Design, Synthesis, Antifungal Evaluation, Structure–Activity Relationship (SAR) Study, and Molecular Docking of Novel Spirotryprostatin A Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Process of Spirooxindole Intermediates 3
2.1.1. Optimization of Asymmetric Reaction Conditions
2.1.2. Scope of Substrates
2.1.3. Competition Experiment
2.1.4. Amplification Experiments
2.1.5. Analysis of Stereo Configuration of Spirooxindole Intermediate 3
2.2. Structures of Target Compounds
2.3. Antifungal Activity In Vitro
2.4. Structure–Activity Relationship
2.5. Molecular Docking
3. Materials and Methods
3.1. Instruments and Chemicals
3.2. General Synthetic Method of Spirooxindole Intermediates (3a)
3.3. General Synthetic Method of Target Compounds (4a)
3.4. Fungi
3.5. Antifungal Activity Assay In Vitro
3.6. Molecular Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739–742. [Google Scholar] [CrossRef]
- Li, J.; Ye, J.; Zhou, R.; Gui, K.; Li, J.; Feng, J.; Ma, Z.; Lei, P.; Gao, Y. Systematic study on turpentine-derived amides from natural plant monoterpenes as potential antifungal candidates. J. Agric. Food Chem. 2023, 71, 5507–5515. [Google Scholar] [CrossRef]
- Panda, S.S.; Girgis, A.S.; Aziz, M.N.; Bekheit, M.S. Spirooxindole: A Versatile Biologically Active Heterocyclic Scaffold. Molecules 2023, 28, 618. [Google Scholar] [CrossRef]
- Qin, M.L.; Li, Y.P.; Xu, W.; Gao, W.; Yin, S.Z.; Hu, X.G.; Zhang, R.P.; Ding, C.F. Spirooxindol alkaloids from Voacanga africana: Targeting biofilm of MBLs producing Escherichia coli. Bioorg. Chem. 2023, 140, 106780. [Google Scholar] [CrossRef]
- Shi, H.J.; Jiang, J.Y.; Zhang, H.; Jiang, H.M.; Su, Z.J.; Liu, D.D.; Jie, L.G.; He, F. Antibacterial spirooxindole alkaloids from Penicillium brefeldianum inhibit dimorphism of pathogenic smut fungi. Front. Microbiol. 2022, 13, 1046099. [Google Scholar] [CrossRef]
- Yang, Y.T.; Zhu, J.F.; Liao, G.C.; Xu, H.J.; Yu, B. The Development of Biologically Important Spirooxindoles as New Antimicrobial Agents. Curr. Med. Chem. 2018, 25, 2233–2244. [Google Scholar] [CrossRef]
- Pogaku, V.; Krishna, V.S.; Balachandran, C.; Rangan, K.; Sriram, D.; Aoki, S.; Basavoju, S. The design and green synthesis of novel benzotriazoloquinolinyl spirooxindolopyrrolizidines: Antimycobacterial and antiproliferative studies. New J. Chem. 2019, 43, 17511–17520. [Google Scholar] [CrossRef]
- Chen, L.W.; Xie, J.L.; Song, H.J.; Liu, Y.X.; Gu, Y.C.; Wang, L.Z.; Wang, Q.M. Design, synthesis, and biological activities of spirooxindoles containing acylhydrazone fragment derivatives based on the biosynthesis of alkaloids derived from tryptophan. J. Agric. Food Chem. 2016, 64, 6508–6516. [Google Scholar] [CrossRef]
- Wang, Q.; Song, H.J.; Wang, Q.M. Studies on biological activity of gem-difluorinated 3, 3’-spirocyclic indole derivatives. Chin. Chem. Lett. 2022, 33, 859–862. [Google Scholar] [CrossRef]
