The Versatile Applications of Calix[4]resorcinarene-Based Cavitands
Abstract
:1. Introduction
2. Catalysis
3. Separation and Purification
4. Polymeric Materials
5. Sensing
6. Battery Materials
7. Drug Delivery
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, K.; Liu, Q.; Zhou, L.; Sun, H.; Yao, X.; Hu, X.-Y. State-of-the-art and Recent Progress in Resorcinarene-based Cavitand. Chin. Chem. Lett. 2023, 34, 108559. [Google Scholar] [CrossRef]
- Escobar, L.; Ballester, P. Molecular Recognition in Water Using Macrocyclic Synthetic Receptors. Chem. Rev. 2021, 121, 2445–2514. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Jordan, J.H.; Hu, X.Y.; Wang, L. Supramolecular Strategies for Controlling Reactivity within Confined Nanospaces. Angew. Chem. Int. Ed. 2020, 59, 13712–13721. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Velmurugan, K.; Tian, X.; Zuo, M.; Wang, K.; Hu, X.Y. Tetraphenylethylene-embedded Pillar[5]arene-based Orthogonal Self-assembly for Efficient Photocatalysis in Water. Beilstein. J. Org. Chem. 2022, 18, 429–437. [Google Scholar] [CrossRef]
- Carnegie, R.S.; Gibb, C.L.; Gibb, B.C. Anion Complexation and the Hofmeister Effect. Angew. Chem. Int. Ed. 2014, 53, 11498–11500. [Google Scholar] [CrossRef]
- Wang, K.; Zuo, M.; Zhang, T.; Yue, H.; Hu, X.-Y. Pillar[5]arene–modified Peptide-guanidiniocarbonylpyrrol Amphiphiles with Gene Transfection Properties. Chin. Chem. Lett. 2023, 34, 107848. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, Y.; Niu, Y.; Kou, X. Cyclodextrin Supermolecules as Excellent Stabilizers for Pickering Nanoemulsions. Colloids Surf. A Physicochem. Eng. Asp. 2020, 588, 124367. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Di, F.F.; Li, P.F.; Xiong, R.G. Crown Ether Host-Guest Molecular Ferroelectrics. Chemistry 2022, 28, e202102990. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.C.; Hu, X.Y.; Guo, D.S. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angew. Chem. Int. Ed. 2021, 60, 2768–2794. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-Q.; Guan, H.-W.; Kanagaraj, K.; Rebek, J.; Yu, Y. Metal Coordination to a Deep Cavitand Promotes Binding Selectivities in Water. Chin. Chem. Lett. 2022, 33, 4908–4911. [Google Scholar] [CrossRef]
- Hillyer, M.B.; Gibb, C.L.; Sokkalingam, P.; Jordan, J.H.; Ioup, S.E.; Mague, J.T.; Gibb, B.C. Synthesis of Water-Soluble Deep-Cavity Cavitands. Org. Lett. 2016, 18, 4048–4051. [Google Scholar] [CrossRef] [PubMed]
- Kanagaraj, K.; Wang, R.; Zhao, M.K.; Ballester, P.; Rebek, J., Jr.; Yu, Y. Selective Binding and Isomerization of Oximes in a Self-Assembled Capsule. J. Am. Chem. Soc. 2023, 145, 5816–5823. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.H.; Zhu, Y.J.; Rebek, J., Jr.; Yu, Y. Recognition of Hydrophilic Cyclic Compounds by a Water-Soluble Cavitand. Molecules 2021, 26, 1922. [Google Scholar] [CrossRef]
- Tang, M.M.; Kanagaraj, K.; Rebek, J., Jr.; Yu, Y. Role of Rim Functions in Recognition and Selectivity of Small-Molecule Guests in Water-Soluble Cavitand Hosts. Chem. Asian. J. 2022, 17, e202200466. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Cai, X.; Yao, W.; Tang, D.; Kataria, R.; Ashbaugh, H.S.; Byers, L.D.; Gibb, B.C. Electrostatic Control of Macrocyclization Reactions within Nanospaces. J. Am. Chem. Soc. 2019, 141, 6740–6747. [Google Scholar] [CrossRef]
