Search for New Compounds with Anti-Inflammatory Activity Among 1,2,4-Triazole Derivatives
Abstract
:1. Introduction
2. Anti-Inflammatory Activity of 1,2,4-Triazole Derivatives
2.1. 1,2,4-Triazole Derivatives as COX-1/COX-2 Inhibitors
2.2. 1,2,4-Triazole Derivatives as Lipoxygenase Inhibitors
2.2.1. 1,2,4-Triazole Derivatives as 15-LOX Inhibitors
2.2.2. 1,2,4-Triazole Derivatives as FLAP Inhibitors
2.2.3. 1,2,4-Triazole Derivatives as COX-2/5-LOX Inhibitors
2.3. 1,2,4-Triazole Derivatives with Confirmed Anti-Inflammatory Activity In Vivo
2.4. 1,2,4-Triazole Derivatives with Miscellaneous Mechanisms for Anti-Inflammatory Activity
3. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Matin, M.M.; Matin, P.; Rahman, M.R.; Ben Hadda, T.; Almalki, F.A.; Mahmud, S.; Ghoneim, M.M.; Alruwaily, M.; Alshehri, S. Triazoles and Their Derivatives: Chemistry, Synthesis, and Therapeutic Applications. Front. Mol. Biosci. 2022, 9, 864286. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Tian, S.; Yang, X.; Liu, Z. Synthesis Methods of 1,2,3-/1,2,4-Triazoles: A Review. Front. Chem. 2022, 10, 891484. [Google Scholar] [CrossRef]
- Curtis, A.D.M.; Jennings, N. 1,2,4-Triazoles. In Comprehensive Heterocyclic Chemistry III; Elsevier Ltd.: Amsterdam, The Netherlands, 2008; Volume 5. [Google Scholar] [CrossRef]
- Guo, H.Y.; Chen, Z.A.; Shen, Q.K.; Quan, Z.S. Application of Triazoles in the Structural Modification of Natural Products. J. Enzym. Inhib. Med. Chem. 2021, 36, 1115–1144. [Google Scholar] [CrossRef]
- Aggarwal, R.; Sumran, G. An Insight on Medicinal Attributes of 1,2,4-Triazoles. Eur. J. Med. Chem. 2020, 205, 112652. [Google Scholar] [CrossRef] [PubMed]
- Emami, L.; Sadeghian, S.; Mojaddami, A.; Khabnadideh, S.; Sakhteman, A.; Sadeghpour, H.; Faghih, Z.; Fereidoonnezhad, M.; Rezaei, Z. Design, Synthesis and Evaluation of Novel 1,2,4-Triazole Derivatives as Promising Anticancer Agents. BMC Chem. 2022, 16, 91. [Google Scholar] [CrossRef]
- Rathod, B.; Kumar, K. Synthetic and Medicinal Perspective of 1,2,4-Triazole as Anticancer Agents. Chem. Biodivers. 2022, 19, e202200679. [Google Scholar] [CrossRef] [PubMed]
- Pachuta-Stec, A. Antioxidant Activity of 1,2,4-Triazole and Its Derivatives: A Mini-Review. Mini-Rev. Med. Chem. 2021, 22, 1081–1094. [Google Scholar] [CrossRef]
- Strzelecka, M.; Świątek, P. 1,2,4-Triazoles as Important Antibacterial Agents. Pharmaceuticals 2021, 14, 224. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Xu, Z. 1,2,4-Triazole Hybrids with Potential Antibacterial Activity against Methicillin-Resistant Staphylococcus Aureus. Arch. Der Pharm. 2021, 354, e2000223. [Google Scholar] [CrossRef] [PubMed]
- Tratrat, C. 1,2,4-Triazole: A Privileged Scaffold for the Development of Potent Antifungal Agents-A Brief Review. Curr. Top. Med. Chem. 2020, 20, 2235–2258. [Google Scholar] [CrossRef]
- Dong, Y.; Li, M.; Hao, Y.; Feng, Y.; Ren, Y.; Ma, H. Antifungal Activity, Structure-Activity Relationship and Molecular Docking Studies of 1,2,4-Triazole Schiff Base Derivatives. Chem. Biodivers. 2023, 20, e202201107. [Google Scholar] [CrossRef]