- Chen, L.W.; Hao, Y.K.; Song, H.J.; Liu, Y.X.; Li, Y.Q.; Zhang, J.J.; Wang, Q.M. Design, synthesis, characterization, and biological activities of novel spirooxindole analogues containing hydantoin, thiohydantoin, urea, and thiourea moieties. J. Agric. Food Chem. 2020, 68, 10618–10625. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.B.; Kakeya, H.; Osada, H. Novel mammalian cell cycle inhibitors, spirotryprostatins A and B, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 1996, 52, 12651–12666. [Google Scholar] [CrossRef]
- Jia, B.; Ma, Y.M.; Liu, B.; Chen, P.; Hu, Y.; Zhang, R. Synthesis, antimicrobial activity, structure-activity relationship, and molecular docking studies of indole diketopiperazine alkaloids. Front. Chem. 2019, 7, 837. [Google Scholar] [CrossRef]
- Ma, Y.M.; Fan, C.; Jia, B.; Cheng, P.; Liu, J.; Ma, Y.Q.; Qiao, K. Total synthesis and biological evaluation of spirotryprostatin A analogs. Chirality 2017, 29, 737–746. [Google Scholar] [CrossRef]
- Yang, J.; Lai, J.X.; Kong, W.L.; Li, S.K. Asymmetric synthesis of sakuranetin-relevant flavanones for the identification of new chiral antifungal leads. J. Agric. Food Chem. 2022, 70, 3409–3419. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P. Current status of chirality in agrochemicals. Pest Manag. Sci. 2018, 74, 2389–2404. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.K.; Gao, J.M.; Yang, C.J.; Shang, X.F.; Zhao, Z.M.; Lawoe, R.K.; Zhou, R.; Sun, Y.; Yin, X.D.; Liu, Y.Q. Design, synthesis, and antifungal evaluation of neocryptolepine derivatives against phytopathogenic Fungi. J. Agric. Food Chem. 2020, 68, 2306–2315. [Google Scholar] [CrossRef] [PubMed]
- Jowita, K.; Mikołaj, S.; Karolina, Z.; Roman, N.; Przemysław, W.; Karolina, K.; Łapczuk, A. Thermal [3 + 2] cycloaddition reactions as most universal way for the effective preparation of five-membered nitrogen containing heterocycles. Sci. Radices 2023, 2, 247–267. [Google Scholar]
- Huang, Y.; Min, W.; Wu, Q.W.; Sun, J.; Shi, D.H.; Yan, C.G. Facile one-pot synthesis of spirooxindole-pyrrolidine derivatives and their antimicrobial and acetylcholinesterase inhibitory activities. New J. Chem. 2018, 42, 16211–16216. [Google Scholar] [CrossRef]
- Palomba, M.; Scarcella, E.; Sancineto, L.; Bagnoli, L.; Santi, C.; Marini, F. Synthesis of Spirooxindole Oxetanes Through a Domino Reaction of 3-Hydroxyoxindoles and Phenyl Vinyl Selenone. Eur. J. Org. Chem. 2019, 2019, 5396–5401. [Google Scholar] [CrossRef]
- Mc Cartney, D.; Guiry, P.J. The asymmetric Heck and related reactions. Chem. Soc. Rev. 2011, 40, 5122–5150. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000, 287, 1964–1969. [Google Scholar] [CrossRef] [PubMed]
- Edmondson, S.; Danishefsky, S.J.; Sepp-Lorenzino, L.; Rosen, N. Total synthesis of spirotryprostatin A, leading to the discovery of some biologically promising analogues. J. Am. Chem. Soc. 1999, 121, 2147–2155. [Google Scholar] [CrossRef]
- Edmondson, S.D.; Danishefsky, S.J. The total synthesis of spirotryprostatin A. Angew. Chem. Int. Ed. 1998, 37, 1138–1140. [Google Scholar] [CrossRef]
