Profiling of Volatile Compounds in ‘Muscat Hamburg’ Contaminated with Aspergillus carbonarius before OTA Biosynthesis Based on HS-SPME-GC-MS and DLLME-GC-MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. OTA Detection in Grapes
2.2. Volatile Compound Profiling in Grapes Prior to OTA Biosynthesis
2.2.1. PCA of Volatile Compounds
2.2.2. OPLS-DA of Volatile Compounds and Correlation of OTA with Volatiles
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Grape Samples
3.3. A. carbonarius and Culture Conditions
3.4. Grape Inoculation and Incubation Conditions
3.5. Optimization of the QuEChERS Procedure
3.5.1. Selection of Extraction Solvent
3.5.2. Selection of Cleaning Sorbent
3.5.3. Validation of the Method
3.6. Determination of OTA Concentration
3.6.1. QuEChERS Sample Preparation
3.6.2. OTA Quantification by HPLC-FLD
3.6.3. Method Validation
3.7. Identification and Quantification of Volatile Compounds
3.7.1. HS-SPME
3.7.2. DLLME
3.7.3. GC-MS
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.R.; Cai, R.; Yue, T.L.; Yuan, Y.H.; Gao, Z.; Wang, Z.P. Assessment of traditional clarifiers on the adsorption of ochratoxin A in Cabernet Sauvignon red wine and their kinetics. Food Chem. 2022, 373, 131592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Cheng, Z.; Ma, L.Y.; Li, J.M. A study on accumulation of volatile organic compounds during ochratoxin a biosynthesis and characterization of the correlation in Aspergillus carbonarius isolated from grape and dried vine fruit. Food Chem. 2017, 227, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Mikušová, P.; Cabon, M.; Melichárková, A.; Urík, M.; Ritieni, A.; Slovák, M. Genetic Diversity, Ochratoxin A and Fumonisin Profiles of Strains of Aspergillus Section Nigri Isolated from Dried Vine Fruits. Toxins 2020, 12, 592. [Google Scholar] [CrossRef] [PubMed]
- IARC International Agency for Research on Cancer. Ochratoxin A. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some Naturally Occurring Substance, Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins; International Agency for Research on Cancer: Geneva, Switzerland, 1993; Volume 56, pp. 26–32. Available online: https://monographs.iarc.fr/agents-classified-by-the-iarc/ (accessed on 3 December 2020).
- Gonçalves, A.; Palumbo, R.; Guimaraes, A.; Gkrillas, A.; Dall’Asta, C.; Dorne, J.L.; Battilani, P.; Venâncio, A. The route of mycotoxins in the grape food chain. Am. J. Enol. Vitic. 2020, 71, 89–104. [Google Scholar] [CrossRef]
- Battilani, P.; Pietri, A.; Logrieco, A. Risk assessment and management in practice: Ochratoxin in grapes and wine. In Mycotoxins in Food: Detection and Control; Woodhead: Cambridge, UK, 2004; pp. 244–261. [Google Scholar]
- Cabañes, F.J.; Accensi, F.; Bragulat, M.R.; Abarca, M.L.; Castellá, G.; Minguez, S.; Pons, A. What is the source of ochratoxin A in wine? Int. J. Food Microbiol. 2002, 79, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Magnoli, C.; Astoreca, A.; Ponsone, L.; Combina, M.; Palacio, G.; Rosa, C.; Dalcero, A.M. Survey of mycoflora and ochratoxin A in dried vine fruits from Argentina markets. Lett. Appl. Microbiol. 2004, 39, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Jelen, H.H. Volatile sesquiterpene hydrocarbons characteristic for Penicillium roqueforti strains producing PR toxin. J. Agric. Food Chem. 2002, 50, 6569–6574. [Google Scholar] [CrossRef]
- Morath, S.U.; Hung, R.; Bennett, J.W. Fungal volatile organic compounds:A review with emphasis on their biotechnological potential. Fungal Biol. Rev. 2012, 26, 73–83. [Google Scholar] [CrossRef]
- Gallo, A.; Bruno, K.S.; Solfrizzo, M.; Perrone, G.; Mulè, G.; Visconti, A.; Baker, S.E. New insight into the ochratoxin A biosynthetic pathway through deletion of a nonribosomal peptide synthetase gene in Aspergillus carbonarius. Appl. Environ. Microbiol. 2012, 78, 8208–8218. [Google Scholar] [CrossRef]