- Farghaly, T.A.; Masaret, G.S.; Riyadh, S.M.; Harras, M.F. A Literature Review Focusing on the Antiviral Activity of [1,2,4] and [1,2,3]-Triazoles. Mini-Rev. Med. Chem. 2023, 24, 1602–1629. [Google Scholar] [CrossRef]
- Elrayess, R.; Elgawish, M.S.; Elewa, M.; Nafie, M.S.; Elhady, S.S.; Yassen, A.S.A. Synthesis, 3D-QSAR, and Molecular Modeling Studies of Triazole Bearing Compounds as a Promising Scaffold for Cyclooxygenase-2 Inhibition. Pharmaceuticals 2020, 13, 370. [Google Scholar] [CrossRef] [PubMed]
- Sarigol, D.; Uzgoren-Baran, A.; Tel, B.C.; Somuncuoglu, E.I.; Kazkayasi, I.; Ozadali-Sari, K.; Unsal-Tan, O.; Okay, G.; Ertan, M.; Tozkoparan, B. Novel Thiazolo[3,2-b]-1,2,4-Triazoles Derived from Naproxen with Analgesic/Anti-Inflammatory Properties: Synthesis, Biological Evaluation and Molecular Modeling Studies. Bioorg. Med. Chem. 2015, 23, 2518–2528. [Google Scholar] [CrossRef] [PubMed]
- Pathak, P.; Shukla, P.K.; Naumovich, V.; Grishina, M.; Verma, A.; Potemkin, V. 1,2,4-Triazole-conjugated 1,3,4-thiadiazole Hybrid Scaffolds: A Potent Ameliorant of Carrageenan-induced Inflammation by Lessening Proinflammatory Mediators. Arch. Pharm. 2020, 353, 1900233. [Google Scholar] [CrossRef] [PubMed]
- Munir, A.; Khushal, A.; Saeed, K.; Sadiq, A.; Ullah, R.; Ali, G.; Ashraf, Z.; Ullah Mughal, E.; Saeed Jan, M.; Rashid, U.; et al. Synthesis, in-Vitro, in-Vivo Anti-Inflammatory Activities and Molecular Docking Studies of Acyl and Salicylic Acid Hydrazide Derivatives. Bioorg. Chem. 2020, 104, 104168. [Google Scholar] [CrossRef]
- Li, S.M.; Tsai, S.E.; Chiang, C.Y.; Chung, C.Y.; Chuang, T.J.; Tseng, C.C.; Jiang, W.P.; Huang, G.J.; Lin, C.Y.; Yang, Y.C.; et al. New Methyl 5-(Halomethyl)-1-Aryl-1H-1,2,4-Triazole-3-Carboxylates as Selective COX-2 Inhibitors and Anti-Inflammatory Agents: Design, Synthesis, Biological Evaluation, and Docking Study. Bioorg. Chem. 2020, 104, 104333. [Google Scholar] [CrossRef] [PubMed]
- Li, S.M.; Chou, J.Y.; Tsai, S.E.; Tseng, C.C.; Chung, C.Y.; Zeng, W.Z.; Hu, Y.P.; Uramaru, N.; Huang, G.J.; Wong, F.F. Synthesis and Anti-Inflammatory Activity Evaluation of NO-Releasing Furoxan/1,2,4-Triazole Hybrid Derivatives. Eur. J. Med. Chem. 2023, 257, 115496. [Google Scholar] [CrossRef] [PubMed]
- Abdellatif, K.R.A.; Abdelall, E.K.A.; Elshemy, H.A.H.; Philoppes, J.N.; Hassanein, E.H.M.; Kahk, N.M. Optimization of Pyrazole-Based Compounds with 1,2,4-Triazole-3-Thiol Moiety as Selective COX-2 Inhibitors Cardioprotective Drug Candidates: Design, Synthesis, Cyclooxygenase Inhibition, Anti-Inflammatory, Ulcerogenicity, Cardiovascular Evaluation, and Molecular Modeling Studies. Bioorg. Chem. 2021, 114, 105122. [Google Scholar] [CrossRef]
- Szczukowski, Ł.; Krzyżak, E.; Wiatrak, B.; Jawień, P.; Marciniak, A.; Kotynia, A.; Świątek, P. New N-Substituted-1,2,4-Triazole Derivatives of Pyrrolo[3,4-d]Pyridazinone with Significant Anti-Inflammatory Activity—Design, Synthesis and Complementary In Vitro, Computational and Spectroscopic Studies. Int. J. Mol. Sci. 2021, 22, 11235. [Google Scholar] [CrossRef]
