Role of Alkyl Chain Length in Surfactant-Induced Precipitation of Reactive Brilliant Blue KN-R
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Alkyl Chain Length on Conductivity of Surfactant Solution with and without RBB KN-R
2.2. Effects of Alkyl Chain Length on Surface Tension of the Surfactant Solution with and without RBB KN-R
2.3. Effect of Alkyl Chain Length on UV-Vis Spectra of the Dye–Surfactant Solution
2.4. MD Simulations of Interactions of RBB KN-R with DTAB, TTAB, and CTAB
2.5. Characterization of RBB KN-R Precipitate
2.5.1. SEM
2.5.2. FTIR
2.6. Optimization of Removal of RBB KN-R Using DTAB-Induced Precipitation
2.6.1. Effect of pH on the Removal Ratio of RBB KN-R
2.6.2. Effects of Salt Type and Concentration on the Removal Ratio of RBB KN-R
2.6.3. Effect of Standing Time on the Removal Ratio of RBB KN-R
3. Materials and Methods
3.1. Chemical Reagents
3.2. Conductivity Measurements
3.3. Surface Tension Measurements
3.4. UV-Vis Spectra Measurements
3.5. Molecular Dynamics Simulation
3.6. FTIR Spectra Measurements
3.7. Determination of Removal Ratio of RBB KN-R
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sutar, S.; Patil, P.; Jadhav, J. Recent advances in biochar technology for textile dyes wastewater remediation: A review. Environ. Res. 2022, 209, 112841. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, K.; She, S.; Yu, X.; Yu, L.; Xue, G.; Li, X. Insight into dissolved organic nitrogen transformation and characteristics: Focus on printing and dyeing wastewater treatment process. J. Hazard. Mater. 2023, 450, 131086. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, P.; Hussain, Z.; Zhang, H.; Wang, H.; Chang, N.; Li, F. Modification and characterization of hydrogel beads and its used as environmentally friendly adsorbent for the removal of reactive dyes. J. Clean. Prod. 2022, 342, 130789. [Google Scholar] [CrossRef]
- Gan, C.; Tuo, B.; Wang, J.; Tang, Y.; Nie, G.; Deng, Z. Photocatalytic degradation of reactive brilliant blue KN-R by Ti-doped Bi2O3. Environ. Sci. Pollut. Res. 2023, 30, 34338–34349. [Google Scholar] [CrossRef]
- Qayyum, H.; Maroof, H.; Yasha, K. Remediation and treatment of organopollutants mediated by peroxidases: A review. Crit. Rev. Biotechnol. 2009, 29, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Xi, F.; Tan, W.; Meng, X.; Hu, B.; Wang, X. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 2021, 3, 255–281. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Xue, G.; Liu, Y.; Chen, S.; Jia, C. A critical review of the aniline transformation fate in azo dye wastewater treatment. J. Clean. Prod. 2021, 321, 128971. [Google Scholar] [CrossRef]
- Song, K.; Qian, X.; Zhu, X.; Li, X.; Hong, X. Fabrication of mechanical robust keratin film by mesoscopic molecular network reconstruction and its performance for dye removal. J. Colloid Interface Sci. 2020, 579, 28–36. [Google Scholar] [CrossRef]
- Mao, Z.; Zeng, Z.; Xue, W.; Jiang, S. Adsorption of reactive brilliant blue dye from aqueous solution using modified walnut shell: Kinetics, equilibrium, and thermodynamics. Environ. Eng. Sci. 2021, 38, 965–973. [Google Scholar] [CrossRef]
- He, Y.; Li, G.; Wang, H.; Jiang, Z.; Zhao, J.; Su, H.; Huang, Q. Diafiltration and water recovery of Reactive Brilliant Blue KN-R solution by two-stage membrane separation process. Chem. Eng. Process. Process Intensif. 2010, 49, 476–483. [Google Scholar] [CrossRef]
- Xu, H.M.; Sun, X.F.; Wang, S.Y.; Song, C.; Wang, S.G. Development of laccase/graphene oxide membrane for enhanced synthetic dyes separation and degradation. Sep. Purif. Technol. 2018, 204, 255–260. [Google Scholar] [CrossRef]