- Zhao, X.S.; Liu, D.; Zhang, L.; Zhou, Y.K.; Yang, M.H. Development and optimization of a method based on QuEChERS-dSPE followed by UPLC-MS/MS for the simultaneous determination of 21 mycotoxins in nutmeg and related products. Microchem. J. 2021, 168, 106499. [Google Scholar] [CrossRef]
- Xie, H.; Li, Y.; Li, J.; Chen, Y.; Li, J.; Kuang, L.; Shah Bacha, S.A.; Zhang, T.; Chao, Y. Mycotoxin Determination in Peaches and Peach Products with a Modified QuEChERS Extraction Procedure Coupled with UPLC-MS/MS Analysis. Foods 2023, 12, 3216. [Google Scholar] [CrossRef] [PubMed]
- Berardis, S.; Paola, E.L.; Montevecchi, G.; Garbini, D.; Masino, F.; Antonelli, A.; Melucci, D. Determination of four Alternaria alternata mycotoxins by QuEChERS approach coupled with liquid chromatography-tandem mass spectrometry in tomato-based and fruit-based products. Food Res. Int. 2018, 106, 677–685. [Google Scholar] [CrossRef] [PubMed]
- García-Vara, M.; Postigo, C.; Palma, P.; Bleda, M.J.; de Alda, M.L. QuEChERS-based analytical methods developed for LC-MS/MS multiresidue determination of pesticides in representative crop fatty matrices: Olives and sunflower seeds. Food Chem. 2022, 386, 132558. [Google Scholar] [CrossRef] [PubMed]
- Jofré, V.P.; Assof, M.V.; Fanzone, M.L.; Goicoechea, H.C.; Martínez, L.D.; Silva, M.F. Optimization of ultrasound assisted-emulsification-dispersive liquid-liquid microextraction by experimental design methodologies for the determination of sulfur compounds in wines by gas chromatography-mass spectrometry. Anal. Chim. Acta 2010, 683, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Boutou, S.; Chatonnet, P. Rapid headspace solid-phase microextraction/gas chromatographic/mass spectrometric assay for the quantitative determination of some of the main odorants causing off-flavours in wine. J. Chromatogr. A 2007, 1141, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Josselin, L.; De Clerck, C.; De Boevre, M.; Moretti, A.; Jijakli, M.H.; Soyeurt, H.; Fauconnier, M.-L. Volatile Organic Compounds Emitted by Aspergillus flavus Strains Producing or Not Aflatoxin B1. Toxins 2021, 13, 705. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Gutiérrez-Gamboa, G.; Baroja, E.; Rubio-Bretón, P.; Pérez-Alvarez, E.P. Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages. Food Res. Int. 2018, 112, 274–283. [Google Scholar] [CrossRef]
- Wu, Y.S.; Zhang, W.W.; Yu, W.J.; Zhao, L.P.; Song, S.R.; Xu, W.P.; Zhang, C.X.; Ma, C.; Wang, L.; Wang, S.P. Study on the volatile composition of table grapes of three aroma types. LWT-Food Sci. Technol. 2019, 115, 108450. [Google Scholar] [CrossRef]
- Balkan, T.; Karaagaçli, H. Determination of 301 pesticide residues in tropical fruits imported to Turkey using LC-MS/MS and GC-MS. Food Control 2023, 147, 109576. [Google Scholar] [CrossRef]
- Oliveira, L.G.d.; Kurz, M.H.S.; Guimarães, M.C.M.; Martins, M.L.; Prestes, O.D.; Zanella, R.; Ribeiro, J.N.d.S.; Gonçalves, F.F. Development and validation of a method for the analysis of pyrethroid residues in fish using GC-MS. Food Chem. 2019, 297, 124944. [Google Scholar] [CrossRef]
- Fontana, A.; Rodriguez, I.; Cela, R. Dispersive liquid-liquid microextraction and gas chromatography accurate mass spectrometry for extraction and non-targeted profiling of volatile and semi-volatile compounds in grape marc distillates. J. Chromatogr. A 2018, 1546, 36–45. [Google Scholar] [CrossRef]
- Rezaee, M.; Assadi, Y.; Hosseini, M.M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Leong, M.I.; Fuh, M.R.; Huang, S. Beyond dispersive liquid-liquid microextraction. J. Chromatogr. A 2014, 1335, 2–14. [Google Scholar] [CrossRef]
- Zhou, Z.L.; Ni, W.; Ji, Z.W.; Liu, S.P.; Han, X.; Li, X.T.; Mao, J. Development of a rapid method for determination of main higher alcohols in fermented alcoholic beverages based on dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry. Food Anal. Methods 2019, 13, 591–600. [Google Scholar] [CrossRef]