- Wang, K.; Gibb, B.C. Mapping the Binding Motifs of Deprotonated Monounsaturated Fatty Acids and Their Corresponding Methyl Esters within Supramolecular Capsules. J. Org. Chem. 2017, 82, 4279–4288. [Google Scholar] [CrossRef]
- Bourgeois, J.M.; Stoeckli-Evans, H. Synthesis of New Resorcinarenes Under Alkaline Conditions. Helv. Chimica Acta 2005, 88, 2722–2730. [Google Scholar] [CrossRef]
- Hahn, D.F.; Milić, J.V.; Hünenberger, P.H. Vase-Kite Equilibrium of Resorcin[4]arene Cavitands Investigated Using Molecular Dynamics Simulations with Ball-and-Stick Local Elevation Umbrella Sampling. Helv. Chimica Acta 2019, 102, e1900060. [Google Scholar] [CrossRef]
- Aroua, S.; Lowell, A.N.; Ray, A.; Trapp, N.; Schweizer, W.B.; Ebert, M.O.; Yamakoshi, Y. Larger Substituents on Amide Cavitands Induce Bigger Cavities. Org. Lett. 2019, 21, 201–205. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Gao, Y.; Tang, M.M.; Rebek, J.; Yu, Y. Dimeric Capsules Self-assembled through Halogen and Chalcogen Bonding. Chem. Commun. 2021, 57, 1543–1549. [Google Scholar] [CrossRef]
- Velpuri, S.V.V.; Gade, H.M.; Wanjari, P.P. Encapsulation Driven Conformational Changes in N-alkanes inside a Hydrogen-bonded Supramolecular Cavitand Assembly. Chem. Phys. 2019, 521, 100–107. [Google Scholar] [CrossRef]
- Guan, H.W.; Zhu, Y.J.; Peters, J.; Brea, O.; Himo, F.; Rebek, J.; Yu, Y. Recognition of Hydrophilic Molecules in Deep Cavitand Hosts with Water-mediated Hydrogen Bonds. Chem. Commun. 2021, 57, 8147–8150. [Google Scholar] [CrossRef] [PubMed]
- Aakeroy, C.B.; Rajbanshi, A.; Desper, J. Hydrogen-bond Driven Assembly of a Molecular Capsule Facilitated by Supramolecular Chelation. Chem. Commun. 2011, 47, 11411–11413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.B.; Kanagaraj, K.; Rebek, J., Jr.; Yu, Y. Hydrophobic and Metal-Coordinated Confinement Effects Trigger Recognition and Selectivity. J. Org. Chem. 2021, 86, 8873–8881. [Google Scholar] [CrossRef] [PubMed]
- Rahman, F.U.; Tzeli, D.; Petsalakis, I.D.; Theodorakopoulos, G.; Ballester, P.; Rebek, J., Jr.; Yu, Y. Chalcogen Bonding and Hydrophobic Effects Force Molecules into Small Spaces. J. Am. Chem. Soc. 2020, 142, 5876–5883. [Google Scholar] [CrossRef]
- Zhu, Y.; Tang, M.; Zhang, H.; Rahman, F.U.; Ballester, P.; Rebek, J., Jr.; Hunter, C.A.; Yu, Y. Water and the Cation-pi Interaction. J. Am. Chem. Soc. 2021, 143, 12397–12403. [Google Scholar] [CrossRef]
- Smith, J.N.; Ennis, C.; Lucas, N.T. Rigid, Biconical Hydrogen-bonded Dimers that Strongly Encapsulate Cationic Guests in Solution and the Solid State. Chem. Sci. 2021, 12, 11858–11863. [Google Scholar] [CrossRef]
- Rahman, F.-U.; Feng, H.-N.; Yu, Y. A new Water-soluble Cavitand with Deeper Guest Binding Properties. Org. Chem. Front. 2019, 6, 998–1001. [Google Scholar] [CrossRef]
- Omeroglu, I.; Tumay, S.O.; Makhseed, S.; Husain, A.; Durmus, M. A highly Sensitive “ON-OFF-ON” Dual Optical Sensor for the Detection of Cu(II) ion and Triazole Pesticides based on Novel BODIPY-substituted Cavitand. Dalton. Trans. 2021, 50, 6437–6443. [Google Scholar] [CrossRef]