- Onishi, T.; Sebahar, P.R.; Williams, R.M. Concise, asymmetric total synthesis of spirotryprostatin A. Org. Lett. 2003, 5, 3135–3137. [Google Scholar] [CrossRef] [PubMed]
- Onishi, T.; Sebahar, P.R.; Williams, R.M. Concise, asymmetric total synthesis of spirotryprostatin A. Tetrahedron 2004, 60, 9503–9515. [Google Scholar] [CrossRef]
- Miyake, F.Y.; Yakushijin, K.; Horne, D.A. A concise synthesis of spirotryprostatin A. Org. Lett. 2004, 6, 4249–4251. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, K.; Shimokawa, J.; Fukuyama, T. Stereoselective synthesis of spirotryprostatin A. Chem. Sci. 2014, 5, 904–907. [Google Scholar] [CrossRef]
- Peng, T.F.; Liu, T.; Zhao, J.F.; Dong, J.W.; Zhao, Y.X.; Yang, Y.X.; Yan, X.; Xu, W.L.; Shen, X.F. Enantioselective total synthesis of spirotryprostatin A. J. Org. Chem. 2022, 87, 16743–16754. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, W.; Liu, S.; Ting, Z.; Kaiqiang, Z.; Chuliang, G.; Wenyan, G.; Feizhi, K.; Libo, N.; Shunqin, H.; et al. Highly Stereodivergent Synthesis of Chiral C4-Ester-Quaternary Pyrrolidines: A Strategy for the Total Synthesis of Spirotryprostatin A. Org. Lett. 2023, 25, 3391–3396. [Google Scholar] [CrossRef]
- Xiong, L.; Shen, Y.Q.; Jiang, L.N.; Zhu, X.L.; Y7ang, W.C.; Huang, W.; Yang, G.F. Succinate dehydrogenase: An ideal target for fungicide discovery. Discovery Synth. Crop Prot. Prod. 2015, 1204, 175–194. [Google Scholar]
- Hua, X.W.; Liu, W.R.; Chen, Y.; Ru, J.; Guo, S.J.; Yu, X.B.; Cui, Y.H.; Liu, X.H.; Gu, Y.C.; Xue, C.M.; et al. Synthesis, fungicidal activity, and mechanism of action of pyrazole amide and ester derivatives based on natural products L-Serine and waltherione alkaloids. J. Agric. Food Chem. 2021, 69, 11470–11484. [Google Scholar] [CrossRef]
- Lu, T.; Yan, Y.K.; Zhang, T.T.; Zhang, G.L.; Xiao, T.T.; Cheng, W.; Jiang, W.J.; Wang, J.W.; Tang, X.R. Design, synthesis, biological evaluation, and molecular modeling of novel 4H-Chromene analogs as potential succinate dehydrogenase inhibitors. J. Agric. Food Chem. 2021, 69, 10709–10721. [Google Scholar] [CrossRef] [PubMed]
- Inaoka, D.K.; Shiba, T.; Sato, D.; Balogun, E.O.; Sasaki, T.; Nagahama, M.; Oda, M.; Matsuoka, S.; Ohmori, J.; Honma, T.; et al. Structural insights into the molecular design of flutolanil derivatives targeted for fumarate respiration of parasite mitochondria. Int. J. Mol. Sci. 2015, 16, 15287–15308. [Google Scholar] [CrossRef] [PubMed]
- Schübler, M.; Sadek, B.; Kottke, T.; Weizel, L.; Stark, H. Synthesis, molecular properties estimations, and dual dopamine D2 and D3 receptor activities of benzothiazole-based ligands. Front. Chem. 2017, 5, 64. [Google Scholar] [CrossRef]
- Liu, T.L.; Xue, Z.Y.; Tao, H.Y.; Wang, C.J. Catalytic asymmetric 1,3-dipolar cycloaddition of N-unprotected 2-oxoindolin-3-ylidene derivatives and azomethine ylides for the construction of spirooxindole-pyrrolidines. Org. Biomol. Chem. 2011, 9, 1980–1986. [Google Scholar] [CrossRef]