- Wu, S.F.; Yin, J.X.; Li, X.J.; Xie, J.Y.; Ding, H.; Han, L.F.; Bie, S.T.; Li, F.Y.; Zhu, B.B.; Kang, L.P.; et al. An Exploration of Dynamic Changes in the Mulberry Growth Process Based on UPLC-Q-Orbitrap-MS, HS-SPME-GC-MS, and HS-GC-IMS. Foods 2023, 12, 3335. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Chen, W.L.; Lei, Y.T.; Li, F.C.; Li, H.M.; Deng, W.; Jiang, G.H. Discrimination of authenticity of Fritillariae Cirrhosae Bulbus based on terahertz spectroscopy and chemometric analysis. Microchem. J. 2021, 168, 106440. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Huang, Y.; Yue, T.; Cao, W. Analysis of Volatile Markers and Their Biotrans formation in Raw Chicken during Staphylococcus aureus Early Contamination. Foods 2023, 12, 2782. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Xu, B.; Liu, Z.; Cheng, Y.; Chao, Z. The Difference of Volatile Compounds in Female and Male Buds of Trichosanthes anguina L. Based on HS-SPME-GC-MS and Multivariate Statistical Analysis. Molecules 2022, 27, 7021. [Google Scholar] [CrossRef]
- Su, D.; He, J.J.; Zhou, Y.Z.; Li, Y.L.; Zhou, H.J. Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics. Food Chem. 2022, 373, 131587. [Google Scholar] [CrossRef]
- Abarca, M.L.; Bragulat, M.R.; Castellá, G.; Cabañes, F.J. Impact of some environmental factors on growth and ochratoxin A production by Aspergillus niger and Aspergillus welwitschiae. Int. J. Food Microbiol. 2019, 291, 10–16. [Google Scholar] [CrossRef]
- Schueuermann, C.; Steel, C.C.; Blackman, J.W.; Clark, A.C.; Schwarz, L.J.; Moraga, J.; Collado, I.G.; Schmidtke, L.M. A GC-MS untargeted metabolomics approach for the classification of chemical differences in grape juices based on fungal pathogen. Food Chem. 2019, 270, 375–384. [Google Scholar] [CrossRef]
- Dachery, B.; Hernandes, K.C.; Veras, F.F.; Schmidt, L.; Augusti, P.R.; Manfroi, V.; Zini, C.A.; Welke, J.E. Effect of Aspergillus carbonarius on ochratoxin a levels, volatile profile and antioxidant activity of the grapes and respective wines. Food Res. Int. 2019, 123, 108687. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.D.; Kang, J.E.; Kim, B.S. Postharvest disease control efficacy of the polyene macrolide lucensomycin produced by Streptomyces plumbeus strain CA5 against gray mold on grapes. Postharvest Biol. Technol. 2020, 162, 111115. [Google Scholar] [CrossRef]
- Wu, J.; Guo, E.R.; Wang, M.L.; Wang, K.; Ma, L.; Lian, K.Q. Determination of β-lactam antibiotics in animal derived foods by modified QuEChERS coupled with ultra performance liquid chromatography-tandem mass spectrometry. J. Food Compos. Anal. 2023, 122, 105437. [Google Scholar] [CrossRef]
- Juan, C.; Manes, J.; Font, G.; Juan-García, A. Determination of mycotoxins in fruit berry by-products using QuEChERS extraction method. LWT Food Sci. Technol. 2017, 86, 344–351. [Google Scholar] [CrossRef]
- Leite, M.; Freitas, A.; Barbosa, J.; Ramos, F. Mycotoxins and Maize Value Chain: Multi-Matrix and Multi-Analyte Tools towards Global Feed and Food Safety. Separations 2023, 10, 486. [Google Scholar] [CrossRef]
- Yang, B.X.; Wang, S.; Ma, W.; Li, G.L.; Tu, M.L.; Ma, Z.Y.; Zhang, Q.H.; Li, H.M.; Li, X.J. Simultaneous Determination of Neonicotinoid and Carbamate Pesticides in Freeze-Dried Cabbage by Modified QuEChERS and Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods 2023, 12, 699. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Wu, X.; Xu, X.; Cheng, H.; Shen, J.; Zheng, R.; Mao, L.; Luo, X.; Mu, Y.; Liu, Y. Simultaneous Rapid Determination of Seven Alternaria Toxins in Tuberous Crops during Storage Using QuEChERS Coupled with Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. Foods 2023, 12, 862. [Google Scholar] [CrossRef]
- Ding, Z.; Lin, M.; Song, X.; Wu, H.; Xiao, J. Quantitative Modeling of the Degradation of Pesticide Residues in Wheat Flour Supply Chain. Foods 2023, 12, 788. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Deng, Y.C.; Zheng, J.F.; Zhang, Y.; Yang, L.H.; Liao, C.J.; Su, L.; Zhou, Y.Y.; Gong, D.X.; Chen, L.; et al. The application of the QuEChERS methodology in the determination of antibiotics in food: A review. TrAC-Trends Anal. Chem. 2019, 118, 517–537. [Google Scholar] [CrossRef]
