Advancements in Solid–Liquid Nanogenerators: A Comprehensive Review and Future Prospects
Abstract
1. Introduction
2. Solid–Liquid Triboelectric Nanogenerators
2.1. Types of Solid–Liquid Triboelectric Nanogenerators
2.2. Methodology for Enhancing Performance of the Solid–Liquid Triboelectric Nanogenerator
2.2.1. Methodology for Optimizing Materials
2.2.2. Structural Optimization of the Solid–Liquid Triboelectric Nanogenerator
3. Hydrovoltaic Effect
3.1. Water–Solid Interfaces
3.2. Evaporation-Induced Electricity Generation
3.3. Moisture-Induced Electricity Generation
3.4. Material Classification
4. Nanomaterial Selection
5. Reverse Electrowetting
6. Tribovoltaic Effect
6.1. Liquid–Semiconductor Interface
6.2. Influencing Factors of the Solid–Liquid Tribovoltaic Effect
6.3. Solid–Liquid Tribovoltaic Nanogenerator
7. Applications
7.1. Sensors
7.2. Energy Harvesting
7.3. Other Applications
8. The Challenges of Different Solid–Liquid Nanogenerators
9. Conclusion and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Xu, W.; Wang, Z. Nanogenerators with superwetting surfaces for harvesting water/liquid energy. Adv. Funct. Mater. 2020, 30, 1908252. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.L. Emerging nanogenerators: Powering the Internet of Things by high entropy energy. Iscience 2021, 24, 102358. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Entropy theory of distributed energy for internet of things. Nano Energy 2019, 58, 669–672. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Yin, J.; Xu, Y.; Fei, W.; Xue, M.; Wang, Q.; Zhou, J.; Guo, W. Emerging hydrovoltaic technology. Nat. Nanotech. 2018, 13, 1109–1119. [Google Scholar] [CrossRef]
- Quincke, G. Ueber die fortführung materieller theilchen durch strömende elektricität. Ann. Phys. 1861, 113, 513–598. [Google Scholar] [CrossRef]
- Thomson, W., II. On vortex atoms. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1867, 34, 15–24. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Zhao, Z. Particle-Laden Droplet-Driven Triboelectric Nanogenerator for Real-Time Sediment Monitoring using Deep Learning Method. ACS Appl. Mater. Interfaces 2020, 12, 38192–38201. [Google Scholar] [CrossRef]
- Li, X.; Tao, J.; Wang, X. Networks of High Performance Triboelectric Nanogenerators Based on Liquid–Solid Interface Contact Electrification for Harvesting Low-Frequency Blue Energy. Adv. Energy Mater. 2018, 8, 1800705. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Xie, B. Sandwich-structured ion exchange membrane/cotton fabric based flexible high-efficient and constant electricity generator. Polymer 2022, 261, 125411. [Google Scholar] [CrossRef]
- Li, T.; Wu, M.; Xu, J. Simultaneous atmosphericwater production and 24-hour power generation enabled by moisture-induced energy harvesting. Nat. Commun. 2022, 13, 6771. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Wang, A.C. On the origin of contact-electrification. Mater. Today 2019, 30, 34–51. [Google Scholar] [CrossRef]
- Wang, Z.L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, F.; Dulio, S.; Patrini, M.; Guizzetti, G.; Mustarelli, P. Energy harvesting from human motion: Materials and techniques. Chem. Soc. Rev. 2016, 45, 5455. [Google Scholar] [CrossRef]
- Tom, K.; Ashley, J.T. Reverse electrowetting as a new approach to high-power energy harvesting. Nat. Commun. 2011, 2, 448. [Google Scholar]