- Kim, S.; Nam, S.N.; Jang, A.; Jang, M.; Park, C.M.; Son, A.; Her, N.; Heo, J.; Yoon, Y. Review of adsorption–membrane hybrid systems for water and wastewater treatment. Chemosphere 2022, 286, 131916. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, T.; Madaeni, S.S.; Moghadam, M.K. Investigation of membrane fouling. Desalination 2003, 153, 155–160. [Google Scholar] [CrossRef]
- Rashid, T.U.; Kabir, S.F.; Biswas, M.C.; Bhuiyan, M.R. Sustainable wastewater treatment via dye–surfactant interaction: A critical review. Ind. Eng. Chem. Res. 2020, 59, 9719–9745. [Google Scholar] [CrossRef]
- Soylu, M.; Gökkuş, Ö.; Özyonar, F. Foam separation for effective removal of disperse and reactive dyes from aqueous solutions. Sep. Purif. Technol. 2020, 247, 116985. [Google Scholar] [CrossRef]
- Rasheed, T.; Shafi, S.; Bilal, M.; Hussain, T.; Sher, F.; Rizwan, K. Surfactants-based remediation as an effective approach for removal of environmental pollutants—A review. J. Mol. Liq. 2020, 318, 113960. [Google Scholar] [CrossRef]
- Melo, R.P.F.; Neto, E.B.; Nunes, S.K.S.; Dantas, T.C.; Neto, A.D. Removal of Reactive Blue 14 dye using micellar solubilization followed by ionic flocculation of surfactants. Sep. Purif. Technol. 2018, 191, 161–166. [Google Scholar] [CrossRef]
- Sultana, H.; Usman, M.; ul Haq, A.; Mansha, A. Micellar enhanced flocculation for the effective removal of reactive yellow 160 from synthetic textile effluent. Environ. Technol. Innov. 2021, 24, 101896. [Google Scholar] [CrossRef]
- Mahbub, S.; Shahriar, I.; Iqfath, M.; Hoque, M.A.; Halim, M.A.; Khan, M.A.; Rub, M.A.; Asiri, A.M. Influence of alcohols/electrolytes on the interaction of reactive red dye with surfactant and removal of dye from solutions. J. Environ. Chem. Eng. 2019, 7, 103364. [Google Scholar] [CrossRef]
- Abe, M.; Ohsato, M.; Ogino, K. Interaction between anionic surfactants and oil dye in the aqueous solutions: IV. The effect of alkyl chain length in surfactant molecule on the protonation equilibrium of azo dye. Colloid Polym. Sci. 1984, 262, 657–661. [Google Scholar] [CrossRef]
- Rashidi-Alavijeh, M.; Javadian, S.; Gharibi, H.; Moradi, M.; Tehrani-Bagha, A.R.; Shahir, A.A. Intermolecular interactions between a dye and cationic surfactants: Effects of alkyl chain, head group, and counterion. Colloids Surf. A 2011, 380, 119–127. [Google Scholar] [CrossRef]
- Ali, A.; Uzair, S.; Malik, N.A.; Ali, M. Study of interaction between cationic surfactants and cresol red dye by electrical conductivity and spectroscopy methods. J. Mol. Liq. 2014, 196, 395–403. [Google Scholar] [CrossRef]
- Akpinar, E.; Uygur, N.; Topcu, G.; Lavrentovich, O.D.; Neto, A.M.F. Gemini surfactant behavior of conventional surfactant dodecyltrimethylammonium bromide with anionic azo dye Sunset Yellow in aqueous solutions. J. Mol. Liq. 2022, 360, 119556. [Google Scholar] [CrossRef]
- Yadav, S.N.; Rai, S.; Shah, P.; Roy, N.; Bhattarai, A. Spectrophotometric and conductometric studies on the interaction of surfactant with polyelectrolyte in the presence of dye in aqueous medium. J. Mol. Liq. 2022, 355, 118949. [Google Scholar] [CrossRef]
- Matsuoka, K.; Sato, Y.; Takashima, S.; Goto, Y. Removal of ionic dyes with different charges by foam separation. J. Mol. Liq. 2022, 355, 118994. [Google Scholar] [CrossRef]
- Mehta, S.K.; Chaudhary, S.; Bhasin, K.K.; Kumar, R.; Aratono, M. Conductometric and spectroscopic studies of sodium dodecyl sulfate in aqueous media in the presence of organic chalcogen. Colloids Surf. A 2007, 304, 88–95. [Google Scholar] [CrossRef]
- Benito, I.; Garcia, M.A.; Monge, C.; Saz, J.M.; Marina, M.L. Spectrophotometric and conductimetric determination of the critical micellar concentration of sodium dodecyl sulfate and cetyltrimethylammonium bromide micellar systems modified by alcohols and salts. Colloids Surf. A 1997, 125, 221–224. [Google Scholar] [CrossRef]
