Establishment and Validation of a Transdermal Drug Delivery System for the Anti-Depressant Drug Citalopram Hydrobromide
Abstract
:1. Introduction
2. Results
2.1. Preselection of the Transdermal System
2.2. Determination of the Optimal Composition of Excipient Materials in the Transdermal System
2.3. Determination of the Optimal Penetration Enhancer Content of the Transdermal System
2.4. Determination of the Optimal Content of Polyacrylic Acid Resin II in the Transdermal Systems
2.5. Scanning Electron Microscopy of TDDS
2.6. Stability of the TDDS
2.7. In Vivo Pharmacokinetic Studies of the TDDS
2.8. Skin Irritation Tests
2.9. Skin SEM after CTH TDDS Treatment
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals
4.3. Drug Determination
4.4. Preparation of Mouse Abdominal Skin
4.5. Optimization of Transdermal Systems
4.6. In Vitro Release Studies
4.7. Preparation of the TDDS
4.8. Scanning Electron Microscopy Analysis
4.9. Quality Determination of the Prepared TDDS
4.9.1. High-Temperature Experiment
4.9.2. Cold Resistance Experiment
4.9.3. Freeze–Thaw Experiment
4.10. In Vivo Pharmacokinetic Studies
4.11. Skin Irritation Studies
4.12. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, K. Mental health: A world of depression. Nature 2014, 515, 180–181. [Google Scholar] [CrossRef] [PubMed]
- Darab, M.G.; Hedayati, A.; Khorasani, E.; Bayati, M.; Keshavarz, K. Selective serotonin reuptake inhibitors in major depression disorder treatment: An umbrella review on systematic reviews. Int. J. Psychiatry Clin. Pract. 2020, 24, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Willner, P.; Scheel-Krüger, J.; Belzung, C. The neurobiology of depression and antidepressant action. Neurosci. Biobehav. Rev. 2012, 37, 2331–2371. [Google Scholar] [CrossRef] [PubMed]
- Micheli, L.; Ceccarelli, M.; D’andrea, G.; Tirone, F. Depression and adult neurogenesis: Positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res. Bull. 2018, 143, 181–193. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Briggs, A.M. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- Bromet, E.; Andrade, L.H.; Hwang, I.; Sampson, N.A.; Alonso, J.; de Girolamo, G.; de Graaf, R.; Demyttenaere, K.; Hu, C.; Iwata, N.; et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011, 9, 90. [Google Scholar] [CrossRef]
- Weir, K. APA offers new guidance for treating depression. Monit. Psychol. Am. Psychol. Assoc. 2019, 8, 34. [Google Scholar]
- Calvi, A.; Fischetti, I.; Verzicco, I.; Murri, M.B.; Zanetidou, S.; Volpi, R.; Coghi, P.; Tedeschi, S.; Amore, M.; Cabassi, A. Antidepressant Drugs Effects on Blood Pressure. Front. Cardiovasc. Med. 2021, 8, 704281. [Google Scholar] [CrossRef]
- Vos, C.F.; Aarnoutse, R.E.; Op de Coul, M.J.M.; Spijker, J.; Groothedde-Kuyvenhoven, M.M.; Mihaescu, R.; Wessels-Baston, S.J.W.; Rovers, J.J.E.; ter Hark, S.E.; Schene, A.H.; et al. Tricyclic antidepressants for major depressive disorder: A comprehensive evaluation of current practice in the Netherlands. BMC Psychiatry 2021, 21, 481. [Google Scholar] [CrossRef] [PubMed]
- Garland, E.J.; Kutcher, S.; Virani, A.; Elbe, D. Update on the Use of SSRIs and SNRIs with Children and Adolescents in Clinical Practice. J. Can. Acad. Child Adolesc. Psychiatry 2016, 25, 4–10. [Google Scholar]
