Atom-Precise Ligated Copper and Copper-Rich Nanoclusters with Mixed-Valent Cu(I)/Cu(0) Character: Structure–Electron Count Relationships
Abstract
:1. Introduction
2. Homometallic Copper Species
Compound | ne | aos | Proposed Superatomic/Supermolecular Core | Ref. | |
---|---|---|---|---|---|
1 | [Cu5(Me2IiPr)3(Bdmab)3] | 2 | 0.60 | Triangular bipyramid [Cu5]3+ | [37] |
2 | [Cu8(iPr3P)2{B(iPrEn)}3(OtBu)3] | 2 | 0.94 | Hexagonal bipyramid [Cu8]6+ | [38] |
3 | [Cu13{S2CNR2}6(C≡C-CO2R′)4]+ (R = nBu, iPr; R′ = Me, Et) | 2 | 0.85 | Centered cuboctahedron [Cu@Cu12]11+ | [33,34] |
4 | Cu14(C2B10H10S2)6(CH3CN)8 | 2 | 0.86 | Octahedron [Cu6]4+ or fcc [Cu14]12+ | [35] |
5 | Cu14(C2B10H10S2)6(CH3CN)6 | 2 | 0.86 | Octahedron [Cu6]4+ or fcc [Cu14]12+ | [36] |
6 | [Cu20(CCPh)12(OAc)6)] | 2 | 0.90 | Tetrahedron [Cu4]2+ | [31] |
7 | [Cu25H22(PPh3)12]+ | 2 | 0.92 | Centered icosahedron [Cu@Cu12]11+ | [16] |
8 | [Cu29Cl4H22(Ph2phen)12]+ | 2 | 0.93 | Centered icosahedron [Cu@Cu12]11+ | [32] |
9 | [Cu53(CF3COO)10(C≡CtBu)20Cl2H18]+ | 2 | 0.96 | Triangle [Cu3]+ or [Cu3 @Cu10]11+ or [Cu3@Cu12@Cu20]33+ ? | [42] |
10 | [Cu61(StBu)26S6Cl6H14]+ | 2 | 0.97 | centered elongated triangular gyrobicupola [Cu@Cu18]17+ | [43] |
11 | [Cu23(CF3COO)6(C≡CtBu)13] | 4 | 0.83 | tetrahedron [Cu4]0 or [Cu23]19+ (see text) | [45] |
12 | [Cu31(C≡CPh-OMe-4)21(dppe)3]2+ | 8 | 0.74 | Centered icosahedron [Cu@Cu12]5+ | [17] |
13 | [Cu23(Me2IiPr)10(PMe3)2] | 23? | 0? | [Cu@Cu12@Cu10]x+ (see text) | [37] |
14 | [Cu53(C≡CR)9(dppp)6Cl3(X)9] (R = Ph, C6H4Ph, X = NO3; R = C6H4F, X = OAc) | 32 | 0.66 | [Cu41]9+ in ABABC closed-packed stacking (see text) | [49] |
15 | [Cu75(S-Adm)32]2+(or 3+) | 41 or 40 | 0.45 or 0.47 | [Cu@Cu14@Cu24]2− (or 3−) (see text) | [18] |
16 | [Cu55(IDipp)6] | 55? | ? | Icosahedral [Cu@Cu12@Cu42]x+ | [46] |
17 | [Cu179(IDipp)12] | 179? | ? | See text | [46] |
3. Cu-Rich Hetero-Metallic Species
3.1. Copper-Rich Clusters Doped with Noble Metals
ne | Proposed Superatomic/Supermolecular Core | Ref. | ||
---|---|---|---|---|
18 | [Au2Cu6(S-Adm)6(PPh3)2)] | 2 | Hexagonal bipyramid [Au2Cu6]6+ | [39] |
19 | [Au4Cu4(S-Adm)5(dppm)2)]+ | 2 | See text | [53] |
20 | [Au4Cu6(S-Adm)4(dppm)2Cl3]+ | 2 | See text | [54] |
21 | [AuCu11{S2P(OiPr)2}6(C≡CPh)3Cl] | 2 | Au-centered cuboctahedron [Au@(Cu11□)]10+ with a vacant vertex | [59] |
22 | [PdHCu11{S2P(OiPr)2}6(C≡CPh)4] | 2 | PdH-centered cuboctahedron [(PdH)@(Cu11□)]10+ with a vacant vertex | [60] |
23 | [MCu12(L)6(C≡CPh)4]+ (M = Ag, Au, L = dtp, dtc) | 2 | M-centered cuboctahedron [M@Cu12]11+ | [56,57,58] |
24 | [AuCu14(SPhtBu)12(PPh(C2H4CN)2)6]+ | 2 | Body-centered cube [Au@Cu8] | [67] |
25 | [Ag4Cu15(R/SPEA)12]5+ | 2 | Tetrahedron [Ag4]2+ | [65] |
26 | [AuCu24H22(L)12)]+ (L = PPh3, p-PPh3) | 2 | Centered icosahedron [Au@Cu12] | [64] |
27 | [Ag10Cu16(C8H9S)16(PPh3)4(CF3CO2)8] | 2 | Octahedron [Ag6]4+ | [66] |
28 | [Au5Cu6(dppf)2(S-Adm)6]2+ | 4 | See text | [55] |
29 | [Pt2Cu34(PET)22Cl4]2− | 10 | Two interpenetrated Pt-centered Cu13 polyhedra making a [Pt2Cu18]8+ dimer | [68] |
30 | Au15.37Cu16.63(S-Adm)20 | 12 | Vertex-sharing Au3Cu tetrahedra making two [Au7Cu3]4+ “trimers” | [69] |
31 | [Au12Cu13(PPh3)10I7]2+ | 16 | Two vertex-sharing Au-centered Au5Cu7 icosahedra making a [Au12Cu13]9+ dimer. | [70] |