- Sriphan, S.; Vittayakorn, N. Tribovoltaic effect: Fundamental working mechanism and emerging applications. Mater. Today Nano 2023, 22, 100318. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Y.; Sun, X.; Li, Y.; Xu, H.; Tan, Y.; Li, Y.; Song, T.; Sun, B. Constant Electricity Generation in Nanostructured Silicon by Evaporation-Driven Water Flow. Angew. Chem. Int. Ed. 2020, 59, 10619. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, Z.; Zhang, C.; Yuan, W.; Wu, Z.; Wang, J.; Wang, Z.L. All-Weather Droplet-Based Triboelectric Nanogenerator for Wave Energy Harvesting. ACS Nano 2021, 15, 13200–13208. [Google Scholar] [CrossRef]
- Adhikari, P.R.; Patwary, A.B.; Kakaraparty, K.; Gunti, A.; Reid, R.C.; Mahbub, I. Advancing Reverse Electrowetting-on-Dielectric from Planar to Rough Surface Electrodes for High Power Density Energy Harvesting. Energy Technol. 2022, 10, 2100867. [Google Scholar] [CrossRef]
- Zhou, H.; Dong, J.; Liu, H.; Zhu, L.; Xu, C.; He, X.; Zhang, S.; Song, Q. The coordination of displacement and conduction currents to boost the instantaneous power output of a water-tube triboelectric nanogenerator. Nano Energy 2022, 95, 107050. [Google Scholar] [CrossRef]
- Wei, K.; Sun, D.; Liu, M.; Song, W.; Zhu, K.; Wu, L.; Zhang, J.; Ramakrishna, S.; Long, Y. Direct Current Nanogenerator Based on Tribovoltaic Effect at WS2 Semiconductor Interface. ACS Appl. Nano Mater. 2024, 7, 1748–1756. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, B.; Yuan, W.; Yang, O.; Liu, Y.; He, L.; Zhao, Z.; Zhou, L.; Wang, J.; Wang, Z.L. Seawater-Based Triboelectric Nanogenerators for Marine Anticorrosion. ACS Appl. Mater. Interfaces 2022, 14, 8605–8612. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhao, F.; Cheng, Z.; Deng, Y.; Xiao, Y.; Cheng, H.; Zhang, P.; Huang, Y.; Shaoa, H.; Qu, L. Electric Power Generation via Asymmetric Moisturizing of Graphene Oxide for Flexible, Printable and Portable Electronics. Energy Environ. Sci. 2018, 11, 1730–1735. [Google Scholar] [CrossRef]
- Lin, S.; Chen, X.; Wang, Z.L. The tribovoltaic effect and electron transfer at a liquid-semiconductor interface. Nano Energy 2020, 76, 105070. [Google Scholar] [CrossRef]
- Adhikari, P.R.; Reid, R.C.; Mahbub, I. High power density and bias-free reverse electrowetting energy harvesting using surface area enhanced porous electrodes. J. Power Sources 2022, 517, 230726. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, T.; Fu, X.; Hua, J.; Dai, W.; Cao, J.; Sun, W.; Ding, J. A comprehensive review of advancements and challenges from solid-solid to liquid-solid triboelectric nanogenerators. Adv. Mater. Technol. 2024, 9, 2301588. [Google Scholar] [CrossRef]
- Cui, X.; Yu, C.; Wang, Z.; Wan, D.; Zhang, H. Triboelectric nanogenerators for harvesting diverse water kinetic energy. Micromachines 2022, 13, 1219. [Google Scholar] [CrossRef]
- Shen, F.; Li, Z.; Guo, H.; Yang, Z.; Wu, H.; Wang, M.; Luo, J.; Xie, S.; Peng, Y.; Pu, H. Recent advances towards ocean energy harvesting and self-powered applications based on triboelectric nanogenerators. Adv. Electron. Mater. 2021, 7, 2100277. [Google Scholar] [CrossRef]
- Lin, S.; Chen, X.; Wang, Z. Contact electrification at the liquid-solid Iinterface. Chem. Rev. 2022, 122, 5209–5232. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, K.; Cui, P.; Qi, H.; Qin, H.; Gu, G.; Shang, W.; Wang, S.; Cheng, G.; Du, Z. Hybrid energy harvester with bi-functional nano-wrinkled anti-reflective PDMS film for enhancing energies conversion from sunlight and raindrops. Nano Energy 2019, 66, 104188. [Google Scholar] [CrossRef]
- Cheng, G.; Lin, Z.; Du, Z.; Wang, Z.L. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano 2014, 8, 1932–1939. [Google Scholar] [CrossRef] [PubMed]