- Jordan, J.H.; Gibb, C.L.D.; Tran, T.; Yao, W.; Rose, A.; Mague, J.T.; Easson, M.W.; Gibb, B.C. Anion Binding to Ammonium and Guanidinium Hosts: Implications for the Reverse Hofmeister Effects Induced by Lysine and Arginine Residues. J. Org. Chem. 2024, 89, 6877–6891. [Google Scholar] [CrossRef]
- Bibal, B.; Tinant, B.; Declercq, J.P.; Dutasta, J.P. A New Supramolecular Assembly Obtained from the Combination of Silver(I) Cations with a Thiophosphorylated Cavitand. Chem. Commun. 2002, 5, 432–433. [Google Scholar] [CrossRef] [PubMed]
- Zuccaccia, D.; Pinalli, R.; De Zorzi, R.; Semeraro, M.; Credi, A.; Zuccaccia, C.; Macchioni, A.; Geremia, S.; Dalcanale, E. Hierarchical Self-assembly and Controlled Disassembly of a Cavitand-based Host–guest Supramolecular Polymer. Polym. Chem. 2021, 12, 389–401. [Google Scholar] [CrossRef]
- Riwar, L.J.; Trapp, N.; Root, K.; Zenobi, R.; Diederich, F. Supramolecular Capsules: Strong versus Weak Chalcogen Bonding. Angew. Chem. Int. Ed. 2018, 57, 17259–17264. [Google Scholar] [CrossRef] [PubMed]
- Grajda, M.; Lewinska, M.J.; Szumna, A. The Templation Effect as a Driving Force for the Self-assembly of Hydrogen-bonded Peptidic Capsules in Competitive Media. Org. Biomol. Chem. 2017, 15, 8513–8517. [Google Scholar] [CrossRef]
- Sierra, A.F.; Aragay, G.; Peñuelas-Haro, G.; Ballester, P. Supramolecular Fluorescence Sensing of l-proline and l-pipecolic acid. Org. Chem. Front. 2021, 8, 2402–2412. [Google Scholar] [CrossRef]
- Thomas, S.S.; Tang, H.; Gaudes, A.; Baggesen, S.B.; Gibb, C.L.D.; Gibb, B.C.; Bohne, C. Tuning the Binding Dynamics of a Guest-Octaacid Capsule through Noncovalent Anchoring. J. Phys. Chem. Lett. 2017, 8, 2573–2578. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, J.; Perez, L.; Gill, A.D.; Hooley, R.J.; Zhong, W. Selective Sensing of Phosphorylated Peptides and Monitoring Kinase and Phosphatase Activity with a Supramolecular Tandem Assay. J. Am. Chem. Soc. 2018, 140, 13869–13877. [Google Scholar] [CrossRef]
- Mirzaei, S.; Espinoza Castro, V.M.; Hernandez Sanchez, R. Nonspherical Anion Sequestration by C-H Hydrogen Bonding. Chem. Sci. 2022, 13, 2026–2032. [Google Scholar] [CrossRef]
- Vidal, D.; Costas, M.; Lledó, A. A Deep Cavitand Receptor Functionalized with Fe(II) and Mn(II) Aminopyridine Complexes for Bioinspired Oxidation Catalysis. ACS Catal. 2018, 8, 3667–3672. [Google Scholar] [CrossRef]
- Park, Y.S.; Kim, J.W.; Paek, K. Molecular capsules of tetrakis(N-hydantoinylimino)cavitand: Selective Encapsulation of 1,4-diiodobenzene. Tetrahedron Lett. 2017, 58, 3366–3369. [Google Scholar] [CrossRef]
- Nagymihály, Z.; Csók, Z.; Kollár, L. Influence of base Additives on the Selectivity of Palladium-catalysed Aminocarbonylation: Highly Selective Functionalization of a Cavitand Scaffold. Mol. Catal. 2018, 444, 70–75. [Google Scholar] [CrossRef]
- Milić, J.V.; Schneeberger, T.; Zalibera, M.; Milowska, K.Z.; Ong, Q.K.; Trapp, N.; Ruhlmann, L.; Boudon, C.; Thilgen, C.; Diederich, F. Thioether-Functionalized Quinone-Based Resorcin[4]arene Cavitands: Electroswitchable Molecular Actuators. Helv. Chimica Acta 2019, 102, e1800225. [Google Scholar] [CrossRef]