32 | [Au18Cu32(SPhCl)36]n− (n = 2, 3) | 16–17 | Au12 icosahedron encapsulated in Cu20 dodecahedron: Au12@Cu20 | [73] |
33 | [Au20.31Cu29.69(SR–O)36]2− [Au18Cu32(SR–O)36]2− [Au18Cu32(SR–F)36]3− | 16 17 | Au-centered icosahedron Au13 encapsulated in a dodecahedron Cu20. [Au@Au12@Cu20]16+/17+ | [74] |
34 | [Au12+nCu32(SPhCF3)30+n]4− (n = 0, 2, 4, 6) | 18 | Au-centered icosahedron Au13 encapsulated in a dodecahedron Cu20: [Au@Au12@Cu20]15+ | [71] |
35 | [Au19Cu30(-C≡CR)22(Ph3P)Cl2]3+ R = SC4H3, Ph | 22 | Au-centered icosahedron Au13 icosidodecahedron Cu30: [Au@Au12@Cu30@Au6]27+ | [75] |
36 | [Au52Cu72(SPhpMe)55]+ | 68 | D5h-shaped (Au5Cu2)@Au47@Cu70]56+ | [76] |
3.2. Copper-Rich Clusters Doped with Non-Noble Metals
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P.D.; Calero, G.; Ackerson, C.J.; Whetten, R.L.; Gronbeck, H.; Hakkinen, H. A unified view of ligand protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. USA 2008, 10, 9157–9162. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, H. Atomic and electronic structure of gold clusters: Understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 2008, 37, 1847–1859. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, H. Electronic shell structures in bare and protected metal nanoclusters. Adv. Phys. X 2016, 1, 467–491. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, M.; Jin, R. Programmable Metal Nanoclusters with Atomic Precision. Adv. Mater. 2021, 33, 2006591. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.N.; Jena, P. Atomic clusters: Building blocks for a class of solids. Phys. Rev. B 1995, 51, 13705–13716. [Google Scholar] [CrossRef] [PubMed]
- Knight, W.D.; Clemenger, K.; de Heer, W.A.; Saunders, W.A.; Chou, M.Y.; Cohen, M.L. Electronic Shell Structure and Abundances of Sodium Clusters. Phys. Rev. Lett. 1984, 52, 2141–2143. [Google Scholar] [CrossRef]
- Mingos, D.M.P.; Slee, T.; Lin, Z. Bonding Models for Ligated and Bare Clusters. Chem. Rev. 1990, 90, 383–402. [Google Scholar] [CrossRef]
- Tofanelli, M.A.; Salorinne, K.; Ni, T.W.; Malola, S.; Newell, B.; Phillips, B.; Häkkinen, H.; Ackerson, C.J. Jahn–Teller effects in Au25(SR)18. Chem. Sci. 2016, 7, 1882–1890. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, J.J. New insight into electronic shells of metal clusters: Analogues of simple molecules. Chem. Phys. 2013, 138, 141101. [Google Scholar] [CrossRef]
- Mingos, D.M.P. Structural and bonding patterns in gold clusters. Dalton Trans. 2015, 44, 6680–6694. [Google Scholar] [CrossRef]
- Munõz-Castro, A. Single, double, and triple intercluster bonds: Analyses of M2Au36(SR)24 (M = Au, Pd, Pt) as 14-, 12- and 10-ve superatomic molecules. Chem. Commun. 2019, 55, 7307–7310. [Google Scholar] [CrossRef] [PubMed]
- Gam, F.; Liu, C.W.; Kahlal, S.; Saillard, J.-Y. Electron counting and bonding patterns in assemblies of three and more silver-rich superatoms. Nanoscale 2020, 12, 20308–20316. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Zhu, Y.; Jin, R. Atomically precise gold nanocrystal molecules with surface plasmon resonance. Proc. Natl. Acad. Sci. USA 2012, 109, 696–700. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Chen, X.; Zhao, X.; Gu, L.; Huang, H.; Yan, J.; Xu, C.; Li, G.; Wu, J.; et al. Plasmonic twinned silver nanoparticles with molecular precision. Nat. Commun. 2016, 7, 12809. [Google Scholar] [CrossRef] [PubMed]