- Carmen, N.; de Gracia Retamosa, M.; María, M.R.; José, M.S.; de Cózar, A.; Cossío, F.P. Synthesis of Prolines by Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides and Alkenes Catalyzed by Chiral Phosphoramidite-Silver(I) Complexes. Eur. J. Org. Chem. 2009, 32, 5622–5634. [Google Scholar]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Nájera, C.; de Gracia Retamosa, M.; Sansano, J.M. Catalytic Enantioselective 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides and Alkenes by UsingPhosphoramidite-Silver(I) Complexes. Angew. Chem. 2008, 47, 6055–6058. [Google Scholar] [CrossRef]
- Hammett, L.P. Some Relations between Reaction Rates and Equilibrium Constants. Chem. Rev. 1935, 17, 125–136. [Google Scholar] [CrossRef]
- Amit, K.; Sushil, K.K.; Anil, K.S. QSAR and Molecular Modeling Studies in Imidazopyridinethiazolidine-2,4-Diones: PPARγ Agonists. Med. Chem. Res. 2004, 13, 770–780. [Google Scholar]
- Veloukas, T.; Karaoglanidis, G.S. Biological activity of the succinate dehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity. Pest Manag. Sci. 2012, 68, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Avenot, H.F.; Michailides, T.J. Resistance to Boscalid fungicide in Alternaria alternata isolates from pistachio in California. Plant Dis. 2007, 91, 1345–1350. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.W.; Liu, K.H.; Deng, B.W.; Chen, W.Q.; Li, W.J.; Liu, F.H. Isolation and characterization of endophytic fungi from Camptotheca acuminata. World J. Microbiol. Biotechnol. 2013, 29, 1831–1838. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
Entry | Metal | Ligand | Solvent | Base | Yield (%) b | dr c |
1 | AgOAc | - | PhCl | EtN3 | 40% | 4:1 |
2 | AgOAc | L1 | PhCl | EtN3 | trace | - |
3 | AgOAc | L2 | THF | EtN3 | 63 | 7:1 |
4 | AgOAc | L3 | THF | EtN3 | 66 | 10:1 |
5 | AgOAc | L4 | THF | EtN3 | 97 | >20:1 |
6 | AgOAc | L5 | THF | EtN3 | 88 | 13:1 |
7 | AgOAc | L6 | THF | EtN3 | 20 | 6:1 |
8 | AgOAc | L7 | THF | EtN3 | 56 | 8:1 |
9 | AgOAc | L4 | PhCl | EtN3 | 50 | 5:1 |
10 | AgOAc | L4 | DCM | EtN3 | 56 | 6:1 |
11 | Cu(OTf)2 | L4 | THF | EtN3 | 40 | 8:1 |
12 | AgOAc | L4 | PhCl | Piperidine | 62 | 8:1 |
Compound | R1 | R2 | Yield b | dr c | Compound | R1 | R2 | Yield b | dr c |
---|---|---|---|---|---|---|---|---|---|
3a | H | phenyl | 97% | 20:1 | 3n | 2-NO2 | phenyl | 52% | 33:1 |
3b | 2-F | phenyl | 82% | 88:1 | 3o | 3-NO2 | phenyl | 96% | 24:1 |
3c | 3-F | phenyl | 80% | 20:1 | 3p | 4-NO2 | phenyl | 94% | 31:1 |
3d | 4-F | phenyl | 92% | 18:1 | 3q | 2-OCH3 | phenyl | 74% | 15:1 |
3e | 2-Cl | phenyl | 72% | 18:1 | 3r | 3-OCH3 | phenyl | 78% | 26:1 |
3f | 3-Cl | phenyl | 80% | 18:1 | 3s | 4-OCH3 | phenyl | 67% | 13:1 |
3g | 4-Cl | phenyl | 82% | 25:1 | 3t | 2-naphthalene | phenyl | 79% | 22:1 |
3h | 2-Br | phenyl | 78% | 74:1 | 3u | H | o-bromophenyl | 93% | 24:1 |
3i | 3-Br | phenyl | 58% | 19:1 | 3v | H | o-methoxyphenyl | 91% | 18:1 |
3j | 4-Br | phenyl | 69% | 24:1 | 3w | H | cyclopropyl | 65% | 11:1 |
3k | 2-CF3 | phenyl | 55% | 4:1 | 3x | H | cyclobutyl | 93% | 27:1 |