- Gropp, C.; Quigley, B.L.; Diederich, F. Molecular Recognition with Resorcin[4]arene Cavitands: Switching, Halogen-Bonded Capsules, and Enantioselective Complexation. J. Am. Chem. Soc. 2018, 140, 2705–2717. [Google Scholar] [CrossRef]
- Lledó, A.; Soler, A. Binding of Ion Pairs in a Thiourea-functionalized Self-folding Cavitand. Org. Chem. Front. 2017, 4, 1244–1249. [Google Scholar] [CrossRef]
- Liu, S.; Gibb, B.C. Solvent Denaturation of Supramolecular Capsules Assembled via the Hydrophobic Effect. Chem. Commun. 2011, 47, 3574–3576. [Google Scholar] [CrossRef]
- Knighton, R.C.; Chaplin, A.B. Synthesis, Structure and Binding Properties of a Series of Dissymmetric Resorcin[4]arene-based Cavitands. Tetrahedron 2017, 73, 4591–4596. [Google Scholar] [CrossRef]
- Pan, F.; Beyeh, N.K.; Rissanen, K. Concerted Halogen-Bonded Networks with N-Alkyl Ammonium Resorcinarene Bromides: From Dimeric Dumbbell to Capsular Architectures. J. Am. Chem. Soc. 2015, 137, 10406–10413. [Google Scholar] [CrossRef]
- Liu, Y.; Perez, L.; Mettry, M.; Easley, C.J.; Hooley, R.J.; Zhong, W. Self-Aggregating Deep Cavitand Acts as a Fluorescence Displacement Sensor for Lysine Methylation. J. Am. Chem. Soc. 2016, 138, 10746–10749. [Google Scholar] [CrossRef] [PubMed]
- Hooley, R.J.; Biros, S.M.; Rebek, J., Jr. A Deep, Water-soluble Cavitand Acts as a Phase-transfer Catalyst for Hydrophobic species. Angew. Chem. Int. Ed. 2006, 45, 3517–3519. [Google Scholar] [CrossRef]
- Gropp, C.; Trapp, N.; Diederich, F. Alleno-Acetylenic Cage (AAC) Receptors: Chiroptical Switching and Enantioselective Complexation of trans-1,2-Dimethylcyclohexane in a Diaxial Conformation. Angew. Chem. Int. Ed. 2016, 55, 14444–14449. [Google Scholar] [CrossRef]
- Ciardi, M.; Galan, A.; Ballester, P. Tetra-phosphonate Calix[4]pyrrole Cavitands as Multitopic Receptors for the Recognition of Ion Pairs. J. Am. Chem. Soc. 2015, 137, 2047–2055. [Google Scholar] [CrossRef] [PubMed]
- Azov, V.A.; Schlegel, A.; Diederich, F. Geometrically Precisely Defined Multinanometer Expansion/contraction Motions in a Resorcin[4]arene Cavitand based Molecular Switch. Angew. Chem. Int. Ed. 2005, 44, 4635–4638. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Shen, Y.; Jeyakkumar, P.; Zhang, Y.; Chu, L.; Zhang, R.; Hu, X.-Y. Supramolecular artificial Light-harvesting Systems for Photocatalysis. Curr. Opin. Green Sustain. Chem. 2023, 41, 100823. [Google Scholar] [CrossRef]
- Sultanova, E.D.; Nizameev, I.R.; Kholin, K.V.; Kadirov, M.K.; Ovsyannikov, A.S.; Burilov, V.A.; Ziganshina, A.Y.; Antipin, I.S. Photocatalytic Properties of Hybrid Materials Based on a Multicharged Polymer Matrix with Encored TiO2 and Noble Metal (Pt, Pd or Au) Nanoparticles. New J. Chem. 2020, 44, 7169–7174. [Google Scholar] [CrossRef]
- Sokolova, D.; Piccini, G.; Tiefenbacher, K. Enantioselective Tail-to-Head Terpene Cyclizations by Optically Active Hexameric Resorcin[4]arene Capsule Derivatives. Angew. Chem. Int. Ed. 2022, 61, e202203384. [Google Scholar] [CrossRef]