- Bratch, S.G. Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K. J. Phys. Chem. Ref. Data 1989, 18, 1–21. [Google Scholar] [CrossRef]
- Nguyen, T.-A.D.; Jones, Z.R.; Goldsmith, B.R.; Buratto, W.R.; Wu, G.; Scott, S.L.; Hayton, T.W. A Cu25 Nanocluster with Partial Cu(0) Character. J. Am. Chem. Soc. 2015, 137, 13319–13324. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Guan, Z.J.; Zhang, C.; Zhu, X.Z.; Chen, Y.X.; Zhang, Q.; Yang, Y.; Sun, D. Eight-Electron Superatomic Cu31 Nanocluster with Chiral Kernel and NIR-II Emission. J. Am. Chem. Soc. 2023, 145, 10355–10363. [Google Scholar] [CrossRef]
- Tang, J.; Liu, C.; Zhu, C.; Sun, K.; Wang, H.; Yin, W.; Xu, C.; Li, Y.; Wang, W.; Wang, L.; et al. High-nuclearity and thiol protected core–shell [Cu75(S-Adm)32]2+ distorted octahedra fixed to Cu15 core via strong cuprophilic interactions. Nanoscale 2023, 15, 2843–2848. [Google Scholar] [CrossRef]
- Liu, X.; Astruc, D. Atomically precise copper nanoclusters and their applications. Coord. Chem. Rev. 2018, 359, 112–126. [Google Scholar] [CrossRef]
- Dhayal, R.S.; van Zyl, W.E.; Liu, C.W. Copper hydride clusters in energy storage and Conversion. Dalton Trans. 2019, 48, 3531–3538. [Google Scholar] [CrossRef]
- Baghdasaryan, A.; Bürgi, T. Copper nanoclusters: Designed synthesis, structural diversity, and multiplatform applications. Nanoscale 2021, 13, 6283–6340. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Teo, B.K.; Deng, C.; Lin, J.; Luo, G.G.; Tung, C.-H.; Sun, D. Hydrido-coinage-metal clusters: Rational design, synthetic protocols and structural characteristics. Coord. Chem. Rev. 2021, 427, 21373–213601. [Google Scholar] [CrossRef]
- Zhang, L.L.-M.; Wong, W.Y. Atomically precise copper nanoclusters as ultrasmall molecular aggregates: Appealing compositions, structures, properties, and applications. Aggregate 2023, 4, e266. [Google Scholar] [CrossRef]
- Biswas, S.; Das, S.; Negishi, Y. Advances in Cu nanocluster catalyst design: Recent progress and promising applications. Nonoscale Horiz. 2023, 8, 1509–1522. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Nematulloev, S.; Yuan, P.; Bakr, O.M. Atomically Precise Copper Nanoclusters. Syntheses, Structures, and Properties. In Atomically Precise Nanochemistry; Jin, R., Jiang, D.-e., Eds.; John Wiley, & Sons: Oxford, UK, 2023; pp. 257–283. [Google Scholar] [CrossRef]
- Fuhr, O.; Dehnen, S.; Fenske, D. Chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem. Soc. Rev. 2013, 42, 1871–1906. [Google Scholar] [CrossRef] [PubMed]
- Dehnen, S.; Eichhöfer, A.; Fenske, D. Chalcogen-Bridged Copper Clusters. Eur. J. Inorg. Chem. 2002, 2, 279–317. [Google Scholar] [CrossRef]
- Bettenhausen, M.; Eichhöfer, A.; Fenske, D.; Semmelmann, M. Synthesis and crystal structures of new selenido- and selenolato-bridged copper clusters. [Cu38Se13(SePh)12(dppb)6], [Cu(dppp)2][Cu25Se4(SePh)18(dppp)2], [Cu36Se5(SePh)26(dppa)4], [Cu58Se16(SePh)24(dppa)6], and [Cu3SeMes)3(dppm)]. Z. Anorg. Allg. Chem. 1999, 625, 593–601. [Google Scholar] [CrossRef]