- Hamoud, M.M.S.; Osman, N.A.; Rezq, S.; El-wahab, H.A.A.A.; Hassan, A.E.A.; Abdel-Fattah, H.A.; Romero, D.G.; Ghanim, A.M. Design and Synthesis of Novel 1,3,4-Oxadiazole and 1,2,4-Triazole Derivatives as Cyclooxygenase-2 Inhibitors with Anti-Inflammatory and Antioxidant Activity in LPS-Stimulated RAW264.7 Macrophages. Bioorg. Chem. 2022, 124, 105808. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Ye, C.; Liu, Z.; Zhou, Z.; Zhang, T. Synthesis and Biological Evaluation of Isoaurone Derivatives as Anti-inflammatory Agents. Chem. Biodivers. 2024, e202402073. [Google Scholar] [CrossRef]
- Abo-Elmagd, M.I.; Hassan, R.M.; Aboutabl, M.E.; Amin, K.M.; El-Azzouny, A.A.; Aboul-Enein, M.N. Design, Synthesis and Anti-Inflammatory Assessment of Certain Substituted 1,2,4-Triazoles Bearing Tetrahydroisoquinoline Scaffold as COX 1/2-Inhibitors. Bioorg. Chem. 2024, 150, 107577. [Google Scholar] [CrossRef]
- Fadaly, W.A.A.; Elshaier, Y.A.M.M.; Hassanein, E.H.M.; Abdellatif, K.R.A. New 1,2,4-Triazole/Pyrazole Hybrids Linked to Oxime Moiety as Nitric Oxide Donor Celecoxib Analogs: Synthesis, Cyclooxygenase Inhibition Anti-Inflammatory, Ulcerogenicity, Anti-Proliferative Activities, Apoptosis, Molecular Modeling and Nitric Oxide Release Studies. Bioorg. Chem. 2020, 98, 103752. [Google Scholar] [CrossRef]
- Fadaly, W.A.A.; Nemr, M.T.M.; Zidan, T.H.; Mohamed, F.E.A.; Abdelhakeem, M.M.; Abu Jayab, N.N.; Omar, H.A.; Abdellatif, K.R.A. New 1,2,3-Triazole/1,2,4-Triazole Hybrids Linked to Oxime Moiety as Nitric Oxide Donor Selective COX-2, Aromatase, B-RAFV600E and EGFR Inhibitors Celecoxib Analogs: Design, Synthesis, Anti-Inflammatory/Anti-Proliferative Activities, Apoptosis and Molecular Modeling Study. J. Enzym. Inhib. Med. Chem. 2023, 38, 2290461. [Google Scholar] [CrossRef]
- Abdelazeem, A.H.; El-Din, A.G.S.; Arab, H.H.; El-Saadi, M.T.; El-Moghazy, S.M.; Amin, N.H. Design, Synthesis and Anti-Inflammatory/Analgesic Evaluation of Novel Di-Substituted Urea Derivatives Bearing Diaryl-1,2,4-Triazole with Dual COX-2/SEH Inhibitory Activities. J. Mol. Struct. 2021, 1240, 130565. [Google Scholar] [CrossRef]
- Abdellatif, K.R.A.; Abdelall, E.K.A.; Elshemy, H.A.H.; Philoppes, J.N.; Hassanein, E.H.M.; Kahk, N.M. Design, Synthesis, and Pharmacological Evaluation of Novel and Selective COX-2 Inhibitors Based on Celecoxib Scaffold Supported with in Vivo Anti-Inflammatory Activity, Ulcerogenic Liability, ADME Profiling and Docking Study. Bioorg. Chem. 2022, 120, 105627. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, R.; Chen, J.; Liu, X.; Luo, J.; Lao, Y.; Huang, P.; Shi, J.; Jiang, C.; Liao, L.; et al. Synthesis of 1,3,5-Triphenyl-1,2,4-Triazole Derivatives and Their Neuroprotection by Anti-Oxidative Stress and Anti-Inflammation and Protecting BBB. Eur. J. Med. Chem. 2023, 260, 115742. [Google Scholar] [CrossRef]