- Le, C.; Vo, C.; Nguyen, T.; Vu, D.; Ahn, K. Liquid-solid contact electrification based on discontinuous-conduction triboelectric nanogenerator induced by radially symmetrical structure. Nano Energy 2021, 80, 105571. [Google Scholar] [CrossRef]
- Cho, H.; Chung, J.; Shin, G.; Sim, J.; Kim, D.; Lee, S.; Hwang, W. Toward sustainable output generation of liquid-solid contact triboelectric nanogenerators: The role of hierarchical structures. Nano Energy 2019, 56, 56–64. [Google Scholar] [CrossRef]
- Lin, Z.; Cheng, G.; Lin, L.; Lee, S.; Wang, Z.L. Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angew. Chem.-Int. Ed. 2013, 52, 12545–12549. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chan, S.; Wang, L.; Daoud, W. Water tank triboelectric nanogenerator for efficient harvesting of water wave energy over a broad frequency range. Nano Energy 2018, 44, 388–398. [Google Scholar] [CrossRef]
- Ha, J.; Chung, J.; Kim, S.; Kim, J.; Shin, S.; Park, J.; Lee, S. Transfer-printable micropatterned fluoropolymer-based triboelectric nanogenerator. Nano Energy 2017, 36, 126–133. [Google Scholar] [CrossRef]
- Lin, Z.; Cheng, G.; Lee, S.; Pradel, K.; Wang, Z.L. Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 2014, 26, 4690–4696. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Kim, T.; Khan, U.; Kim, S.-W. Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy 2019, 58, 579–584. [Google Scholar] [CrossRef]
- Wu, H.; Chen, Z.; Xu, G.; Xu, J.; Wang, Z.; Zi, Y. Fully biodegradable water droplet energy harvester based on leaves of living plants. ACS Appl. Mater. Interfaces 2020, 12, 56060–56067. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.; Pan, L.; Gao, R.; Zhang, B.; Yang, L.; Guo, H.; Liao, R.; Wang, Z.L. Direct-current rotary-tubular triboelectric nanogenerator based on liquid-dielectrics contact for sustainably energy harvesting and chemical composition analysis. ACS Nano 2019, 13, 2587–2598. [Google Scholar]
- Pan, L.; Wang, J.; Wang, P.; Gao, R.; Wang, Y.; Zhang, X.; Zou, J.; Wang, Z.L. Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy. Nano Res. 2018, 11, 4062–4073. [Google Scholar] [CrossRef]
- Munirathinam, K.; Kim, D.-S.; Shanmugasundaram, A.; Park, J.; Jeong, Y.-J.; Lee, D.-W. Flowing water-based tubular triboelectric nanogenerators for sustainable green energy harvesting. Nano Energy 2022, 102, 107675. [Google Scholar] [CrossRef]
- Zhu, G.; Su, Y.; Bai, P.; Chen, J.; Jing, Q.; Yang, W.; Wang, Z.L. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano 2014, 8, 6031–6037. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Kuang, S.; Wang, Z.L.; Zhu, G. Highly adaptive solid-liquid interfacing triboelectric nanogenerator for harvesting diverse water wave energy. ACS Nano 2018, 12, 4280–4285. [Google Scholar] [CrossRef]
- Gu, H.; Zhang, N.; Zhou, Z.; Ye, S.; Wang, W.; Xu, W.; Zheng, H.; Song, Y.; Jiao, J.; Wang, Z.; et al. A bulk effect liquid-solid generator with 3D electrodes for wave energy harvesting. Nano Energy 2021, 87, 106218. [Google Scholar] [CrossRef]
- Li, X.; Tao, J.; Zhu, J.; Pan, C. A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications. APL Mater. 2017, 5, 074104. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, B.; Long, J.; Kuang, Y.; Chen, X.; Hou, M.; Gao, J.; Zhou, S.; Fan, B.; He, Y.; et al. Interfacial laser-induced graphene enabling high-performance liquid-solid triboelectric nanogenerator. Adv. Mater. 2021, 33, 2104290. [Google Scholar] [CrossRef]