- De Rosa, M.; Gambaro, S.; Soriente, A.; Della Sala, P.; Iuliano, V.; Talotta, C.; Gaeta, C.; Rescifina, A.; Neri, P. Carbocation Catalysis in Confined Space: Activation of Trityl Chloride inside the Hexameric Resorcinarene Capsule. Chem. Sci. 2022, 13, 8618–8625. [Google Scholar] [CrossRef]
- Bordignon, F.; Calmanti, R.; Perosa, A.; Fabris, F.; Scarso, A. Confinement Effects in Catalysis: Steering the Product Selectivity in Cannabidiol Isomerization by the Resorcinarene Supramolecular Capsule. ChemCatChem 2024, 16, e202400278. [Google Scholar] [CrossRef]
- Petroselli, M.; Chen, Y.-Q.; Zhao, M.-K.; Rebek, J.; Yu, Y. C-H⋅⋅⋅X-C Bonds in Alkyl halides Drive Reverse Selectivities in Confined Spaces. Chin. Chem. Lett. 2023, 34, 107834. [Google Scholar] [CrossRef]
- Petroselli, M.; Rebek, J., Jr.; Yu, Y. Highly Selective Radical Monoreduction of Dihalides Confined to a Dynamic Supramolecular Host. Chemistry 2021, 27, 3284–3287. [Google Scholar] [CrossRef]
- Shi, Q.; Masseroni, D.; Rebek, J., Jr. Macrocyclization of Folded Diamines in Cavitands. J. Am. Chem. Soc. 2016, 138, 10846–10848. [Google Scholar] [CrossRef]
- Martin-Torres, I.; Ogalla, G.; Yang, J.M.; Rinaldi, A.; Echavarren, A.M. Enantioselective Alkoxycyclization of 1,6-Enynes with Gold(I)-Cavitands: Total Synthesis of Mafaicheenamine C. Angew. Chem. Int. Ed. 2021, 60, 9339–9344. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zuo, M.; Wang, K.; Hu, X.Y. A Cavitand-based Supramolecular Artificial Light-harvesting System with Sequential Energy Transfer for Photocatalysis. Chem. Commun. 2023, 59, 13707–13710. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xiao, Y.; Pei, W.-Y.; Zhang, J.-Y.; Liu, C.; Ma, J.-F. A Calix[4]resorcinarene-Copper(II) Based Supramolecular Nanocapsule with Encapsulated Polyoxometalates for Enhanced Photocatalytic Activity. ACS Appl. Nano Mater. 2023, 6, 11902–11911. [Google Scholar] [CrossRef]
- Sato, K.; Sasaki, R.; Matsuda, R.; Nakagawa, M.; Ekimoto, T.; Yamane, T.; Ikeguchi, M.; Tabata, K.V.; Noji, H.; Kinbara, K. Supramolecular Mechanosensitive Potassium Channel Formed by Fluorinated Amphiphilic Cyclophane. J. Am. Chem. Soc. 2022, 144, 11802–11809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ye, R.; Mu, Y.; Li, T.; Zeng, H. Small Molecule-Based Highly Active and Selective K(+) Transporters with Potent Anticancer Activities. Nano Lett. 2021, 21, 1384–1391. [Google Scholar] [CrossRef]
- Wan, Y.H.; Rahman, F.U.; Rebek, J.; Yu, Y. Shape Selectivity of a Metallo Cavitand Host Allows Separation of n-Alkanes from Isooctane. Chin. J. Chem. 2021, 39, 1498–1502. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, K.; Lu, Y.; Ma, D.; Shi, D.; Sun, Y.; Yang, M.; Li, J.; Wei, J. A Polyaromatic Nano-nest for Hosting Fullerenes C(60) and C(70). Org. Lett. 2018, 20, 2138–2142. [Google Scholar] [CrossRef]
- Samanta, J.; Tang, M.; Zhang, M.; Hughes, R.P.; Staples, R.J.; Ke, C. Tripodal Organic Cages with Unconventional CH...O Interactions for Perchlorate Remediation in Water. J. Am. Chem. Soc. 2023, 145, 21723–21728. [Google Scholar] [CrossRef]