3l | 3-CF3 | phenyl | 82% | 22:1 | 3y | H | cyclopentyl | 87% | 20:1 |
3m | 4-CF3 | phenyl | 99% | 36:1 | 3z | H | cyclohexyl | 91% | 23:1 |
Diameter of Inhibition Circle b | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compd. | HM | TR | BC | CG | FG | AB | AA | FON | ME | FS |
3a | ++ | ++ | + | + | + | ++ | ++ | + | ++ | + |
3b | ++ | +++ | ++ | ++ | + | + | + | + | + | + |
3c | ++ | ++ | + | ++ | + | + | + | ++ | + | + |
3d | + | + | ++ | ++ | ++ | +++ | + | ++ | + | +++ |
3e | + | ++ | − | ++ | + | + | + | + | + | + |
3f | − | + | + | ++ | − | ++ | − | + | + | + |
3g | ++ | ++ | + | ++ | + | + | − | + | − | + |
3h | − | ++ | + | +++ | + | + | + | + | − | + |
3i | + | − | + | ++ | ++ | ++ | + | ++ | ++ | − |
3j | ++ | + | ++ | +++ | + | + | + | ++ | ++ | +++ |
3k | + | + | + | +++ | +++ | +++ | ++ | ++ | ++ | ++ |
3l | ++ | + | + | ++ | + | + | + | + | + | + |
3m | − | ++ | ++ | − | + | + | + | + | + | +++ |
3n | + | ++ | + | ++ | + | + | + | + | + | + |
3o | + | − | + | − | ++ | − | + | ++ | ++ | + |
3p | ++ | + | + | ++ | +++ | ++ | + | + | ++ | − |
3q | − | +++ | − | + | + | + | + | + | + | + |
3r | ++ | − | ++ | ++ | + | + | + | + | + | + |
3s | ++ | + | +++ | ++ | +++ | + | − | ++ | ++ | ++ |
4a | ++ | +++ | ++ | + | ++ | + | + | ++ | + | ++ |
4b | ++ | + | − | + | ++ | + | ++ | ++ | + | ++ |
4c | − | ++ | − | ++ | + | ++ | +++ | ++ | + | +++ |
4d | +++ | + | ++ | ++ | ++ | ++ | +++ | + | +++ | +++ |
4e | +++ | ++ | +++ | +++ | + | ++ | + | + | ++ | +++ |
4f | ++ | +++ | +++ | − | ++ | + | ++ | +++ | − | +++ |
4g | +++ | − | +++ | − | ++ | − | +++ | +++ | − | ++ |
4h | +++ | +++ | ++ | ++ | ++ | + | +++ | ++ | ++ | − |
4i | ++ | +++ | ++ | + | +++ | ++ | + | ++ | ++ | +++ |
4j | ++ | + | + | +++ | ++ | ++ | ++ | ++ | ++ | ++ |
4k | ++ | ++ | +++ | + | ++ | − | ++ | +++ | + | ++ |
4l | + | ++ | ++ | + | ++ | − | + | + | ++ | − |
4m | ++ | ++ | ++ | + | + | + | + | − | ++ | − |
4n | + | ++ | + | + | − | + | − | − | ++ | +++ |
4o | − | + | − | + | − | ++ | +++ | ++ | ++ | +++ |
4p | ++ | +++ | + | + | ++ | ++ | +++ | + | ++ | +++ |
4q | + | ++ | + | ++ | ++ | + | +++ | ++ | − | ++ |
4r | + | ++ | ++ | + | ++ | + | +++ | ++ | ++ | ++ |
4s | ++ | +++ | +++ | ++ | ++ | + | − | ++ | + | ++ |
mock c | − | − | − | − | − | − | − | − | − | − |
PC d | ++ | +++ | +++ | +++ | +++ | ++ | +++ | +++ | ++ | +++ |
MIC/(µg·mL−1) b | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compd. | HM | TR | BC | CG | FG | AB | AA | FON | ME | FS |
3a | 128 | 16 | 64 | 64 | 128 | 64 | 32 | 64 | 64 | 128 |
3b | 128 | 8 | 64 | 32 | 64 | 128 | 64 | 128 | 128 | 64 |
3c | 64 | 16 | 64 | 64 | 128 | 128 | 128 | 32 | 128 | 64 |
3d | 64 | 16 | 128 | 64 | 32 | 64 | 64 | 32 | 128 | 32 |
3e | 128 | 32 | 64 | 32 | 128 | 128 | 128 | 64 | 128 | 128 |
3f | 128 | 32 | 64 | 64 | 32 | 16 | 64 | 32 | 64 | 32 |
3g | 64 | 8 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 32 |
3h | 128 | 8 | 128 | 16 | 64 | 128 | 64 | 64 | 128 | 64 |
