.25 | 10.67 | - | - | - | 106.6 |
NR/GO-PSBMA2h | 73.14 | 2.24 | 16.58 | 5.92 | 2.12 | 24.68 | 38.13 | 80.5 |
NR/GO-PSBMA4h | 72.76 | 2.92 | 18.18 | 3.79 | 2.35 | 53.45 | 42.45 | 65.9 |
NR/GO-PSBMA6h | 72.17 | 4.09 | 19.34 | 1.01 | 3.39 | 81.46 | 60.97 | 56.4 |
NR/GO-PSBMA8h | 67.43 | 4.96 | 22.99 | 0.20 | 4.42 | 124.18 | 79.50 | 51.2 |
neat SBMA | 61.11 | 5.56 | 27.78 | - | 5.56 | - | - | - |
Peak | Position | Percentage (%) | Theoretical Percentage PSBMA (%) |
---|---|---|---|
C–C | 284.7 | 60.36 | 46.15 |
C–N+ | 285.98 | 17.80 | 30.77 |
C–O | 286.58 | 9.22 | 7.69 |
C–SO3− | 287.3 | 5.10 | 7.69 |
O–C=O | 288.68 | 7.52 | 7.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Li, B.; Liu, J.; Sun, S.; Zhang, Y.; Zhang, D.; Li, C.; Sun, T.; Qin, H.; Shi, J.; et al. A Versatile Approach for the Synthesis of Antimicrobial Polymer Brushes on Natural Rubber/Graphene Oxide Composite Films via Surface-Initiated Atom-Transfer Radical Polymerization. Molecules 2024, 29, 913. https://doi.org/10.3390/molecules29040913
Zhu W, Li B, Liu J, Sun S, Zhang Y, Zhang D, Li C, Sun T, Qin H, Shi J, et al. A Versatile Approach for the Synthesis of Antimicrobial Polymer Brushes on Natural Rubber/Graphene Oxide Composite Films via Surface-Initiated Atom-Transfer Radical Polymerization. Molecules. 2024; 29(4):913. https://doi.org/10.3390/molecules29040913
Chicago/Turabian StyleZhu, Wenya, Bangsen Li, Jinrui Liu, Shishu Sun, Yan Zhang, Dashuai Zhang, Chen Li, Tianyi Sun, Huaide Qin, Jianjun Shi, and et al. 2024. "A Versatile Approach for the Synthesis of Antimicrobial Polymer Brushes on Natural Rubber/Graphene Oxide Composite Films via Surface-Initiated Atom-Transfer Radical Polymerization" Molecules 29, no. 4: 913. https://doi.org/10.3390/molecules29040913
APA StyleZhu, W., Li, B., Liu, J., Sun, S., Zhang, Y., Zhang, D., Li, C., Sun, T., Qin, H., Shi, J., & Shi, Z. (2024). A Versatile Approach for the Synthesis of Antimicrobial Polymer Brushes on Natural Rubber/Graphene Oxide Composite Films via Surface-Initiated Atom-Transfer Radical Polymerization. Molecules, 29(4), 913. https://doi.org/10.3390/molecules29040913