- Shahid, W.; Ashraf, M.; Saleem, M.; Bashir, B.; Muzaffar, S.; Ali, M.; Kaleem, A.; Rehman, A.U.; Amjad, H.; Bhattarai, K.; et al. Exploring Phenylcarbamoylazinane-1,2,4-Triazole Thioethers as Lipoxygenase Inhibitors Supported with in Vitro, in Silico and Cytotoxic Studies. Bioorg. Chem. 2021, 115, 105261. [Google Scholar] [CrossRef]
- Muzaffar, S.; Shahid, W.; Saleem, M.; Ashraf, M.; Rehman, A.U.; Bashir, B.; Ali, M.; Al-Rashida, M.; Baral, B.; Bhattarai, K.; et al. Evaluation of Ethylated Phenylcarbamoylazinane-1,2,4-Triazole Amides Derivatives as 15-Lipoxygenase Inhibitors Together with Cytotoxic, ADME and Molecular Modeling Studies. ChemistrySelect 2020, 5, 14210–14216. [Google Scholar] [CrossRef]
- Muzaffar, S.; Shahid, W.; Riaz, N.; Saleem, M.; Ashraf, M.; Rehman, A.U.; Bashir, B.; Kaleem, A.; al-Rashida, M.; Baral, B.; et al. Probing Phenylcarbamoylazinane-1,2,4-Triazole Amides Derivatives as Lipoxygenase Inhibitors along with Cytotoxic, ADME and Molecular Docking Studies. Bioorg. Chem. 2021, 107, 104525. [Google Scholar] [CrossRef]
- Nawaz, Z.; Riaz, N.; Saleem, M.; Iqbal, A.; Abida Ejaz, S.; Bashir, B.; Muzaffar, S.; Ashraf, M.; Rehman, A.U.; Sajjad Bilal, M.; et al. Molecular Hybrids of Substituted Phenylcarbamoylpiperidine and 1,2,4-Triazole Methylacetamide as Potent 15-LOX Inhibitors: Design, Synthesis, DFT Calculations and Molecular Docking Studies. Bioorg. Chem. 2024, 143, 106984. [Google Scholar] [CrossRef]
- Nawaz, Z.; Riaz, N.; Saleem, M.; Iqbal, A.; Ejaz, S.A.; Muzaffar, S.; Bashir, B.; Ashraf, M.; Rehman, A.U.; Bilal, M.S.; et al. Probing N-Substituted 4-(5-Mercapto-4-Ethyl-4H-1,2,4-Triazol-3-Yl)-N-Phenylpiperdine-1-Carboxamides as Potent 15-LOX Inhibitors Supported with ADME, DFT Calculations and Molecular Docking Studies. Heliyon 2024, 10, e35278. [Google Scholar] [CrossRef] [PubMed]
- Yasin, M.; Shahid, W.; Ashraf, M.; Saleem, M.; Muzaffar, S.; Rehman, A.U.; Ejaz, S.A.; Saeed, A.; Majer, T.; Bhattarai, K.; et al. 4-Chlorophenyl- N-Furfuryl-1,2,4-Triazole Methylacetamides as Significant 15-Lipoxygenase Inhibitors: An Efficient Approach for Finding Lead Anti-Inflammatory Compounds. ACS Omega 2022, 7, 19721–19734. [Google Scholar] [CrossRef]
- Yasin, M.; Shahid, W.; Ashraf, M.; Saleem, M.; Muzaffar, S.; Rehman, A.U.; Ejaz, S.A.; Mahmood, H.M.K.; Bhattarai, K.; Riaz, N. Targeting New N-Furfurylated 4-Chlorophenyl-1,2,4-Triazolepropionamide Hybrids as Potential 15-Lipoxygenase Inhibitors Supported with in Vitro and in Silico Studies. J. Biomol. Struct. Dyn. 2023, 41, 5166–5182. [Google Scholar] [CrossRef]
- Riaz, N.; Yasin, M.; Ashraf, M.; Saleem, M.; Bashir, B.; Iqbal, A.; Rehman, A.U.; Ejaz, S.A.; Ejaz, S.; Mahmood, H.M.K.; et al. Vetting of New N-Furfurylated p-Chlorophenyl-1,2,4-Triazole Acetamides as Lipoxygenase Inhibitors Assisted with in Vitro and in Silico Studies. J. Iran. Chem. Soc. 2023, 20, 977–994. [Google Scholar] [CrossRef]