- Dobson, E.T.; Bloch, M.H.; Strawn, J.R. Efficacy and tolerability of pharmacotherapy for pediatric anxiety disorders: A network meta-analysis. J. Clin. Psychiatry 2019, 80, 14375. [Google Scholar] [CrossRef]
- Hu, F. Synthesis of a Novel Antidepressant Drug Vortioxetine and Its Related Reactions; Zhejiang University of Technology: Hangzhou, China, 2016. [Google Scholar]
- Budău, M.; Hancu, G.; Rusu, A.; Muntean, D.L. Analytical methodologies for the enantiodetermination of citalopram and its metabolites. Chirality 2019, 32, 32–41. [Google Scholar] [CrossRef]
- Ashby, C.R., Jr.; Kehne, J.H.; Bartoszyk, G.D.; Renda, M.J.; Athanasiou, M.; Pierz, K.A.; Seyfried, C.A. Electrophysiological evidence for rapid 5-HT1A autoreceptor inhibition by vilazodone, a 5-HT1A receptor partial agonist and 5-HT reuptake inhibitor. Eur. J. Pharmacol. 2013, 714, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Qasim, H.S.; Simpson, M.D. A Narrative Review of Studies Comparing Efficacy and Safety of Citalopram with Atypical Antipsychotics for Agitation in Behavioral and Psychological Symptoms of Dementia (BPSD). Pharmacy 2022, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Soni, P.; Sinha, D.; Patel, R. Simple, Rapid and Sensitive UV-Visible Spectrophotometric Method for Determination of Antidepressant Amitriptyline in Pharmaceutical Dosage Forms. J. Spectrosc. 2013, 2013, 783457. [Google Scholar] [CrossRef]
- Wang, S.M.; Han, C.; Bahk, W.M.; Lee, S.J.; Patkar, A.A.; Masand, P.S.; Pae, C.U. Addressing the side effects of contemporary antidepressant drugs: A comprehensive review. Chonnam Med. J. 2018, 54, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Oliva, V.; Lippi, M.; Paci, R.; Del Fabro, L.; Delvecchio, G.; Brambilla, P.; De Ronchi, D.; Fanelli, G.; Serretti, A. Gastrointestinal side effects associated with antidepressant treatments in patients with major depressive disorder: A systematic review and meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 109, 110266. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, M.S.; Shoaib, M.H.; Yousuf, R.I.; Ali, F.R.; Saleem, M.T.; Khan, M.Z.; Sikandar, M. Formulation development and evaluation of drug-in-adhesive-type transdermal patch of metoclopramide HCl. Polym. Bull. 2021, 79, 1187–1200. [Google Scholar] [CrossRef]
- Tran, P.H.L.; Tran, T.T.D.; Park, J.B.; Lee, B.J. Controlled release systems containing solid dispersions: Strategies and mechanisms. Pharm. Res. 2011, 28, 2353–2378. [Google Scholar] [CrossRef] [PubMed]
- Awachat, A.; Shukla, D.; Bhola, N.D. Efficacy of Diclofenac Transdermal Patch in Therapeutic Extractions: A Literature Review. Cureus 2022, 14, e30411. [Google Scholar] [CrossRef]
- Al Hanbali, O.A.; Khan, H.M.S.; Sarfraz, M.; Arafat, M.; Ijaz, S.; Hameed, A. Transdermal patches: Design and current approaches to painless drug delivery. Acta Pharm. 2019, 69, 197–215. [Google Scholar] [CrossRef]
- Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268. [Google Scholar] [CrossRef]
- Li, D.; Hu, D.; Xu, H.; Patra, H.K.; Liu, X.; Zhou, Z.; Tang, J.; Slater, N.; Shen, Y. Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials 2020, 264, 120410. [Google Scholar] [CrossRef] [PubMed]
- Frampton, J.E.; Plosker, G.L. Selegiline transdermal system in the treatment of depressive disorders. Drugs 2007, 67, 257–265. [Google Scholar] [CrossRef]