- Chen, S.-Q.; Yu, S.-N.; Zhao, W.; Liang, L.; Gong, Y.; Yuan, L.; Tang, J.; Yang, X.-J.; Wu, B. Recognition-guided sulfate extraction and transport using tripodal hexaurea receptors. Inorg. Chem. Front. 2022, 9, 6091–6101. [Google Scholar] [CrossRef]
- Chen, S.Q.; Zhao, W.; Wu, B. Separation of Sulfate Anion From Aqueous Solution Governed by Recognition Chemistry: A Minireview. Front. Chem. 2022, 10, 905563. [Google Scholar] [CrossRef]
- Giri, G.; Hussain, M.D.W.; Sk, B.; Patra, A. Connecting the Dots: Knitting C-Phenylresorcin[4]arenes with Aromatic Linkers for Task-Specific Porous Organic Polymers. Chem. Mater. 2019, 31, 8440–8450. [Google Scholar] [CrossRef]
- Amorini, M.; Riboni, N.; Pesenti, L.; Dini, V.A.; Pedrini, A.; Massera, C.; Gualandi, C.; Bianchi, F.; Pinalli, R.; Dalcanale, E. Reusable Cavitand-Based Electrospun Membranes for the Removal of Polycyclic Aromatic Hydrocarbons from Water. Small 2022, 18, e2104946. [Google Scholar] [CrossRef] [PubMed]
- Skala, L.P.; Yang, A.; Klemes, M.J.; Xiao, L.; Dichtel, W.R. Resorcinarene Cavitand Polymers for the Remediation of Halomethanes and 1,4-Dioxane. J. Am. Chem. Soc. 2019, 141, 13315–13319. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, H.; Wang, L.; Diao, J.; Zhao, L.; He, G.; Wang, T.; Jiang, X. Interfacial Modification of Hydrogel Composite Membranes for Protein Adsorption with Cavitands as Nano Molecular Containers. Sep. Purif. Technol. 2024, 339, 126438. [Google Scholar] [CrossRef]
- Ryvlin, D.; Dumele, O.; Linke, A.; Fankhauser, D.; Schweizer, W.B.; Diederich, F.; Waldvogel, S.R. Systematic Investigation of Resorcin[4]arene-Based Cavitands as Affinity Materials on Quartz Crystal Microbalances. Chempluschem 2017, 82, 493–497. [Google Scholar] [CrossRef]
- Kane, C.M.; Ugono, O.; Barbour, L.J.; Holman, K.T. Many Simple Molecular Cavitands Are Intrinsically Porous (Zero-Dimensional Pore) Materials. Chem. Mater. 2015, 27, 7337–7354. [Google Scholar] [CrossRef]
- Giri, A.; Sahoo, A.; Dutta, T.K.; Patra, A. Cavitand and Molecular Cage-Based Porous Organic Polymers. ACS Omega 2020, 5, 28413–28424. [Google Scholar] [CrossRef]
- Biedermann, F.; De Cola, L. Porous Supramolecular Materials: The Importance of Emptiness. Supramol. Chem. 2018, 30, 166–168. [Google Scholar] [CrossRef]
- Nitta, N.; Takatsuka, M.; Kihara, S.I.; Hirao, T.; Haino, T. Self-Healing Supramolecular Materials Constructed by Copolymerization via Molecular Recognition of Cavitand-Based Coordination Capsules. Angew. Chem. Int. Ed. 2020, 59, 16690–16697. [Google Scholar] [CrossRef]
- Portone, F.; Amorini, M.; Montanari, M.; Pinalli, R.; Pedrini, A.; Verucchi, R.; Brighenti, R.; Dalcanale, E. Molecular Auxetic Polymer of Intrinsic Microporosity via Conformational Switching of a Cavitand Crosslinker. Adv. Funct. Mater. 2023, 33, 2307605. [Google Scholar] [CrossRef]
- Pinalli, R.; Pedrini, A.; Dalcanale, E. Environmental Gas Sensing with Cavitands. Chemistry 2018, 24, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Gilmullina, Z.R.; Syakaev, V.V.; Morozova, J.E.; Ziganshina, A.Y.; Antipin, I.S. The Interaction of Rhodamine B with Sulfobetaine Tetrapentylcalix[4]resorcinarene in the Range of Millimolar Concentrations. J. Incl. Phenom. Macrocycl. Chem. 2024, 104, 449–459. [Google Scholar] [CrossRef]
