Development of Zn-CoS@Ni(OH)2 Heterostructured Nanosheets for High-Performance Supercapacitors
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Material Preparation
3.2. Material Characterization
3.3. Electrochemical Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, C.R.; Wang, A.L.; Xiao, W.; Chao, D.L.; Zhang, X.; Tie, N.H.; Chen, S.; Kang, J.N.; Wang, X.; Ding, J.; et al. In situ grown epitaxial heterojunction exhibits high-performance electrocatalytic water splitting. Adv. Mater. 2018, 13, 1705516. [Google Scholar] [CrossRef] [PubMed]
- Peurifoy, S.R.; Russell, J.C.; Sisto, T.J.; Yang, Y.; Roy, X.; Nuckolls, C.J. Designing Three-Dimensional Architectures for High-Performance Electron Accepting Pseudocapacitors. Am. Chem. Soc. 2018, 140, 10960–10964. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.F.; Li, Y.X.; Huo, J.; Chen, R.; Dai, L.M.; Wang, S.Y. Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions. Adv. Mater. 2017, 29, 1606459. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.P.; Dai, M.Z.; Zhao, Y.; Liu, H.Q.; Liu, Y.; Wu, X. Improving electrocatalytic activities of FeCo2O4@FeCo2S4@PPy electrodes by surface/interface regulation. Nano Energy 2020, 72, 104715. [Google Scholar] [CrossRef]
- Chang, G.L.; Zhao, Y.F.; Dong, L.; Wilkinson, D.P.; Zhang, L.; Shao, Q.S.; Yan, W.; Sun, X.L.; Zhang, J.J. A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. J. Mater. Chem. A 2020, 8, 4996–5048. [Google Scholar] [CrossRef]
- Yuan, T.; Tan, Z.; Ma, C.; Yang, J.; Ma, Z.F.; Zheng, S. Challenges of Spinel Li4Ti5O12 for Lithium-Ion Battery Industrial Applications. Adv. Energy Mater. 2017, 7, 1601625. [Google Scholar] [CrossRef]
- Xing, L.; Dong, Y.D.; Hu, F.; Wu, X.; Umar, A. Co3O4 nanowire@NiO nanosheet arrays for high performance asymmetric supercapacitors. Dalton Trans. 2018, 47, 5687–5694. [Google Scholar] [CrossRef]
- Chen, C.; Wang, S.C.; Xiong, D.K.; Gu, M.L.; Yi, F.Y. Rationally designed trimetallic Prussian blue analogues on LDH/Ni foam for high performance supercapacitors. Dalton Trans. 2020, 49, 3706–3714. [Google Scholar] [CrossRef]
- Jiang, W.; Hu, F.; Yan, Q.Y.; Wu, X. Investigation on electrochemical behaviors of NiCo2O4 battery-type supercapacitor electrodes: The role of an aqueous electrolyte. Inorg. Chem. Front. 2017, 4, 1642–1648. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 343, 1210–1211. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, L.; Sun, L.; Liu, Y.; Jiao, L.J. Facile synthesis of hierarchical porous ZnCo2O4 microspheres for high-performance supercapacitors. Mater. Chem. A 2015, 3, 982–985. [Google Scholar] [CrossRef]
- Guan, B.; Guo, D.; Hu, L.; Zhang, G.; Fu, T.; Ren, W.; Li, J.; Li, Q.J. Facile synthesis of ZnCo2O4 nanowire cluster arrays on Ni foam for high-performance asymmetric supercapacitors. Mater. Chem. A 2014, 2, 16116–16123. [Google Scholar] [CrossRef]
- Liu, B.; Liu, B.; Wang, Q.; Wang, X.; Xiang, Q.; Chen, D.; Shen, G. New Energy Storage Option: Toward ZnCo2O4 Nanorods/Nickel Foam Architectures for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 10011–10017. [Google Scholar] [CrossRef] [PubMed]
- Li, R.Y.; Xu, S.L.; Ai, Z.Q.; Qi, J.G.; Wu, F.F.; Zhao, R.D.; Zhao, D.P. Interface Engineering Accelerated Surface Reconstruction for Electrocatalytic Water Splitting and Energy Storage Device through Hybrid Structured ZnCo2O4@NiCo-LDH Nanocomposite. Int. J. Hydrogen Energy 2024, 91, 867–876. [Google Scholar] [CrossRef]
- Xu, S.L.; Zhao, R.D.; Li, R.Y.; Li, J.; Xiang, J.; Guo, F.Y.; Qi, J.; Liu, L.; Wu, F.F. Constructing High-Performance Supercapacitors and Electrochemical Water Splitting Electrode Materials through Core–Shell Structured Co9S8@Ni(OH)2 Nanosheets. J. Mater. Chem. A 2024, 12, 15950–15965. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Chen, C.; Chang, J.L.; Chen, L.M.; Chen, L.M.; Wang, P.Y.; Wu, D.P.; Xu, F.; Jiang, K. Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem. Eng. J. 2018, 343, 572–582. [Google Scholar] [CrossRef]
- Candler, J.; Elmore, T.; Gupta, B.K.; Dong, L.F.; Palchoudhury, S.; Gupta, R.K. New insight into high-temperature driven morphology reliant CoMoO4 flexible supercapacitors. New J. Chem. 2015, 39, 6108–6116. [Google Scholar] [CrossRef]
- Wang, J.; Chang, J.; Wang, L.; Hao, J. One-step and low-temperature synthesis of CoMoO4 nanowire arrays on Ni foam for asymmetric supercapacitors. Ionics 2018, 24, 3967–3973. [Google Scholar] [CrossRef]