- Marandi, A.; Polikarpus, M.; Jõeleht, A. A new approach for describing the relationship between electrical conductivity and major anion concentration in natural waters. Appl. Geochem. 2013, 38, 103–109. [Google Scholar] [CrossRef]
- Sastry, N.V.; Vaghela, N.M.; Aswal, V.K. Effect of alkyl chain length and head group on surface active and aggregation behavior of ionic liquids in water. Fluid Phase Equilib. 2012, 327, 22–29. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Rhee, K.Y. Hydrophilicity and hydrophobicity consideration of organic surfactant compounds: Effect of alkyl chain length on corrosion protection. Adv. Colloid Interface Sci. 2022, 306, 102723. [Google Scholar] [CrossRef]
- Shayesteh, H.; Raji, F.; Kelishami, A.R. Influence of the alkyl chain length of surfactant on adsorption process: A case study. Surf. Interfaces 2021, 22, 100806. [Google Scholar] [CrossRef]
- Javadi, A.; Dowlati, S.; Shourni, S.; Miller, R.; Kraume, M.; Kopka, K.; Eckert, K. Experimental techniques to study protein–surfactant interactions: New insights into competitive adsorptions via drop subphase and interface exchange. Adv. Colloid Interface Sci. 2022, 301, 102601. [Google Scholar] [CrossRef]
- Forte-Tavčer, P. Interactions between some anionic dyes and cationic surfactants with different alkyl chain length studied by the method of continuous variations. Dye. Pigment. 2004, 63, 181–189. [Google Scholar] [CrossRef]
- Li, F.; Harvey, R.D.; Modicano, P.; Hamdi, F.; Kyrilis, F.; Müller, S.; Gruhle, K.; Kastritis, P.; Drescher, S.; Dailey, L.A. Investigating bolalipids as solubilizing agents for poorly soluble drugs: Effects of alkyl chain length on solubilization and cytotoxicity. Colloids Surf. B 2022, 212, 112369. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Jha, S.K.; Bhattarai, A. Spectrophotometric study of the sodium dodecyl sulfate in the presence of methylene blue in the methanol–water mixed solvent system. J. Mol. Liq. 2021, 340, 117200. [Google Scholar] [CrossRef]
- Duman, O.; Tunç, S.; Kancı, B. Spectrophotometric studies on the interactions of CI Basic Red 9 and CI Acid Blue 25 with hexadecyltrimethylammonium bromide in cationic surfactant micelles. Fluid Phase Equil. 2011, 301, 56–61. [Google Scholar] [CrossRef]
- Taj, M.B.; Noor, S.; Javed, T.; Ihsan, A.; Sarwari, G.; Jabeen, S.; Sharif, T.; Naseem, Z.; Naz, I.; Iqbal, H.; et al. Effect of nonionic surfactant on micellization thermodynamics and spectroscopic profile of dye-surfactant aggregation. J. Dispersion Sci. Technol. 2023, 44, 669–678. [Google Scholar] [CrossRef]
- Fazeli, S.; Sohrabi, B.; Tehrani-Bagha, A.R. The study of Sunset Yellow anionic dye interaction with gemini and conventional cationic surfactants in aqueous solution. Dye. Pigment. 2012, 95, 768–775. [Google Scholar] [CrossRef]
- Rozamliana, J.; Gurung, J.; Pulikkal, A.K. Interaction of metanil yellow dye with cationic surfactants: Conductometric and spectroscopic studies. J. Mol. Liq. 2022, 368, 120653. [Google Scholar] [CrossRef]
- Verma, P.; Pal, H. Intriguing H-aggregate and H-dimer formation of coumarin-481 dye in aqueous solution as evidenced from photophysical studies. J. Phys. Chem. A 2012, 116, 4473–4484. [Google Scholar] [CrossRef]
- Ghosh, D.C.; Sen, P.K.; Pal, B. Dye-surfactant interaction in aqueous premicellar and micellar environments in the alkaline fading of di-positive methyl green carbocation. Colloids Surf. A 2023, 666, 131300. [Google Scholar] [CrossRef]