- Herrero, P.; Borrull, F.; Pocurull, E.; Marcé, R.M. A quick, easy, cheap, effective, rugged and safe extraction method followed by liquid chromatography-(Orbitrap) high resolution mass spectrometry to determine benzotriazole, benzothiazole and benzenesulfonamide derivates in sewage sludge. J. Chromatogr. A 2014, 1339, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.Y.; Meng, W.T.; Sun, W.Y.; Li, D.X.; Yu, Z.G.; Tong, L.; Zhao, Y.L. Simultaneous qualitative and quantitative analysis of 21 mycotoxins in Radix Paeoniae Alba by ultra-high performance liquid chromatography quadrupole linear ion trap mass spectrometry and QuEChERS for sample preparation. J. Chromatogr. B 2016, 1031, 202–213. [Google Scholar] [CrossRef]
- Huang, Y.S.; Shi, T.; Luo, X.; Xiong, H.L.; Min, F.F.; Chen, Y.; Nie, S.P.; Xie, M.Y. Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS. Food Chem. 2019, 275, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Commission of the European Communities. Commission Regulation (EU) No 519/2014 of 16 May 2014 amending Regulation (EC) No 401/2006 as regards methods of sampling of large lots, spices and food supplements, performance criteria for T-2, HT-2 toxin and citrinin and screening methods of analysis. Off. J. Eur. Union 2014, 147, 29–43. [Google Scholar]
- Tankiewicz, M.; Berg, A. Improvement of the QuEChERS method coupled with GC-MS/MS for the determination of pesticide residues in fresh fruit and vegetables. Microchem. J. 2022, 181, 107794. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Chen, K.; Li, J.M. Influence of Training Systems on the Aroma of Vidal Blanc Grapes Analyzed by Headspace Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry. Food Sci. 2021, 42, 83–90. [Google Scholar] [CrossRef]
- Xie, Z.M.; Zeng, D.Q.; Wang, J.W.; Zhao, M.M.; Feng, Y.Z. Dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry(GC-MS) for the determination of soy sauce aroma compounds. Food Control 2023, 152, 109838. [Google Scholar] [CrossRef]
HS-SPME-GC-MS CK1d vs. 1d | DLLME-GC-MS CK1d vs. 1d | ||||
---|---|---|---|---|---|
(E)-2-hexenal | > | VIP = 1.25, p = 0.02 | (E)-2-hexenal | > | VIP = 1.22, p = 0.04 |
styrene | > | VIP = 1.03, p = 0.01 | nerol | > | VIP = 1.28, p < 0.01 |
trans-2-(2-pentenyl)furan | < | VIP = 1.25, p < 0.05 | ethyl acetate | > | VIP = 1.25, p < 0.01 |
1-hexanol | < | VIP = 1.28, p < 0.05 | |||
3,7-dimethyl-3,6-octadienal | < | VIP = 1.21, p = 0.04 | |||
(E)-β-farnesene | > | VIP = 1.34, p < 0.05 | |||
nerolic acid | > | VIP = 1.26, p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wang, Z.; He, Y.; Gao, H.; Shi, H. Profiling of Volatile Compounds in ‘Muscat Hamburg’ Contaminated with Aspergillus carbonarius before OTA Biosynthesis Based on HS-SPME-GC-MS and DLLME-GC-MS. Molecules 2024, 29, 567. https://doi.org/10.3390/molecules29030567
Guo Y, Wang Z, He Y, Gao H, Shi H. Profiling of Volatile Compounds in ‘Muscat Hamburg’ Contaminated with Aspergillus carbonarius before OTA Biosynthesis Based on HS-SPME-GC-MS and DLLME-GC-MS. Molecules. 2024; 29(3):567. https://doi.org/10.3390/molecules29030567
Chicago/Turabian StyleGuo, Yayun, Zhe Wang, Yi He, Huanhuan Gao, and Hongmei Shi. 2024. "Profiling of Volatile Compounds in ‘Muscat Hamburg’ Contaminated with Aspergillus carbonarius before OTA Biosynthesis Based on HS-SPME-GC-MS and DLLME-GC-MS" Molecules 29, no. 3: 567. https://doi.org/10.3390/molecules29030567
APA StyleGuo, Y., Wang, Z., He, Y., Gao, H., & Shi, H. (2024). Profiling of Volatile Compounds in ‘Muscat Hamburg’ Contaminated with Aspergillus carbonarius before OTA Biosynthesis Based on HS-SPME-GC-MS and DLLME-GC-MS. Molecules, 29(3), 567. https://doi.org/10.3390/molecules29030567