- Pae, C.U.; Patkar, A.A.; Jang, S.; Portland, K.B.; Jung, S.; Nelson, J.C. Efficacy and safety of selegiline transdermal system (STS) for the atypical subtype of major depressive disorder: Pooled analysis of 5 short-term, placebo-controlled trials. CNS Spectr. 2014, 19, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Bied, A.M.; Kim, J.; Schwartz, T.L. A critical appraisal of the selegiline transdermal system for major depressive disorder. Expert. Rev. Clin. Pharmacol. 2015, 8, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Pathan, I.B.; Nandure, H.; Syed, S.M.; Bairagi, S. Transdermal delivery of ethosomes as a novel vesicular carrier for paroxetine hydro-chloride: In vitro evaluation and in vivo study. Marmara Pharm. J. 2016, 20, 1–6. [Google Scholar] [CrossRef]
- Singh, D.; Chandra, A. Formulation and development of fluoxetine transdermal patches: In Vitro and In Vivo evaluation. Int. J. Pharm. Res. Innov. 2016, 9, 1–8. [Google Scholar] [CrossRef]
- Chen, Y.S.; Jiang, X.; Sun, Y.Y.; Zhang, S.Y.; Li, K.; Chen, W.B.; Liu, Y.Q. Development and evaluation of 1-deoxynojirimycin sustained- release delivery System: In vitro and In vivo characterization studies. J. Biomed. Mater. Res. Part A 2021, 109, 2294–2305. [Google Scholar] [CrossRef]
- Chen, Y.S.; Sun, Y.Y.; Qin, Z.C.; Zhang, S.Y.; Chen, W.B.; Liu, Y.Q. Losartan potassium and verapamil hydrochloride compound transdermal drug delivery system: Formulation and characterization. Int. J. Mol. Sci. 2022, 23, 13051. [Google Scholar] [CrossRef]
- Al-Japairai, K.A.S.; Mahmood, S.; Almurisi, S.H.; Venugopal, J.R.; Hilles, A.R.; Azmana, M.; Raman, S. Current trends in polymer microneedle for transdermal drug delivery. Int. J. Pharm. 2020, 587, 119673. [Google Scholar] [CrossRef] [PubMed]
- Freynhagen, R.; von Giesen, H.J.; Busche, P.; Sabatowski, R.; Konrad, C.; Grond, S. Switching from Reservoir to Matrix Systems for the Transdermal Delivery of Fentanyl: A Prospective, Multicenter Pilot Study in Outpatients with Chronic Pain. J. Pain Symptom Manag. 2005, 30, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Sugibayashi, K.; Morimoto, Y. Interaction Between Drugs and Pressure-Sensitive Adhesives in Transdermal Therapeutic Systems. Pharm. Res. 1994, 11, 104–107. [Google Scholar] [CrossRef]
- Margetts, L.; Sawyer, R. Transdermal drug delivery: Principles and opioid therapy. Contin. Educ. Anaesth. Crit. Care Pain 2007, 7, 171–176. [Google Scholar] [CrossRef]
- Hair, P.I.; Keating, G.M.; McKeage, K. Transdermal matrix fentanyl membrane patch (Matrifen®) in severe cancer-related chronic pain. Drugs 2008, 68, 2001–2009. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Dai, C.; Bai, Y.; Xie, W.; Guan, T.; Sun, H.; Wang, B. Application of Multivariate Methods to Evaluate Differential Material Attributes of HPMC from Different Sources. ACS Omega 2021, 6, 28598–28610. [Google Scholar] [CrossRef]
- Ammar, H.O.; Makram, T.S.; Mosallam, S. Effect of Polymers on the Physicochemical Properties and Biological Performance of Fenoprofen Calcium Dihydrate-Triacetyl-β-Cyclodextrin Complex. Pharmaceutics 2017, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.F.; Zhu, L.; Li, Z.; Wu, W.T.; Guan, Y.M.; Chen, L.H.; Ming, L.S. The novel use of PVP K30 as templating agent in the production of porous lactose. Pharmaceutics 2021, 13, 814. [Google Scholar] [CrossRef]