- Islam, S.I.; Pyne, P.; Das, D.K.; Mukherjee, S.; Chakrabarty, S.; Mitra, R.K. Molecular insight into dye–surfactant interaction at premicellar concentrations: A combined two-photon absorption and molecular dynamics simulation study. Langmuir 2022, 38, 3105–3112. [Google Scholar] [CrossRef]
- Hajjaoui, H.; Khnifira, M.; Soufi, A.; Abdennouri, M.; Kaya, S.; Akkaya, R.; Barka, N. Experimental, DFT and MD simulation studies of Mordant Black 11 dye adsorption onto polyaniline in aqueous solution. J. Mol. Liq. 2022, 364, 120045. [Google Scholar] [CrossRef]
- Akram, M.; Lal, H.; Shakya, S.; Varshney, R. Molecular engineering of complexation between RNA and biodegradable cationic gemini surfactants: Role of the hydrophobic chain length. Mol. Syst. Des. Eng. 2022, 7, 487–506. [Google Scholar] [CrossRef]
- Anis, S.F.; Lalia, B.S.; Hashaikeh, R.; Hilal, N. Breaking through the selectivity-permeability tradeoff using nano zeolite-Y for micellar enhanced ultrafiltration dye rejection application. Sep. Purif. Technol. 2020, 242, 116824. [Google Scholar] [CrossRef]
- Kumar, A.K.; Rawat, N.; Ghosh, P. Removal and recovery of a cationic surfactant from its aqueous solution by foam fractionation. J. Environ. Chem. Eng. 2020, 8, 103555. [Google Scholar] [CrossRef]
- Shi, M.; Wu, Z.L. A novel three-stage foam separation technology for recovering sodium dodecylbenzene sulfonate from its wastewater. J. Taiwan Inst. Chem. Eng. 2016, 63, 1–5. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, S.; Sun, D.; Xu, J. Foams stabilized by Laponite nanoparticles and alkylammonium bromides with different alkyl chain lengths. Colloids Surf. A 2010, 355, 151–157. [Google Scholar] [CrossRef]
- Zaghbani, N.; Hafiane, A.; Dhahbi, M. Separation of methylene blue from aqueous solution by micellar enhanced ultrafiltration. Sep. Purif. Technol. 2007, 55, 117–124. [Google Scholar] [CrossRef]
- Páll, S.; Abraham, M.J.; Kutzner, C.; Hess, B.; Lindahl, E. Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS. In Solving Software Challenges for Exascale; Markidis, S., Laure, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–27. [Google Scholar]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. Packmol: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Gounalli, S.; Hanagodimath, S.M. Estimation of ground and excited state dipole moments of newly synthesized coumarin molecule by Solvatochromic shift method and Gaussian software. IJSRPAS 2019, 7, 38–43. [Google Scholar]
- Tian, Y.; Yuan, X.; Xu, S.; Li, R.; Zhou, X.; Zhang, Z. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology. Ecotoxicology 2015, 24, 2141–2150. [Google Scholar] [CrossRef] [PubMed]
Surfactant | Binding Constant (kb, L/mol) | Linear Correlation Coefficient (R2) |
---|---|---|
DTAB | 310 | 0.9995 |
TTAB | 350 | 0.99958 |
CTAB | 490 | 0.99817 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Chang, Y.; Li, Y.; Cao, C.; Li, R. Role of Alkyl Chain Length in Surfactant-Induced Precipitation of Reactive Brilliant Blue KN-R. Molecules 2024, 29, 619. https://doi.org/10.3390/molecules29030619
Liu H, Chang Y, Li Y, Cao C, Li R. Role of Alkyl Chain Length in Surfactant-Induced Precipitation of Reactive Brilliant Blue KN-R. Molecules. 2024; 29(3):619. https://doi.org/10.3390/molecules29030619
Chicago/Turabian StyleLiu, Hongyu, Yunkang Chang, Yuhuan Li, Chengsong Cao, and Rui Li. 2024. "Role of Alkyl Chain Length in Surfactant-Induced Precipitation of Reactive Brilliant Blue KN-R" Molecules 29, no. 3: 619. https://doi.org/10.3390/molecules29030619
APA StyleLiu, H., Chang, Y., Li, Y., Cao, C., & Li, R. (2024). Role of Alkyl Chain Length in Surfactant-Induced Precipitation of Reactive Brilliant Blue KN-R. Molecules, 29(3), 619. https://doi.org/10.3390/molecules29030619