- Ahlrichs, R.; Besinger, J.; Eichhofer, A.; Fenske, D.; Gbureck, A. Synthesis, crystal structure, and binding properties of the mixed valence clusters [Cu32As30(dppm)8] and [Cu26Te12(PEt2Ph)12]. Angew. Chem. Int. Ed. 2000, 39, 3929–3933. [Google Scholar] [CrossRef]
- Das, A.K.; Biswas, S.; Wani, V.S.; Nair, A.S.; Pathak, B.; Mandal, S. [Cu18H3(S-Adm)12(PPh3)4Cl2]: Fusion of Platonic and Johnson solids through a Cu(0) center and its photophysical properties. Chem. Sci. 2022, 13, 7616–7625. [Google Scholar] [CrossRef]
- Cook, A.W.; Jones, Z.R.; Wu, G.; Scott, S.L.; Hayton, T.W. An Organometallic Cu20 Nanocluster: Synthesis, Characterization, Immobilization on Silica, and "Click" Chemistry. J. Am. Chem. Soc. 2018, 140, 394–400. [Google Scholar] [CrossRef]
- Nguyen, T.A.D.; Jones, Z.R.; Leto, D.F.; Wu, G.; Scott, S.L.; Hayton, T.W. Ligand-Exchange-Induced Growth of an Atomically Precise Cu29 Nanocluster from a Smaller Cluster. Chem. Mater. 2016, 28, 8385–8390. [Google Scholar] [CrossRef]
- Chakrahari, K.K.; Liao, J.-H.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C.W. [Cu13{S2CNnBu2}6(acetylide)4]+: A Two-Electron Superatom. Angew. Chem. Int. Ed. 2016, 55, 14704–14708. [Google Scholar] [CrossRef] [PubMed]
- Chakrahari, K.K.; Silalahi, R.P.B.; Liao, J.-H.; Kahlal, S.; Liu, Y.-C.; Lee, J.-F.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C.W. Synthesis and structural characterization of inverse-coordination clusters from a two-electron superatomic copper nanocluster. Chem. Sci. 2018, 9, 6785–6795. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-L.; Wang, J.; Luo, P.; Ma, X.-H.; Dong, X.-Y.; Wang, Z.-Y.; Du, C.-Y.; Zang, S.-Q.; Mak, T.C.W. Cu14 Cluster with Partial Cu(0) Character: Difference in Electronic Structure from Isostructural Silver Analog. Adv. Sci. 2019, 6, 1900833–1900839. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-H.; Liu, L.-Y.; Wang, Z.-Y.; Zang, S.-Q.; Mak, T.C.W. Modular Cocrystallization of Customized Carboranylthiolate-Protected Copper Nanoclusters via Host–Guest Interactions. ACS Nano 2022, 16, 18789–18794. [Google Scholar] [CrossRef] [PubMed]
- Kleeberg, C.; Borner, C. Syntheses, Structures, and Reactivity of NHC Copper(I) Boryl Complexes: A Systematic Study. Organometallics 2018, 37, 4136–4146. [Google Scholar] [CrossRef]
- Borner, C.; Anders, L.; Brandhorst, K.; Kleeberg, C. Elusive Phosphine Copper(I) Boryl Complexes: Synthesis, Structures, and Reactivity. Organometallics 2017, 36, 4687–4690. [Google Scholar] [CrossRef]
- Kang, X.; Wang, S.; Song, Y.; Jin, S.; Sun, G.; Yu, H.; Zhu, M. Bimetallic Au2Cu6 Nanoclusters: Strong Luminescence Induced by the Aggregation of Copper(I) Complexes with Gold(0) Species. Angew. Chem. Int. Ed. 2016, 55, 3611–3614. [Google Scholar] [CrossRef]
- Kang, X.; Li, X.; Yu, H.; Lv, Y.; Sun, G.; Li, Y.; Wang, S.; Zhu, M. Modulating photo-luminescence of Au2Cu6 nanoclusters via ligand-engineering. RSC Adv. 2017, 7, 28606–28609. [Google Scholar] [CrossRef]
- Wang, H.-H.; Wei, J.; Bigdeli, F.; Rouhani, F.; Su, H.-F.; Wang, L.-X.; Kahlal, S.; Halet, J.-F.; Saillard, J.-Y.; Morsali, A.; et al. Monocarboxylate-Protected Two-Electron Superatomic Silver Nanoclusters with High Photothermal Conversion Performance. Nanoscale 2023, 15, 8245–8254. [Google Scholar] [CrossRef]