- Olgac, A.; Carotti, A.; Kretzer, C.; Zergiebel, S.; Seeling, A.; Garscha, U.; Werz, O.; Macchiarulo, A.; Banoglu, E. Discovery of Novel 5-Lipoxygenase-Activating Protein (FLAP) Inhibitors by Exploiting a Multistep Virtual Screening Protocol. J. Chem. Inf. Model. 2020, 60, 1737–1748. [Google Scholar] [CrossRef]
- Olğaç, A.; Çapan, İ.; Dahlke, P.; Jordan, P.M.; Werz, O.; Banoglu, E. Substituted 1,2,4-Triazoles as Novel and Selective Inhibitors of Leukotriene Biosynthesis Targeting 5-Lipoxygenase-Activating Protein. ACS Omega 2023, 8, 31293–31304. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Huang, X.; Yao, H.; Jiang, J.; Wu, X.; Jiang, S.; Wang, Q.; Lu, T.; Xu, J. Discovery of Potential Anti-Inflammatory Drugs: Diaryl-1,2,4-Triazoles Bearing N-Hydroxyurea Moiety as Dual Inhibitors of Cyclooxygenase-2 and 5-Lipoxygenase. Org. Biomol. Chem. 2014, 12, 2114–2127. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Huang, X.; Xu, S.; Shen, H.; Zhang, P.; Huang, Y.; Jiang, J.; Sun, Y.; Jiang, B.; Wu, X.; et al. Discovery of Novel Hybrids of Diaryl-1,2,4-Triazoles and Caffeic Acid as Dual Inhibitors of Cyclooxygenase-2 and 5-Lipoxygenase for Cancer Therapy. Eur. J. Med. Chem. 2016, 108, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Lamie, P.F.; Ali, W.A.M.; Bazgier, V.; Rárová, L. Novel N-Substituted Indole Schiff Bases as Dual Inhibitors of Cyclooxygenase-2 and 5-Lipoxygenase Enzymes: Synthesis, Biological Activities in Vitro and Docking Study. Eur. J. Med. Chem. 2016, 123, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Mohassab, A.M.; Hassan, H.A.; Abdelhamid, D.; Gouda, A.M.; Gomaa, H.A.M.; Youssif, B.G.M.; Radwan, M.O.; Fujita, M.; Otsuka, M.; Abdel-Aziz, M. New Quinoline/1,2,4-Triazole Hybrids as Dual Inhibitors of COX-2/5-LOX and Inflammatory Cytokines: Design, Synthesis, and Docking Study. J. Mol. Struct. 2021, 1244, 130948. [Google Scholar] [CrossRef]
- Mekheimer, R.A.; Sayed, A.A.R.; Ahmed, E.A.; Sadek, K.U. Synthesis and Characterization of New 1,2,4-Triazolo[1,5-a]Pyridines That Extend the Life Span of Caenorhabiditis Elegans via Their Anti-Inflammatory/Antioxidant Effects. Arch. Pharm. 2015, 348, 650–665. [Google Scholar] [CrossRef]
- El-Sayed, N.N.E.; Abdelaziz, M.A.; Wardakhan, W.W.; Mohareb, R.M. The Knoevenagel Reaction of Cyanoacetylhydrazine with Pregnenolone: Synthesis of Thiophene, Thieno[2,3-d]Pyrimidine, 1,2,4-Triazole, Pyran and Pyridine Derivatives with Anti-Inflammatory and Anti-Ulcer Activities. Steroids 2016, 107, 98–111. [Google Scholar] [CrossRef] [PubMed]
- Sert-Ozgur, S.; Tel, B.C.; Somuncuoglu, E.I.; Kazkayasi, I.; Ertan, M.; Tozkoparan, B. Design and Synthesis of 1,2,4-Triazolo[3,2-b]-1,3,5-thiadiazine Derivatives as a Novel Template for Analgesic/Anti-Inflammatory Activity. Arch. Pharm. 2017, 350, e1700052. [Google Scholar] [CrossRef] [PubMed]
- Cristina, A.; Leonte, D.; Vlase, L.; Bencze, L.C.; Imre, S.; Apan, B.; Mogoșan, C.; Zaharia, V. Heterocycles 46. Synthesis, Characterization and Biological Evaluation of Thiazolo[3,2-b][1,2,4]Triazoles Bearing Benzenesulfonamide Moiety. Farmacia 2018, 66, 883–893. [Google Scholar] [CrossRef]