- Kurakula, M.; Rao, G.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Q.; Che, Y.; Liu, X.; Dong, C.; Chen, X.; Wang, C. Effect of Na2CO3 on the Microstructure and Macroscopic Properties and Mechanism Analysis of PVA/CMC Composite Film. Polymers 2020, 12, 453. [Google Scholar] [CrossRef]
- Sakurai, A.; Sakai, T.; Sako, K.; Maitani, Y. Polymer Combination Increased Both Physical Stability and Oral Absorption of Solid Dispersions Containing a Low Glass Transition Temperature Drug: Physicochemical Characterization and in Vivo Study. Chem. Pharm. Bull. 2012, 60, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Kováčik, A.; Kopečná, M.; Vávrová, K. Permeation enhancers in transdermal drug delivery: Benefits and limitations. Expert Opin. Drug Deliv. 2020, 17, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; He, Q.S.; Cai, J. Enantioseparation of citalopram by RP-HPLC, using sulfobutyl ether-β-cyclodextrin as a chiral mobile phase additive. Int. J. Anal. Chem. 2016, 2016, 1231386. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-L.; Cai, C.-C.; Ma, J.-Y.; Yu, M.-L.; Zhao, M.-H.; Guo, J.-B.; Xu, H. Effect of the Dispersion States of Azone in Hydroalcoholic Gels on Its Transdermal Permeation Enhancement Efficacy. J. Pharm. Sci. 2018, 107, 1879–1885. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, J.; Xu, Q.; Tian, S.; Yang, W. Design and Evaluation of Glimepiride Hydrogel for Transdermal Delivery. Drug Dev. Ind. Pharm. 2022, 48, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Song, G.S.; Zhou, L.; Pei, L.J. Research overview of a novel pharmaceutical excipient polyacrylic resin III. China Pharm. 2015, 26, 3. [Google Scholar]
- Zhang, K.; Xiong, L.; Li, D.Y.; Gao, J.J.; Liu, Y.K.; Ma, Y.S. Preparation and in vitro evaluation of artemisia oil transfer patch. Chin. J. Tradit. Chin. Med. 2020, 4, 7. [Google Scholar]
- Ji, Y.; Schaid, D.J.; Desta, Z.; Kubo, M.; Batzler, A.J.; Snyder, K.; Mushiroda, T.; Kamatani, N.; Ogburn, E.; Hall-Flavin, D.; et al. Citalopram and escitalopram plasma drug and metabolite concentrations: Genome-wide associations. Br. J. Clin. Pharmacol. 2014, 78, 373–383. [Google Scholar] [CrossRef]
- Jiang, T.; Rong, Z.; Xu, Y.; Chen, B.; Xie, Y.; Chen, C.; Chen, H. Pharmacokinetics and bioavailability comparison of generic and branded citalopram 20 mg tablets: An open-label, randomized-sequence, two-period crossover study in healthy Chinese CYP2C19 extensive metabolizers. Clin. Drug Investig. 2013, 33, 1–9. [Google Scholar] [CrossRef]
- Arunprasert, K.; Pornpitchanarong, C.; Rojanarata, T.; Ngawhirunpat, T.; Opanasopit, P.; Aumklad, P.; Patrojanasophon, P. Development and Evaluation of Novel Water-Based Drug-in-Adhesive Patches for the Transdermal Delivery of Ketoprofen. Pharmaceutics 2021, 13, 789. [Google Scholar] [CrossRef] [PubMed]
- Stamatas, G.N.; Kollias, N. In vivo documentation of cutaneous inflammation using spectral imaging. J. Biomed. Opt. 2007, 12, 051603. [Google Scholar] [CrossRef] [PubMed]
- El-Maraghy, C.M.; Amer, S.M.; Salem, H.; Nebsen, M. Quantitative determination of citalopram hydrobromide by spectrophotometry and chemometry in presence of its degradation products and additivesin pharmaceutical preparation. Int. J. Chem. Eng. Appl. 2015, 6, 89–96. [Google Scholar]
First Excipient Materials | Second Excipient Materials | Penetration Enhancers | Cumulative Release Rate (%) | |
---|---|---|---|---|
1 | 1 | 1 | 1 | 0.25 ± 0.08 a |