- Yuan, P.; Chen, R.; Zhang, X.; Chen, F.; Yan, J.; Sun, C.; Ou, D.; Peng, J.; Lin, S.; Tang, Z.; et al. Ether-Soluble Cu53 Nanoclusters as an Effective Precursor of High-Quality CuI Films for Optoelectronic Applications. Angew. Chem. Int. Ed. 2019, 58, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, M.; Huang, R.-W.; Alamer, B.; Abou-Hamad, E.; Hedhili, M.N.; Mohammed, O.F.; Bakr, O.M. [Cu61(StBu)26S6Cl6H14]+: A Core–Shell Superatom Nanocluster with a Quasi-J36 Cu19 Core and an “18-Crown-6” Metal-Sulfide-like Stabilizing Belt. ACS Mater. Lett. 2019, 1, 297–302. [Google Scholar] [CrossRef]
- Liao, J.-H.; Dhayal, R.S.; Wang, X.; Kahlal, S.; Saillard, J.-Y.; Liu, C.W. Neutron Diffraction Studies of a Four-Coordinated Hydride in Near Square-Planar Geometry. Inorg. Chem. 2014, 53, 11140–11145. [Google Scholar] [CrossRef] [PubMed]
- Han, B.-L.; Liu, Z.; Feng, L.; Wang, Z.; Gupta, R.K.; Aikens, C.M.; Tung, C.-H.; Sun, D. Polymorphism in Atomically Precise Cu23 Nanocluster Incorporating Tetrahedral [Cu4]0 Kernel. J. Am. Chem. Soc. 2020, 142, 5834–5841. [Google Scholar] [CrossRef] [PubMed]
- Drescher, W.; Borner, C.; Kleeberg, C. Stability and decomposition of copper(I) boryl complexes: [(IDipp)Cu–Bneop], [(IDipp*)Cu–Bneop] and copper clusters. New J. Chem. 2021, 45, 14957–14964. [Google Scholar] [CrossRef]
- MacKay, A.L. A dense non-crystallographic packing of equal spheres. Acta Cryst. 1962, 15, 916–918. [Google Scholar] [CrossRef]
- Zouchoune, B.; Zerizer, M.A.; Saillard, J.-Y. A DFT investigation of the structure/electron count relationship in a 40-electron copper nanocluster with unprecedented Cu39 superatomic core. Inorg. Chim. Acta 2024, Submitted. [Google Scholar]
- Qu, M.; Zhang, F.-Q.; Wang, D.-H.; Li, H.; Hou, J.-J.; Zhang, X.-M. Observation of Non-FCC Copper in Alkynyl-Protected Cu53 Nanoclusters. Angew. Chem. Int. Ed. 2020, 59, 6507–6512. [Google Scholar] [CrossRef]
- Alkan, F.; Pandeya, P.; Aikens, C.M. Understanding the Effect of Doping on Energetics and Electronic Structure for Au25, Ag25, and Au38 Clusters. J. Phys. Chem. C 2019, 123, 9516–9527. [Google Scholar] [CrossRef]
- Kang, X.; Li, Y.; Zhu, M.; Jin, R. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514. [Google Scholar] [CrossRef]
- Ananya Baksi, A.; Schneider, E.K.; Weis, P.; Chakraborty, I.; Fuhr, O.; Lebedkin, S.; Parak, W.J.; Kappes, M.M. Linear Size Contraction of Ligand Protected Ag29 Clusters by Substituting Ag with Cu. ACS Nano 2020, 14, 15064–15070. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Hu, D.; Xiong, L.; Li, Y.; Kang, X.; Chen, S.; Wang, S.; Pei, Y.; Zhu, M. Isomer Structural Transformation in Au–Cu Alloy Nanoclusters: Water Ripple-Like Transfer of Thiol Ligands. Part. Part. Syst. Charact. 2019, 36, 1800494. [Google Scholar] [CrossRef]
- Lin, Z.; Lv, Y.; Jin, S.; Yu, H.; Zhu, M. Size Growth of Au4Cu4: From Increased Nucleation to Surface Capping. ACS Nano 2023, 17, 8613–8621. [Google Scholar] [CrossRef]
- Deng, H.; Bai, Y.; Zhou, M.; Bao, Y.; Jin, S.; Xiaowu Li, X.; Yu, H.; Zhu, M. Structure and Properties of Au5Cu6(Dppf)3(SAdm)6)(BPh4). J. Phys. Chem. C. 2020, 124, 21867–21873. [Google Scholar] [CrossRef]
- Silalahi, R.P.B.; Chakrahari, K.K.; Liao, J.-H.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C.W. Synthesis of Two-Electron Bimetallic Cu–Ag and Cu–Au Clusters by using [Cu13(S2CNnBu2)6(C≡CPh)4]+ as a Template. Chem. Asian J. 2018, 13, 500–504. [Google Scholar] [CrossRef]