- Liu, Y.; Mettry, M.; Gill, A.D.; Perez, L.; Zhong, W.; Hooley, R.J. Selective Heavy Element Sensing with a Simple Host-Guest Fluorescent Array. Anal. Chem. 2017, 89, 11113–11121. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fasihianifard, P.; Raz, A.A.P.; Hickey, B.L.; Moreno, J.L., Jr.; Chang, C.A.; Hooley, R.J.; Zhong, W. Selective Recognition and Discrimination of Single Isomeric Changes in Peptide Strands with a Host: Guest Sensing Array. Chem. Sci. 2024, 15, 1885–1893. [Google Scholar] [CrossRef]
- Rozzi, A.; Pedrini, A.; Pinalli, R.; Cozzani, E.; Elmi, I.; Zampolli, S.; Dalcanale, E. Cavitand Decorated Silica as a Selective Preconcentrator for BTEX Sensing in Air. Nanomaterials 2022, 12, 2204. [Google Scholar] [CrossRef] [PubMed]
- Hickey, B.L.; Chen, J.; Zou, Y.; Gill, A.D.; Zhong, W.; Millar, J.G.; Hooley, R.J. Enantioselective Sensing of Insect Pheromones in Water. Chem. Commun. 2021, 57, 13341–13344. [Google Scholar] [CrossRef]
- Clément, P.; Korom, S.; Struzzi, C.; Parra, E.J.; Bittencourt, C.; Ballester, P.; Llobet, E. Deep Cavitand Self-Assembled on Au NPs-MWCNT as Highly Sensitive Benzene Sensing Interface. Adv. Funct. Mater. 2015, 25, 4011–4020. [Google Scholar] [CrossRef]
- Chen, J.; Hickey, B.L.; Wang, L.; Lee, J.; Gill, A.D.; Favero, A.; Pinalli, R.; Dalcanale, E.; Hooley, R.J.; Zhong, W. Selective Discrimination and Classification of G-quadruplex Structures with a Host-guest Sensing Array. Nat. Chem. 2021, 13, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tabaie, E.Z.; Hickey, B.L.; Gao, Z.; Raz, A.A.P.; Li, Z.; Wilson, E.H.; Hooley, R.J.; Zhong, W. Selective Molecular Recognition and Indicator Displacement Sensing of Neurotransmitters in Cellular Environments. ACS Sens. 2023, 8, 3195–3204. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Lv, T.; Dong, K.; Liu, Y.; Qi, Y.; Cao, S.; Chen, T. Ultrafast Self-assembly of Supramolecular Hydrogels toward Novel Flame-retardant Separator for Safe Lithium Iion Battery. J. Colloid Interface Sci. 2023, 649, 591–600. [Google Scholar] [CrossRef]
- Tang, G.; Shen, S.-P.; Li, H.-J.; Zhang, L.; Zheng, J.-C.; Luo, Y.; Yue, J.-P.; Shi, Y.; Chen, Z. Flame-Retardant Gel Electrolyte toward High-Safety Lithium Metal Batteries with High-Mass-Loading Cathodes. J. Phys. Chem. C 2023, 127, 9463–9470. [Google Scholar] [CrossRef]
- Zhou, J.; Meng, Y.; Shen, D.; Zhou, Y.; Liu, J.; Cao, Y.; Yan, C.; Qian, T. Empowering Quasi-solid Electrolyte with Smart Thermoresistance and Damage Repairability to Realize Safer Lithium Metal Batteries. J. Phys. Chem. Lett. 2023, 14, 4482–4489. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.-Y.; Liu, J.-H.; Yang, J.; Ma, J.-F. A family of polyoxometalate-resorcin[4]arene-based Metal–organic Materials: Assemblies, Structures and Lithium Ion Battery Properties. J. Alloys Compd. 2021, 868, 159009. [Google Scholar] [CrossRef]
- Liu, J.-H.; Yu, M.-Y.; Yang, J.; Liu, Y.-Y.; Ma, J.-F. Polyoxometalate-based Complex/graphene for High-rate Lithium-ion Batteries. Micropor. Mesopor. Mater. 2021, 310, 110666. [Google Scholar] [CrossRef]