- Fuwad, A.; Ryu, H.; Jeon, T.J.; Kim, S.M. Hybrid film for liquid-solid contact-based energy harvesting systems. Int. J. Energy Res. 2022, 46, 1672–1682. [Google Scholar] [CrossRef]
- Xu, L.; Pang, Y.; Zhang, C.; Jiang, T.; Chen, X.; Luo, J.; Tang, W.; Cao, X.; Wang, Z.L. Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting. Nano Energy 2017, 31, 351–358. [Google Scholar] [CrossRef]
- Jang, S.; La, M.; Cho, S.; Yun, Y.; Choi, J.H.; Ra, Y.; Park, S.J.; Choi, D. Monocharged electret based liquid-solid interacting triboelectric nanogenerator for its boosted electrical output performance. Nano Energy 2020, 70, 104541. [Google Scholar] [CrossRef]
- Wang, H.; Kurokawa, Y.; Gotoh, K.; Kato, S.; Yamada, S.; Itoh, T.; Usami, N. Performance enhancement of droplet-based electricity generator using a CYTOP intermediate layer. Jpn. J. Appl. Phys. 2023, 62, SC1032. [Google Scholar] [CrossRef]
- Nie, S.; Guo, H.; Lu, Y.; Zhuo, J.; Mo, J.; Wang, Z.L. Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Adv. Mater. Technol. 2020, 5, 2000454. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.; Li, T.; Wang, D.; Zhou, F. Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting. Nano Energy 2019, 61, 454–461. [Google Scholar] [CrossRef]
- Vu, D.L.; Le, C.D.; Vo, C.P.; Ahn, K.K. Surface polarity tuning through epitaxial growth on polyvinylidene fluoride membranes for enhanced performance of liquid-solid triboelectric nanogenerator. Compos. Part B 2021, 223, 109135. [Google Scholar] [CrossRef]
- Muthu, M.; Pandey, R.; Wang, X.; Chandrasekhar, A.; Palani, I.; Singh, V. Enhancement of triboelectric nanogenerator output performance by laser 3D-Surface pattern method for energy harvesting application. Nano Energy 2020, 78, 105205. [Google Scholar] [CrossRef]
- Vu, D.L.; Vo, C.P.; Le, C.D.; Ahn, K.K. Enhancing the output performance of fluid-based triboelectric nanogenerator by using poly(vinylidene fluoride-co-hexafluoropropylene)/ionic liquid nanoporous membrane. Int. J. Energy Res. 2021, 45, 8960–8970. [Google Scholar] [CrossRef]
- Tao, X.; Nie, J.; Li, S.; Shi, Y.; Lin, S.; Chen, X.; Wang, Z.L. Effect of photo-excitation on contact electrification at liquid-solid interface. ACS Nano 2021, 15, 10609–10617. [Google Scholar] [CrossRef]
- Vu, D.L.; Ahn, K.K. Triboelectric enhancement of polyvinylidene fluoride membrane using magnetic nanoparticle for water-based energy harvesting. Polymers 2022, 14, 1547. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, Y.; Li, R.; Orlando, R.J.; Manica, R.; Liu, Q. Liquid-solid triboelectric nanogenerators for a wide operation window based on slippery lubricant-infused surfaces (SLIPS). Chem. Eng. J. 2022, 439, 135688. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Y.; Liu, Y.; Zheng, Y.; Liu, Y.; Xu, C.; Kong, X.; Feng, Y.; Zhang, X.; Wang, D. New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting. ACS Appl. Mater. Interfaces 2020, 12, 31351–31359. [Google Scholar] [CrossRef]
- Liu, S.; Liu, X.; Zhou, G.; Qin, F.; Jing, M.; Li, L.; Song, W.; Sun, Z. A high-efficiency bioinspired photoelectric-electromechanical integrated nanogenerator. Nat. Commun. 2020, 11, 6158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wang, B.; Gao, A.; Xu, W.; Zhou, K.; Pan, J.; Meng, G.; Pan, C.; Xia, F. Solution-tube-based volume effect triboelectric nanogenerator with salt and pH sensitivity. Adv. Funct. Mater. 2022, 32, 2209100. [Google Scholar] [CrossRef]