- Azim, T.; Wasim, M.; Akhtar, M.S.; Akram, I. An in Vivo Evaluation of Anti-Inflammatory, Analgesic and Anti-Pyretic Activities of Newly Synthesized 1, 2, 4 Triazole Derivatives. BMC Complement. Med. Ther. 2021, 21, 304. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.Y.; Chi, K.Q.; Wang, K.S.; Wu, J.; Liu, L.P.; Piao, H.R. Design, Synthesis, Evaluation, and Molecular Docking of Ursolic Acid Derivatives Containing a Nitrogen Heterocycle as Anti-Inflammatory Agents. Bioorg. Med. Chem. Lett. 2018, 28, 1797–1803. [Google Scholar] [CrossRef]
- Ahirwar, J.; Ahirwar, D.; Lanjhiyana, S.; Jha, A.K.; Dewangan, D.; Badwaik, H. Analgesic and Anti-inflammatory Potential of Merged Pharmacophore Containing 1,2,4-triazoles and Substituted Benzyl Groups via Thio Linkage. J. Heterocycl. Chem. 2018, 55, 2130–2141. [Google Scholar] [CrossRef]
- Khan, B.; Naiyer, A.; Athar, F.; Ali, S.; Thakur, S.C. Synthesis, Characterization and Anti-Inflammatory Activity Evaluation of 1,2,4-Triazole and Its Derivatives as a Potential Scaffold for the Synthesis of Drugs against Prostaglandin-Endoperoxide Synthase. J. Biomol. Struct. Dyn. 2021, 39, 457–475. [Google Scholar] [CrossRef]
- Paprocka, R.; Wiese, M.; Eljaszewicz, A.; Helmin-Basa, A.; Gzella, A.; Modzelewska-Banachiewicz, B.; Michalkiewicz, J. Synthesis and Anti-Inflammatory Activity of New 1,2,4-Triazole Derivatives. Bioorg. Med. Chem. Lett. 2015, 25, 2664–2667. [Google Scholar] [CrossRef] [PubMed]
- Paprocka, R.; Kołodziej, P.; Wiese-Szadkowska, M.; Helmin-Basa, A.; Bogucka-Kocka, A. Evaluation of Anthelmintic and Anti-Inflammatory Activity of 1,2,4-Triazole Derivatives. Molecules 2022, 27, 4488. [Google Scholar] [CrossRef] [PubMed]
- Paprocka, R.; Wiese-Szadkowska, M.; Kołodziej, P.; Kutkowska, J.; Balcerowska, S.; Bogucka-Kocka, A. Evaluation of Biological Activity of New 1,2,4-Triazole Derivatives Containing Propionic Acid Moiety. Molecules 2023, 28, 3808. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.K.; Balwani, S.; Mathur, D.; Malhotra, S.; Singh, B.K.; Prasad, A.K.; Len, C.; Van der Eycken, E.V.; Ghosh, B.; Richards, N.G.J.; et al. Synthesis and Anti-Inflammatory Activity Evaluation of Novel Triazolyl-Isatin Hybrids. J. Enzym. Inhib. Med. Chem. 2016, 31, 1520–1526. [Google Scholar] [CrossRef]
- Liu, D.C.; Gong, G.H.; Wei, C.X.; Jin, X.J.; Quan, Z.S. Synthesis and Anti-Inflammatory Activity Evaluation of a Novel Series of 6-Phenoxy-[1,2,4]Triazolo[3,4-a]Phthalazine-3-Carboxamide Derivatives. Bioorganic Med. Chem. Lett. 2016, 26, 1576–1579. [Google Scholar] [CrossRef] [PubMed]
- Grewal, A.S.; Lather, V.; Pandita, D.; Dalal, R. Synthesis, Docking and Anti-Inflammatory Activity of Triazole Amine Derivatives as Potential Phosphodiesterase-4 Inhibitors. Antiinflamm. Antiallergy Agents Med. Chem. 2017, 16, 58–67. [Google Scholar] [CrossRef]
- Harris, P.A.; Berger, S.B.; Jeong, J.U.; Nagilla, R.; Bandyopadhyay, D.; Campobasso, N.; Capriotti, C.A.; Cox, J.A.; Dare, L.; Dong, X.; et al. Discovery of a First-in-Class Receptor Interacting Protein 1 (RIP1) Kinase Specific Clinical Candidate (GSK2982772) for the Treatment of Inflammatory Diseases. J. Med. Chem. 2017, 60, 1247–1261. [Google Scholar] [CrossRef] [PubMed]