- Sun, G.; Zuo, M.; Xu, Z.; Wang, K.; Wang, L.; Hu, X.Y. Orthogonal Design of Supramolecular Prodrug Vesicles via Water-Soluble Pillar[5]arene and Betulinic Acid Derivative for Dual Chemotherapy. ACS Appl. Bio. Mater. 2022, 5, 3320–3328. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Li, S.; Velmurugan, K.; Bai, Z.; Liu, Q.; Wang, K.; Zuo, M.; Hu, X.-Y. A novel photoswitchable AIE-active Supramolecular Photosensitizer with Synergistic Enhancement of ROS-generation Ability Constructed by a Two-step sequential FRET Process. Mater. Chem. Front. 2023, 7, 2484–2492. [Google Scholar] [CrossRef]
- Tian, X.; Zuo, M.; Niu, P.; Velmurugan, K.; Wang, K.; Zhao, Y.; Wang, L.; Hu, X.Y. Orthogonal Design of a Water-Soluble meso-Tetraphenylethene-Functionalized Pillar[5]arene with Aggregation-Induced Emission Property and Its Therapeutic Application. ACS Appl. Mater. Interfaces 2021, 13, 37466–37474. [Google Scholar] [CrossRef]
- Vinodh, M.; Al-Azemi, T.F. Encapsulation Characteristics of Cavitand Type Tetrabromo-Functionalized Resorcin[4]arenes in the Crystal Structure. J. Chem. Crystallogr. 2021, 52, 43–52. [Google Scholar] [CrossRef]
- Preisz, Z.; Nagymihaly, Z.; Lemli, B.; Kollar, L.; Kunsagi-Mate, S. Weak Interaction of the Antimetabolite Drug Methotrexate with a Cavitand Derivative. Int. J. Mol. Sci. 2020, 21, 4345. [Google Scholar] [CrossRef]
- Biavardi, E.; Federici, S.; Tudisco, C.; Menozzi, D.; Massera, C.; Sottini, A.; Condorelli, G.G.; Bergese, P.; Dalcanale, E. Cavitand-grafted Silicon Microcantilevers as a Universal Probe for Illicit and Designer Drugs in Water. Angew. Chem. Int. Ed. Engl. 2014, 53, 9183–9188. [Google Scholar] [CrossRef]
- Barboza, T.; Pinalli, R.; Massera, C.; Dalcanale, E. Diphosphonate Cavitands as Molecular Cups Forl-lactic Acid. CrystEngComm 2016, 18, 4958–4963. [Google Scholar] [CrossRef]
- Chen, M.M.; Li, Y.; Zhu, Y.; Geng, W.C.; Chen, F.Y.; Li, J.J.; Wang, Z.H.; Hu, X.Y.; Tang, Q.; Yu, Y.; et al. Supramolecular 3 in 1: A Lubrication and Co-Delivery System for Synergistic Advanced Osteoarthritis Therapy. ACS Nano 2024, 18, 13117–13129. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, S.; Liu, Q.; Zuo, M.; Tian, X.; Wang, K.; Hu, X.-Y. Supramolecular Prodrug Vesicles for Selective Antimicrobial Therapy Employing a Chemo-photodynamic Strategy. Chin. Chem. Lett. 2024, 35, 109999. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Yan, K.; Liu, Q.; Wang, Z.; Hu, X.-Y. The Versatile Applications of Calix[4]resorcinarene-Based Cavitands. Molecules 2024, 29, 5854. https://doi.org/10.3390/molecules29245854
Wang K, Yan K, Liu Q, Wang Z, Hu X-Y. The Versatile Applications of Calix[4]resorcinarene-Based Cavitands. Molecules. 2024; 29(24):5854. https://doi.org/10.3390/molecules29245854
Chicago/Turabian StyleWang, Kaiya, Kejia Yan, Qian Liu, Zhiyao Wang, and Xiao-Yu Hu. 2024. "The Versatile Applications of Calix[4]resorcinarene-Based Cavitands" Molecules 29, no. 24: 5854. https://doi.org/10.3390/molecules29245854
APA StyleWang, K., Yan, K., Liu, Q., Wang, Z., & Hu, X.-Y. (2024). The Versatile Applications of Calix[4]resorcinarene-Based Cavitands. Molecules, 29(24), 5854. https://doi.org/10.3390/molecules29245854