- Sun, W.; Zheng, Y.; Li, T.; Feng, M.; Cui, S.; Liu, Y.; Chen, S.; Wang, D. Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection. Energy 2021, 217, 119388. [Google Scholar] [CrossRef]
- Li, Y.; Qin, X.; Feng, Y.; Song, Y.; Yi, Z.; Zheng, H.; Zhou, P.; Wu, C.; Yang, S.; Wang, L.; et al. A droplet-based electricity generator incorporating Kelvin water dropper with ultrahigh instantaneous power density. Droplet 2024, 3, 91. [Google Scholar] [CrossRef]
- Wang, X.; Lin, F.; Wang, X.; Fang, S.; Tan, J.; Chu, W.; Rong, R.; Yin, J.; Zhang, Z.; Liu, Y.; et al. Hydrovoltaic technology: From mechanism to applications. Chem. Soc. Rev. 2022, 51, 4902. [Google Scholar] [CrossRef]
- Zhao, F.; Cheng, H.; Zhang, Z.; Jiang, L.; Qu, L. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357. [Google Scholar] [CrossRef]
- Yin, J.; Li, X.; Yu, J.; Zhang, Z.; Zhou, J.; Guo, W. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 2014, 9, 378–383. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, Z.; Li, X.; Yu, J.; Zhou, J.; Chen, Y.; Guo, W. Waving potential in graphene. Nat. Commun. 2014, 5, 3582. [Google Scholar] [CrossRef]
- Xue, G.; Xu, Y.; Ding, T.; Li, J.; Yin, J.; Fei, W.; Cao, Y.; Yu, J.; Yuan, L.; Gong, L.; et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 2017, 12, 317–321. [Google Scholar] [CrossRef]
- Hunter, R.J. Zeta Potential in Colloid Science: Principles and Applications; Academic Press: Cambridge, UK, 2013. [Google Scholar]
- Wall, S. The history of electrokinetic phenomena. Curr. Opin. Colloid Interface Sci. 2009, 15, 119–124. [Google Scholar] [CrossRef]
- Okada, T.; Kalita, G.; Tanemura, M.; Yamashita, I.; Meyyappan, M.; Samukawa, S. Role of doped nitrogen in graphene for flow-induced power generation. Adv. Eng. Mater. 2018, 20, 1800387. [Google Scholar] [CrossRef]
- Jiao, S.; Zhang, Y.; Li, Y.; Maryam, B.; Xu, S.; Liu, W.; Liu, M.; Li, J.; Liu, X. Enhanced electric power generation through electrolyte flow on a flexible rope hydrovoltaic generator. Carbon 2024, 218, 118687. [Google Scholar] [CrossRef]
- Fei, W.; Shen, C.; Zhang, S.; Chen, H.; Li, L.; Guo, W. Waving potential at volt level by a pair of graphene sheets. Nano Energy 2019, 60, 656–660. [Google Scholar] [CrossRef]
- Ding, T.; Liu, K.; Li, J.; Xue, G.; Chen, Q.; Huang, L.; Hu, B.; Zhou, J. All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 2017, 27, 1700551. [Google Scholar] [CrossRef]
- Li, J.; Liu, K.; Ding, T.; Yang, P.; Duan, J.; Zhou, J. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy 2019, 58, 797–802. [Google Scholar] [CrossRef]
- Shao, B.; Song, Z.; Chen, X.; Wu, Y.; Li, Y.; Song, C.; Yang, F.; Song, T.; Wang, Y.; Lee, S.; et al. Bioinspired hierarchical nanofabric electrode for silicon hydrovoltaic device with record power output. ACS Nano 2021, 15, 7472–7481. [Google Scholar] [CrossRef]
- Chen, Y.; He, J.; Ye, C.; Tang, S. Achieving ultrahigh voltage over 100 V and remarkable freshwater harvesting based on thermodiffusion enhanced hydrovoltaic generator. Adv. Energy Mater. 2024, 14, 2400529. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Guo, W. Mechanistic insight into electricity generation from moving ionic droplets on graphene. Sci. China Mater. 2021, 64, 2242. [Google Scholar] [CrossRef]
- Yu, F.; Li, J.; Jiang, Y.; Wang, L.; Yang, X.; Yang, Y.; Li, X.; Jiang, K.; Lü, W.; Sun, X. High hydrovoltaic power density achieved by universal evaporating potential devices. Adv. Sci. 2023, 10, 2302941. [Google Scholar] [CrossRef]