- Silalahi, R.P.B.; Chiu, T.-H.; Kao, J.-H.; Wu, C.-Y.; Yin, C.-W.; Liu, Y.-C.; Chen, Y.; Saillard, J.-Y.; Chiang, M.-H.; Liu, C.W. Synthesis and Luminescence Properties of Two-Electron Bimetallic Cu-Ag and Cu-Au Nanoclusters Via Copper Hydride Precursors. Inorg. Chem. 2021, 60, 10799–10807. [Google Scholar] [CrossRef]
- van Zyl, W.E.; Liu, C.W. Interstitial Hydrides in Nanoclusters can Reduce M(I) (M=Cu, Ag, Au) to M(0) and Form Stable Superatoms. Chem. Eur. J. 2022, 28, e20210424. [Google Scholar] [CrossRef]
- Silalahi, R.P.B.; Wang, Q.; Liao, J.-H.; Chiu, T.-H.; Wu, Y.-Y.; Wang, X.; Kahlal, S.; Saillard, J.-Y.; Liu, C.W. Reactivities of Interstitial Hydrides in a Cu11 Template: En Route to Bimetallic Clusters. Angew. Chem. Int. Ed. 2022, 61, e202113266. [Google Scholar] [CrossRef]
- Mingos, D.M.P.; Wales, D.J. Introduction to Cluster Chemistry, 1st ed.; Prentice Hall: Englewood, NJ, USA, 1990; ISBN 978-0134743059. [Google Scholar]
- Silalahi, R.P.B.; Jo, Y.; Liao, J.-H.; Chiu, T.-H.; Park, E.; Choi, W.; Liang, H.; Kahlal, S.; Saillard, J.-Y.; Lee, D.; et al. Hydride-containing 2-Electron Pd/Cu Superatoms as Catalysts for Efficient Electrochemical Hydrogen Evolution. Angew. Chem. Int. Ed. 2023, 62, e202301272. [Google Scholar] [CrossRef]
- Chiu, T.-H.; Liao, J.-H.; Gam, F.; Wu, Y.-Y.; Wang, X.; Kahlal, S.; Saillard, J.-Y.; Liu, C.W. Hydride-Containing Eight-Electron Pt/Ag Superatoms: Structure, Bonding, and Multi-NMR Studies. J. Am. Chem. Soc. 2022, 146, 10599–10607. [Google Scholar] [CrossRef]
- Chiu, T.-H.; Liao, J.-H.; Wu, Y.-Y.; Chen, J.-Y.; Chen, Y.J.; Wang, X.; Kahlal, S.; Saillard, J.-Y.; Liu, C.W. Hydride Doping Effects on the Structure and Properties of Eight-Electron Rh/Ag Superatoms: The [RhHx@Ag21-x{S2P(OnPr)2}12] (x = 0–2) Series. J. Am. Chem. Soc. 2023, 145, 16739–16747. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Kang, X.; Jin, S.; Du, W.; Wang, S.; Zhu, M. Gram-Scale Preparation of Stable Hydride M@Cu24 (M = Au/Cu) Nanoclusters. Phys. Chem. Lett. 2019, 10, 6124–6128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-M.; Gao, K.-K.; Dong, X.-Y.; Si, Y.; Jia, T.; Han, Z.; Zang, S.-Q.; Mak, T.C.W. Chiral Hydride Cu18 Clusters Transform to Superatomic Cu15Ag4 Clusters: Circularly Polarized Luminescence Lighting. J. Am. Chem. Soc. 2023, 145, 22310–22316. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, S.; Tian, G.; Gao, Y.; Wei, J.; Shen, H. Ag10Cu16 nanoclusters with triple-ligand protection: Total structure and electronic structure analysis. Phys. Chem. Chem. Phys. 2023, 25, 17901–17906. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, Y.; Zhou, M.; Liu, X.; Li, H.; Wang, H.; Shen, Y.; Zhu, M.; Jin, R. Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature. Sci. Adv. 2021, 7, eabd2091. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Bootharaju, M.S.; Deng, G.; Malola, S.; Häkkinen, H.; Zheng, N.; Hyeon, T. [Pt2Cu34(PET)22Cl4]2−: An Atomically Precise, 10-Electron PtCu Bimetal Nanocluster with a Direct Pt−Pt Bond. J. Am. Chem. Soc. 2021, 143, 12100–12107. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Deng, S.; Wang, S.; Pei, Y.; Zhu, M. Total structural determination of alloyed Au15.37Cu16.63(S-Adm)20 nanoclusters with double superatomic chains. Chem. Commun. 