2 | 1 | 1 | 2 | 14.79 ± 0.51 b |
3 | 1 | 1 | 3 | 26.42 ± 0.84 c |
4 | 1 | 2 | 1 | 6.75 ± 0.82 d |
5 | 1 | 2 | 2 | 16.49 ± 0.80 e |
6 | 1 | 2 | 3 | 3.17 ± 0.42 f |
7 | 1 | 3 | 1 | 10.26 ± 0.84 g |
8 | 1 | 3 | 2 | 20.23 ± 0.59 h |
9 | 1 | 3 | 3 | 2.89 ± 0.84 i |
10 | 2 | 1 | 1 | 4.10 ±0.68 j |
11 | 2 | 1 | 2 | 26.57 ± 0.99 c |
12 | 2 | 1 | 3 | 14.85 ± 0.87 b |
13 | 2 | 2 | 1 | 2.23 ± 0.96 fik |
14 | 2 | 2 | 2 | 1.92 ± 0.40 k |
15 | 2 | 2 | 3 | 5.86 ± 0.54 l |
16 | 2 | 3 | 1 | 6.60 ±0.68 d |
17 | 2 | 3 | 2 | 7.70 ±0.40 m |
18 | 2 | 3 | 3 | 8.57 ± 0.50 n |
19 | 3 | 1 | 1 | 3.57 ± 0.93 fj |
20 | 3 | 1 | 2 | 22.14 ± 0.64 o |
21 | 3 | 1 | 3 | 40.82 ± 0.86 p |
22 | 3 | 2 | 1 | 0.21 ± 0.08 a |
23 | 3 | 2 | 2 | 6.74 ± 0.39 d |
24 | 3 | 2 | 3 | 0.21 ± 0.04 a |
25 | 3 | 3 | 1 | 0.86 ± 0.71 a |
26 | 3 | 3 | 2 | 8.96 ± 0.32 n |
27 | 3 | 3 | 3 | 20.19 ± 0.26 h |
Formulation | HPMCK100M:PVA | OA:Azone (1:1) (%, v/v) | Polyacrylic Acid Resin II (%, v/v) |
---|---|---|---|
A1 | 1:9 | ||
A2 | 2:8 | ||
A3 | 3:7 | ||
A4 | 4:6 | ||
A5 | 5:5 | ||
A6 | 6:4 | ||
A7 | 7:3 | ||
A8 | 8:2 | ||
A9 | 9:1 | ||
B1 | 0 | ||
B2 | 4 | ||
B3 | 8 | ||
B4 | 13 | ||
B5 | 16 | ||
B6 | 20 | ||
B7 | 24 | ||
B8 | 28 | ||
B9 | 32 | ||
C1 | 0 | ||
C2 | 1 | ||
C3 | 2 | ||
C4 | 3 | ||
C5 | 4 | ||
C6 | 5 | ||
C7 | 6 | ||
C8 | 8 |
Parameters | Oral Administration | LP-VPH Compound Patch |
---|---|---|
Cmax (ng/mL) | 4902.10 ± 395.69 | 3269.84 ± 207.45 * |
Tmax (h) | 1 | 4 * |
AUC(0-t) (ng·h−1·mL−1) | 8460.37 ± 996.43 | 26,403.92 ± 2627.09 * |
MRT (h) | 2.40 ± 0.25 | 10.50 ± 0.83 * |
F (%) | - | 312.09 |
Administration | Erythema | Edema | ||
---|---|---|---|---|
0 h | 24 h | 0 h | 24 h | |
Blank patch | 0.00 ± 0.00 | 0.34 ± 0.07 | 0.00 ± 0.00 | 0.14 ± 0.06 |
CTH patch | 0.00 ± 0.00 | 0.45 ± 0.16 | 0.00 ± 0.00 | 0.20 ± 0.07 |
Serial Number | First Excipient Materials | Second Excipient Materials | Penetration Enhancers |
---|---|---|---|
1 | HPMCK4M | PVA | OA |
2 | HPMCK30M | PVP K30 | AZONE |
3 | HPMCK100M | EC | OA:AZONE (1:1) |
Composition | Proportion (%) |
---|---|
HPMCK100M | 49.2% (w/w) |
PVA | 32.8% (w/w) |
OA:azone = 1:1 | 16% (v/v) |
Polyacrylic Acid Resin II | 2% (w/w) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.-y.; Ni, Y.-j.; Wang, R.-j.; Qin, Z.-c.; Liu, Z.; Xiao, L.-h.; Liu, Y.-q. Establishment and Validation of a Transdermal Drug Delivery System for the Anti-Depressant Drug Citalopram Hydrobromide. Molecules 2024, 29, 767. https://doi.org/10.3390/molecules29040767
Sun Y-y, Ni Y-j, Wang R-j, Qin Z-c, Liu Z, Xiao L-h, Liu Y-q. Establishment and Validation of a Transdermal Drug Delivery System for the Anti-Depressant Drug Citalopram Hydrobromide. Molecules. 2024; 29(4):767. https://doi.org/10.3390/molecules29040767
Chicago/Turabian StyleSun, Yi-yang, Ya-jing Ni, Run-jia Wang, Zi-cheng Qin, Zhao Liu, Li-hui Xiao, and Yan-qiang Liu. 2024. "Establishment and Validation of a Transdermal Drug Delivery System for the Anti-Depressant Drug Citalopram Hydrobromide" Molecules 29, no. 4: 767. https://doi.org/10.3390/molecules29040767
APA StyleSun, Y. -y., Ni, Y. -j., Wang, R. -j., Qin, Z. -c., Liu, Z., Xiao, L. -h., & Liu, Y. -q. (2024). Establishment and Validation of a Transdermal Drug Delivery System for the Anti-Depressant Drug Citalopram Hydrobromide. Molecules, 29(4), 767. https://doi.org/10.3390/molecules29040767