- Shen, D.; Duley, W.W.; Peng, P.; Xiao, M.; Feng, J.; Liu, L.; Zou, G.; Zhou, Y.N. Moisture-enabled electricity generation: From physics and materials to self-powered applications. Adv. Mater. 2020, 32, 2003722. [Google Scholar] [CrossRef]
- Tang, W.; Chen, B.D.; Wang, Z.L. Recent progress in power generation from water/liquid droplet interaction with solid surfaces. Adv. Funct. Mater. 2019, 29, 1901069. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, M.; Yang, Q.; Yang, M.; Wu, Q.; Zhang, Z.; Yu, J. Flexible carbon dots composite paper for electricity generation from water vapor absorption. J. Mater. Chem. 2018, 6, 10639–10643. [Google Scholar] [CrossRef]
- Yang, C.; Huang, Y.; Cheng, H.; Jiang, L.; Qu, L. Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv. Mater. 2019, 31, 1805705. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gao, H.; Ward, J.E.; Liu, X.; Yin, B.; Fu, T.; Chen, J.; Lovley, D.R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554. [Google Scholar] [CrossRef]
- Liu, J.; Huang, L.; He, W.; Cai, X.; Wang, Y.; Zhou, L.; Yuan, Y. Moisture-enabled hydrovoltaic power generation with milk protein nanofibrils. Nano Energy 2022, 102, 107709. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, C.; Fan, S. A moisture induced self-charging device for energy harvesting and storage. Nano Energy 2019, 60, 371–376. [Google Scholar] [CrossRef]
- Lu, X.; Yang, T.; Fu, C.; Jiang, Z.; Zhang, Y.; Shang, K.; He, C.; Zhou, J.; He, Q.-C. Hierarchically porous fiber-based nanofluidic diode as an efficient multimode hygroelectric generator. Adv. Energy Mater. 2022, 12, 2202634. [Google Scholar] [CrossRef]
- Li, L.; Zheng, Z.; Ge, C.; Wang, Y.; Dai, H.; Li, L.; Wang, S.; Gao, Q.; Liu, M.; Sun, F.; et al. A Flexible Tough Hydrovoltaic Coating for Wearable Sensing Electronics. Adv. Mater. 2023, 35, 2304099. [Google Scholar] [CrossRef]
- Wu, M.; Liang, Z.; Peng, M.; Zhao, B.; Li, D.; Zhang, J.; Sun, Y.; Jiang, L. High evaporation rate and electrical conductivity synergistically boosting porous rGO/CNT Film for water evaporation-driven electricity generation. Nano Energy 2023, 116, 108771. [Google Scholar] [CrossRef]
- Shen, D.; Xiao, M.; Zou, G.; Liu, L.; Duley, W.W.; Zhou, Y.N. Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 2018, 30, 1705925. [Google Scholar] [CrossRef]
- Xu, T.; Ding, X.; Huang, Y.; Shao, C.; Song, L.; Gao, X.; Zhang, Z.; Qu, L. An efficient polymer moist-electric generator. Energy Environ. Sci. 2019, 12, 972–978. [Google Scholar] [CrossRef]
- Zhang, Y.; MohebbiPour, A.; Mao, J.; Mao, J.; Ni, Y. Lignin reinforced hydrogels with multi-functional sensing and moist-electric generating applications. Int. J. Biol. Macromol. 2021, 193, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Garemark, J.; Ram, F.; Liu, L.; Sapouna, I.; Cortes Ruiz, M.F.; Larsson, P.T.; Li, Y. Advancing Hydrovoltaic Energy Harvesting from Wood through Cell Wall Nanoengineering. Adv. Funct. Mater. 2023, 33, 2208933. [Google Scholar] [CrossRef]
- Jiang, C.; Li, X.; Ying, Y.; Ping, J. A multifunctional TENG yarn integrated into agrotextile for building intelligent agriculture. Nano Energy 2020, 74, 104863. [Google Scholar] [CrossRef]
- Chen, L.; Shi, Q.; Sun, Y.; Nguyen, T.; Lee, C.; Soh, S. Controlling Surface Charge Generated by Contact Electrification: Strategies and Applications. Adv. Mater. 2018, 30, 1802405. [Google Scholar] [CrossRef]
- Liu, Y.; Mo, J.; Fu, Q.; Lu, Y.; Zhang, N.; Wang, S.; Nie, S. Enhancement of Triboelectric Charge Density by Chemical Functionalization. Adv. Mater. 2020, 30, 2004714. [Google Scholar] [CrossRef]