2021, 57, 2017–2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Li, Z.; Qin, Z.; Sharma, S.; Li, G. Atomically precise copper dopants in metal clusters boost up stability, fluorescence, and photocatalytic activity. Commun. Chem. 2023, 6, 24. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Yan, J.; Chen, X.; Zhang, X.; Häkkinen, H.; Zheng, N. Structural Evolution of Atomically Precise Thiolated Bimetallic [Au12+nCu32(SR)30+n]4– (n = 0, 2, 4, 6) Nanoclusters. J. Am. Chem. Soc. 2014, 136, 7197–7200. [Google Scholar] [CrossRef]
- Yang, H.Y.; Wang, Y.; Huang, H.Q.; Gell, L.; Lehtovaara, L.; Malola, S.; Hakkinen, H.; Zheng, N. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422. [Google Scholar] [CrossRef]
- Li, Q.; Chai, J.; Yang, S.; Song, Y.; Chen, T.; Chen, C.; Zhang, H.; Yu, H.; Zhu, M. Multiple Ways Realizing Charge-State Transform in Au-Cu Bimetallic Nanoclusters with Atomic Precision. Small 2021, 17, 1907114. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Wang, B.; Wang, R.; Wang, S. Alloying and dealloying of Au18Cu32 nanoclusters at precise locations via controlling the electronegativity of substituent groups on thiol ligands. Nanoscale 2023, 15, 1602–1608. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.-K.; Cheng, X.-L.; Tang, Q.; Han, Y.-Z.; Hu, G.; Jiang, D.-e.; Wang, Q.-M. Atomically Precise Bimetallic Au19Cu30 Nanocluster with an Icosidodecahedral Cu30 Shell and an Alkynyl−Cu Interface. J. Am. Chem. Soc. 2017, 139, 9451–9454. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, Y.; Li, H.; Ke, F.; Xiang, J.; Zhou, C.; Li, P.; Zhu, M.; Jin, R. Atomically resolved Au52Cu72(SR)55 nanoalloy reveals Marks decahedron truncation and Penrose tiling surface. Nat. Com. 2020, 11, 478. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.; Weßing, J.; Fässler, T.F.; Fischer, R.A. Intermetalloid Clusters: Molecules and Solids in a Dialogue. Angew. Chem. Int. Ed. 2018, 57, 14372–14393. [Google Scholar] [CrossRef] [PubMed]
- Schütz, M.; Gemel, C.; Klein, W.; Fischer, R.A.; Fässler, T.F. Intermetallic phases meet intermetalloid clusters. Chem. Soc. Rev. 2021, 50, 8496–8510. [Google Scholar] [CrossRef] [PubMed]
- Schütz, M.; Gemel, C.; Muhr, M.; Jandl, C.; Kahlal, S.; Saillard, J.-Y.; Fischer, R.A. Exploring Cu/Al cluster growth and reactivity: From embryonic building blocks to intermetalloid, open-shell superatoms. Chem. Sci. 2021, 12, 6588–6599. [Google Scholar] [CrossRef] [PubMed]
- Freitag, K.; Gemel, C.; Jerabek, P.; Oppel, I.M.; Seidel, R.W.; Frenking, G.; Banh, H.; Dilchert, K.; Fischer, R.A. The σ-Aromatic Clusters [Zn3]+and [Zn2Cu]: Embryonic Brass. Angew. Chem. Int. Ed. 2015, 54, 4370–4374. [Google Scholar] [CrossRef]
- Freitag, K.; Banh, H.; Gemel, C.; Seidel, R.W.; Kahlal, S.; Saillard, J.-Y.; Fischer, R.A. Molecular brass: Cu4Zn4, a ligand protected superatom cluster. Chem. Commun. 2014, 50, 8681–8684. [Google Scholar] [CrossRef]
- Ganesamoorthy, C.; Weßing, J.; Kroll, C.; Seidel, R.W.; Gemel, C.; Fischer, R.A. The Intermetalloid Cluster [(Cp*AlCu)6H4], Embedding a Cu6 Core Inside an Octahedral Al6 Shell: Molecular Models of Hume–Rothery Nanophases. Angew. Chem. Int. Ed. 2014, 53, 7943–7947. [Google Scholar] [CrossRef]