- Jia, X.X.; Wu, X.; Liu, B.D. Formation of ZnCo2O4@MnO2 core–shell electrode materials for hybrid supercapacitor. Dalton Trans. 2018, 47, 15506–15511. [Google Scholar] [CrossRef]
- Cheng, H.; Sun, H.; Dai, M.; Li, Y.; Wang, J.; Song, S.; Zhang, D.; Zhao, D. Optimizing the Ratio of Metallic and Single-Atom Co in CoNC via Annealing Temperature Modulation for Enhanced Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Activity. Molecules 2024, 29, 5721. [Google Scholar] [CrossRef]
- Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 Nanowire Arrays Supported on Ni Foam: An Efficient and Durable Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions. Adv. Funct. Mater. 2016, 26, 4661–4672. [Google Scholar] [CrossRef]
- Zhao, D.P.; Dai, M.Z.; Tong, Y.L.; Song, X.F.; Wu, X. Mixed transition metal oxide nanowire arrays enabling hybrid capacitor performance enhancement. CrystEngComm 2019, 21, 5789–5796. [Google Scholar] [CrossRef]
- Liu, H.Q.; Zhao, D.P.; Hu, P.F.; Liu, Y.; Wu, X.; Xia, H. Boosting energy storage and electrocatalytic performances by synergizing CoMoO4@MoZn22 core-shell structures. Chem. Eng. J. 2019, 373, 485–492. [Google Scholar] [CrossRef]
- Zhao, D.P.; Dai, M.Z.; Liu, H.Q.; Chen, K.F.; Zhu, X.F.; Xue, D.F.; Wu, X.; Liu, J.P. Sulfur-Induced Interface Engineering of Hybrid NiCo2O4@NiMo2S4 Structure for Overall Water Splitting and Flexible Hybrid Energy Storage. Adv. Mater. Interfaces 2019, 6, 1901308. [Google Scholar] [CrossRef]
- Chen, J.; Xu, J.; Zhou, S.; Zhao, N.; Wong, C.P. Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors. Nano Energy 2016, 25, 193–202. [Google Scholar] [CrossRef]
- Zhao, D.P.; Dai, M.Z.; Liu, H.Q.; Xiao, L.; Wu, X.; Xia, H. Constructing High Performance Hybrid Battery and Electrocatalyst by Heterostructured NiCo2O4@NiWS Nanosheets. Cryst. Growth Des. 2019, 19, 1921–1929. [Google Scholar] [CrossRef]
- Sathiya, M.; Prakash, A.S.; Ramesha, K.; Tarascon, J.-M.; Shukla, A.K. V2O5-Anchored Carbon Nanotubes for Enhanced Electrochemical Energy Storage. J. Chem. Soc. 2011, 133, 16291–16299. [Google Scholar] [CrossRef]
- Yang, W.D.; Zhao, R.D.; Guo, F.Y.; Xiang, J.; Loy, S.; Liu, L.; Dai, J.Y.; Wu, F.F. Interface Engineering of Hybrid ZnCo2O4@Ni2.5Mo6S6.7 Structures for Flexible Energy Storage and Alkaline Water Splitting. Chem. Eng. J. 2023, 454, 140458. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, W.; Yang, Y.; Song, X.D.; Neale, Z.C.; Wang, H.E.; Sui, J.H.; Cao, G.Z. MoSe2 nanosheets perpendicularly grown on graphene with Mo–C bonding for sodium-ion capacitors. Nano Energy 2018, 47, 224. [Google Scholar] [CrossRef]
- Li, R.Y.; Shen, X.Y.; Li, J.; Zhao, D.P.; Zhao, R.D.; Wu, F.F. Enhanced Electrochemical Performance of NiCo-Layered Double Hydroxides: Optimal Synthesis Conditions and Supercapacitor Applications. Adv. Sustain. Syst. 2024, 2400753. [Google Scholar] [CrossRef]
- Liu, T.; Chai, H.; Jia, D.; Su, Y.; Wang, T.; Zhou, W.Y. Rapid microwave-assisted synthesis of mesoporous NiMoO4 nanorod/reduced graphene oxide composites for high-performance supercapacitors. Electrochim. Acta 2015, 180, 998–1006. [Google Scholar] [CrossRef]
- El-Kady, M.F.; Strong, V.; Dubin, S.R.; Kaner, B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 2012, 335, 1326. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Wang, J.; Song, S.; Dai, M.; Li, Y.; Zhang, D.; Zhao, D. Development of Zn-CoS@Ni(OH)2 Heterostructured Nanosheets for High-Performance Supercapacitors. Molecules 2024, 29, 6022. https://doi.org/10.3390/molecules29246022
Cheng H, Wang J, Song S, Dai M, Li Y, Zhang D, Zhao D. Development of Zn-CoS@Ni(OH)2 Heterostructured Nanosheets for High-Performance Supercapacitors. Molecules. 2024; 29(24):6022. https://doi.org/10.3390/molecules29246022
Chicago/Turabian StyleCheng, Hengxu, Jian Wang, Shiwei Song, Meizhen Dai, Yucai Li, Dong Zhang, and Depeng Zhao. 2024. "Development of Zn-CoS@Ni(OH)2 Heterostructured Nanosheets for High-Performance Supercapacitors" Molecules 29, no. 24: 6022. https://doi.org/10.3390/molecules29246022
APA StyleCheng, H., Wang, J., Song, S., Dai, M., Li, Y., Zhang, D., & Zhao, D. (2024). Development of Zn-CoS@Ni(OH)2 Heterostructured Nanosheets for High-Performance Supercapacitors. Molecules, 29(24), 6022. https://doi.org/10.3390/molecules29246022