- Weisel, K.; Scott, N.E.; Tompson, D.J.; Votta, B.J.; Madhavan, S.; Povey, K.; Wolstenholme, A.; Simeoni, M.; Rudo, T.; Richards-Peterson, L.; et al. Randomized Clinical Study of Safety, Pharmacokinetics, and Pharmacodynamics of RIPK1 Inhibitor GSK2982772 in Healthy Volunteers. Pharmacol. Res. Perspect. 2017, 5, e00365. [Google Scholar] [CrossRef]
- Weisel, K.; Scott, N.; Berger, S.; Wang, S.; Brown, K.; Powell, M.; Broer, M.; Watts, C.; Tompson, D.J.; Burriss, S.W.; et al. A Randomised, Placebo-Controlled Study of RIPK1 Inhibitor GSK2982772 in Patients with Active Ulcerative Colitis. BMJ Open Gastroenterol. 2021, 8, e000680. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.; Kamboj, P.; Alam, O.; Amir, M. 1,2,4-Triazole-Based Benzothiazole/Benzoxazole Derivatives: Design, Synthesis, P38α MAP Kinase Inhibition, Anti-Inflammatory Activity and Molecular Docking Studies. Bioorg. Chem. 2018, 81, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.; Alam, O.; Amir, M. Synthesis, P38α MAP Kinase Inhibition, Anti-inflammatory Activity, and Molecular Docking Studies of 1,2,4-triazole-based Benzothiazole-2-amines. Arch. Pharm. 2018, 351, 1700304. [Google Scholar] [CrossRef] [PubMed]
- Bülbül, B.; Ding, K.; Zhan, C.G.; Çiftçi, G.; Yelekçi, K.; Gürboğa, M.; Özakpınar, Ö.B.; Aydemir, E.; Baybağ, D.; Şahin, F.; et al. Novel 1,2,4-Triazoles Derived from Ibuprofen: Synthesis and in Vitro Evaluation of Their MPGES-1 Inhibitory and Antiproliferative Activity. Mol. Divers. 2023, 27, 2185–2215. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, A.; Ozhan, Y.; Sipahi, H.; Gurdal, E.E.; Sippl, W.; Koksal, M. INOS/PGE2 Inhibitors as a Novel Template for Analgesic/Anti-inflammatory Activity: Design, Synthesis, In Vitro Biological Activity and Docking Studies. Arch. Pharm. 2024, 357, e2400238. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glomb, T.; Minta, J.; Nowosadko, M.; Radzikowska, J.; Świątek, P. Search for New Compounds with Anti-Inflammatory Activity Among 1,2,4-Triazole Derivatives. Molecules 2024, 29, 6036. https://doi.org/10.3390/molecules29246036
Glomb T, Minta J, Nowosadko M, Radzikowska J, Świątek P. Search for New Compounds with Anti-Inflammatory Activity Among 1,2,4-Triazole Derivatives. Molecules. 2024; 29(24):6036. https://doi.org/10.3390/molecules29246036
Chicago/Turabian StyleGlomb, Teresa, Julia Minta, Michalina Nowosadko, Julia Radzikowska, and Piotr Świątek. 2024. "Search for New Compounds with Anti-Inflammatory Activity Among 1,2,4-Triazole Derivatives" Molecules 29, no. 24: 6036. https://doi.org/10.3390/molecules29246036
APA StyleGlomb, T., Minta, J., Nowosadko, M., Radzikowska, J., & Świątek, P. (2024). Search for New Compounds with Anti-Inflammatory Activity Among 1,2,4-Triazole Derivatives. Molecules, 29(24), 6036. https://doi.org/10.3390/molecules29246036