3i | 128 | 32 | 64 | 32 | 128 | 32 | 128 | 16 | 128 | 128 |
3j | 128 | 16 | 128 | 8 | 128 | 128 | 64 | 32 | 64 | 16 |
3k | 128 | 16 | 32 | 32 | 32 | 64 | 32 | 16 | 64 | 32 |
3l | 128 | 32 | 64 | 64 | 64 | 64 | 64 | 64 | 128 | 32 |
3m | 32 | 16 | 32 | 64 | 64 | 16 | 32 | 64 | 128 | 16 |
3n | 128 | 32 | 64 | 64 | 128 | 128 | 128 | 32 | 128 | 64 |
3o | 64 | 64 | 64 | 64 | 32 | 64 | 128 | 64 | 64 | 64 |
3p | 128 | 16 | 64 | 64 | 128 | 32 | 64 | 128 | 128 | 32 |
3q | 128 | 8 | 32 | 64 | 64 | 32 | 32 | 128 | 128 | 64 |
3r | 64 | 16 | 64 | 32 | 128 | 128 | 128 | 64 | 128 | 64 |
3s | 128 | 16 | 64 | 8 | 32 | 128 | 16 | 64 | 64 | 16 |
4a | 64 | 16 | 64 | 32 | 64 | 64 | 128 | 64 | 128 | 32 |
4b | 128 | 16 | 32 | 16 | 64 | 16 | 64 | 128 | 32 | 8 |
4c | 64 | 8 | 32 | 8 | 64 | 32 | 64 | 32 | 64 | 8 |
4d | 32 | 8 | 16 | 8 | 16 | 16 | 32 | 64 | 64 | 16 |
4e | 64 | 8 | 16 | 32 | 16 | 64 | 128 | 32 | 128 | 32 |
4f | 64 | 8 | 16 | 16 | 128 | 32 | 64 | 16 | 64 | 16 |
4g | 32 | 8 | 16 | 32 | 64 | 32 | 32 | 32 | 128 | 16 |
4h | 64 | 16 | 64 | 16 | 16 | 128 | 32 | 64 | 128 | 32 |
4i | 64 | 16 | 32 | 8 | 32 | 128 | 64 | 128 | 64 | 32 |
4j | 32 | 16 | 128 | 32 | 32 | 128 | 16 | 16 | 64 | 8 |
4k | 64 | 16 | 8 | 32 | 16 | 32 | 32 | 16 | 32 | 16 |
4l | 128 | 32 | 16 | 64 | 128 | 16 | 128 | 32 | 128 | 32 |
4m | 64 | 32 | 8 | 64 | 64 | 128 | 32 | 16 | 64 | 16 |
4n | 128 | 16 | 128 | 64 | 32 | 64 | 64 | 64 | 64 | 8 |
4o | 32 | 32 | 64 | 32 | 32 | 32 | 32 | 64 | 64 | 16 |
4p | 64 | 8 | 128 | 64 | 128 | 64 | 64 | 32 | 128 | 16 |
4q | 128 | 16 | 128 | 8 | 128 | 128 | 128 | 64 | 128 | 64 |
4r | 128 | 8 | 32 | 32 | 64 | 64 | 32 | 32 | 64 | 16 |
4s | 64 | 16 | 32 | 8 | 64 | 128 | 32 | 32 | 128 | 16 |
Ketoconazole | 64 | 32 | 16 | 8 | 32 | 32 | 32 | 16 | 64 | 16 |
Low | Inhibitory Effect | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.-M.; Miao, X.; Jia, B.; Sun, Z.-Y.; Ma, S.-Y.; Yan, C. Design, Synthesis, Antifungal Evaluation, Structure–Activity Relationship (SAR) Study, and Molecular Docking of Novel Spirotryprostatin A Derivatives. Molecules 2024, 29, 864. https://doi.org/10.3390/molecules29040864
Ma Y-M, Miao X, Jia B, Sun Z-Y, Ma S-Y, Yan C. Design, Synthesis, Antifungal Evaluation, Structure–Activity Relationship (SAR) Study, and Molecular Docking of Novel Spirotryprostatin A Derivatives. Molecules. 2024; 29(4):864. https://doi.org/10.3390/molecules29040864
Chicago/Turabian StyleMa, Yang-Min, Xia Miao, Bin Jia, Zhao-Yang Sun, Si-Yue Ma, and Cong Yan. 2024. "Design, Synthesis, Antifungal Evaluation, Structure–Activity Relationship (SAR) Study, and Molecular Docking of Novel Spirotryprostatin A Derivatives" Molecules 29, no. 4: 864. https://doi.org/10.3390/molecules29040864
APA StyleMa, Y. -M., Miao, X., Jia, B., Sun, Z. -Y., Ma, S. -Y., & Yan, C. (2024). Design, Synthesis, Antifungal Evaluation, Structure–Activity Relationship (SAR) Study, and Molecular Docking of Novel Spirotryprostatin A Derivatives. Molecules, 29(4), 864. https://doi.org/10.3390/molecules29040864