- Weßing, J.; Ganesamoorthy, C.; Kahlal, S.; Marchal, R.; Gemel, C.; Cador, O.; Da Silva, A.C.H.; Da Silva, J.L.F.; Saillard, J.-Y.; Fischer, R.A. The Mackay-Type Cluster [Cu43Al12](Cp*)12: Open-Shell 67-Electron Superatom with Emerging Metal-Like Electronic Structure. Angew. Chem. Int. Ed. 2018, 57, 14630–14634. [Google Scholar] [CrossRef] [PubMed]
- Matus, M.F.; Häkkinen, H. Understanding ligand-protected noble metal nanoclusters at work. Nat. Rev. Mater. 2023, 8, 372–389. [Google Scholar] [CrossRef]
- Pillay, M.N.; van Zyl, W.E.; Liu, C.W. A construction guide for high-nuclearity (≥50 metal atoms) coinage metal clusters at the nanoscale: Bridging molecular precise constructs with the bulk material phase. Nanoscale 2020, 12, 24331–24348. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, J.; Lun, Y.; Wang, Y.; Wang, Y.; Song, S. Ligand Design in Atomically Precise Copper Nanoclusters and Their Application in Electrocatalytic Reactions. Adv. Funct. Mater. 2023, 33, 2304184. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Liu, C.W. Recent progress in dichalcophosphate coinage metal clusters and superatoms. Chem. Commun. 2023, 59, 7182–7195. [Google Scholar] [CrossRef]
- Sun, J.; Tang, X.; Liu, Z.-H.; Xie, Z.; Yan, B.; Yin, R.; Chaolumen, C.; Zhang, J.; Fang, W.; Wei, J.; et al. Labile Ligands Protected Cu50 Nanoclusters with Tailorable Optical Limiting Effect. ACS Mater. Lett. 2024, 6, 281–289. [Google Scholar] [CrossRef]
ne | Proposed Superatomic/Supermolecular Core | Ref. | ||
---|---|---|---|---|
37 | [AlCu2Cp*3] | 2 | Triangle [AlCu2]3+ | [79] |
38 | [Al4Cu4 (Mes)Cp*5] | 6 | [Cu4Al2]4+ | [79] |
39 | [Zn2Cu10(Mes)6Cp*2] | 6 | D3h [ZnCu10]8+ (see text) | [81] |
40 | [Zn4Cu4 (CNtBu)4Cp*4] | 8 | Tetracapped tetrahedron [Cu4@Zn4]4+ | [82] |
41 | [Al6Cu6H3XCp*6] (X = H, NH=CHPh) | 18 or 20? | Bicapped tetrahedron@octahedron [(Cu4@ Cu2Hx)@Al6]n+ (see text) | [83] |
42 | [Al6Cu7HCp*6] | 20 | Tricapped tetrahedron@octahedron [(Cu4@ Cu3H)@Al6]6+ | [79] |
43 | [Al6Cu8Cp*6] | 20 | Tetracapped tetrahedron@octahedron [(Cu4@Cu4)@Al6]6+ | [79] |
44 | [(Al12Cu43)Cp*12] | 67 | Ih-shaped MacKey cluster [Cu@Cu12@(Cu30Al12)]12+ | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zouchoune, B.; Saillard, J.-Y. Atom-Precise Ligated Copper and Copper-Rich Nanoclusters with Mixed-Valent Cu(I)/Cu(0) Character: Structure–Electron Count Relationships. Molecules 2024, 29, 605. https://doi.org/10.3390/molecules29030605
Zouchoune B, Saillard J-Y. Atom-Precise Ligated Copper and Copper-Rich Nanoclusters with Mixed-Valent Cu(I)/Cu(0) Character: Structure–Electron Count Relationships. Molecules. 2024; 29(3):605. https://doi.org/10.3390/molecules29030605
Chicago/Turabian StyleZouchoune, Bachir, and Jean-Yves Saillard. 2024. "Atom-Precise Ligated Copper and Copper-Rich Nanoclusters with Mixed-Valent Cu(I)/Cu(0) Character: Structure–Electron Count Relationships" Molecules 29, no. 3: 605. https://doi.org/10.3390/molecules29030605
APA StyleZouchoune, B., & Saillard, J. -Y. (2024). Atom-Precise Ligated Copper and Copper-Rich Nanoclusters with Mixed-Valent Cu(I)/Cu(0) Character: Structure–Electron Count Relationships. Molecules, 29(3), 605. https://doi.org/10.3390/molecules29030605