- Li, R.; Lv, S.; Du, Y. An enclosed solid-liquid triboelectric nanogenerator based on Janus-type TPU nanofibers. Mater. Today Commun. 2024, 41, 110262. [Google Scholar] [CrossRef]
- Yoo, D.; Park, S.-C.; Lee, S.; Sim, J.-Y.; Song, I.; Choi, D.; Lim, H.; Kim, D. Biomimetic anti-reflective triboelectric nanogenerator for concurrent harvesting of solar and raindrop energies. Nano Energy 2019, 57, 424–431. [Google Scholar] [CrossRef]
- Li, L.; Feng, S.; Du, L.; Wang, Y.; Ge, C.; Yang, X.; Wu, Y.; Liu, M.; Wang, S.; Bai, Y.; et al. A hydrovoltaic power generation system based on solar thermal conversion. Nano Energy 2022, 99, 107356. [Google Scholar] [CrossRef]
- Ge, C.; Wang, Y.; Wang, M.; Zheng, Z.; Wang, S.; Kong, Y.; Gao, Q.; Liu, M.; Sun, F.; Li, L.; et al. Silk Fibroin-Regulated Nanochannels for Flexible Hydrovoltaic Ion Sensing. Adv. Mater. 2024, 36, 2310260. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Shao, B.; Wang, Z.; Ni, K.; Liu, S.; Yuan, X.; Wang, Y.; Sun, B.; Zhang, X.; Liu, R. Silicon nanowire/ionic hydrogel-based hybrid moist-electric generators with enhanced voltage output and operational stability. Energy Environ. Sci. 2024, 17, 3788–3796. [Google Scholar] [CrossRef]
- Kim, G.; Kim, W.; Chun, H. Droplet energy harvesting is reverse Phenomenon of electrowetting on dielectric. Adv. Funct. Mater. 2021, 31, 2105233. [Google Scholar] [CrossRef]
- Boisseau, S.; Despesse, D.; Seddik, B.A. Electrostatic conversion for vibration energy harvesting. In Small-Scale Energy Harvesting; Intech: Rang-du-Fliers, France, 2012. [Google Scholar]
- Hsu, T.-H.; Manakasettharn, S.; Taylor, J.A.; Krupenkin, T. Bubbler: A novel ultra-high power density energy harvesting method based on reverse electrowetting. Sci. Rep. 2015, 5, 16537. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Shao, W.; Jin, J.; Wu, J.; Zhao, M.; Tang, B.; Zhou, G. Robust reverse-electrowetting based energy harvesting on slippery surface. RSC Adv. 2023, 13, 31659–31666. [Google Scholar] [CrossRef]
- Yang, H.; Hong, S.; Koo, B.; Lee, D.; Kim, Y.-B. High-performance reverse electrowetting energy harvesting using atomic-layer-deposited dielectric film. Nano Energy. 2017, 31, 450–455. [Google Scholar] [CrossRef]
- Yang, H.; Lee, H.; Lim, Y.; Christy, M.; Kim, Y.B. Laminated structure of Al2O3 and TiO2 for enhancing performance of reverse electrowetting-on-dielectric energy harvesting. Int. J. Precis. Eng. Manuf.-Green Technol. 2019, 8, 103–111. [Google Scholar] [CrossRef]
- Moon, J.K.; Jeong, J.; Lee, D.; Pak, H.K. Electrical power generation by mechanically modulating electrical double layers. Nat. Commun. 2013, 4, 1487. [Google Scholar] [CrossRef]
- Lin, S.; Wang, Z.L. The tribovoltaic effect. Mater. Today 2023, 62, 111–128. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, D.; Zhao, J.; Liu, G.; Bu, T.; Zhang, C.; Wang, Z.L. Tribovoltaic effect on metalesemiconductor interface for direct-current low-impedance triboelectric nanogenerators. Adv. Energy Mater. 2020, 10, 1903713. [Google Scholar] [CrossRef]
- Zhang, Z.; He, T.; Zhao, J.; Liu, G.; Wang, Z.L.; Zhang, C. Tribo-thermoelectric and tribovoltaic coupling effect at metal-semiconductor interface. Mater. Today Phys. 2021, 16, 100295. [Google Scholar] [CrossRef]
- Zhong, H.; Xia, J.; Wang, F.; Chen, H.; Wu, H.; Lin, S. Graphene-piezoelectric material heterostructure for harvesting energy from water flow. Adv. Funct. Mater. 2017, 27, 1604226. [Google Scholar] [CrossRef]
- Xu, C.; Zi, Y.; Wang, A.C.; Zou, H.; Dai, Y.; He, X.; Wang, P.; Wang, Y.-C.; Feng, P.; Li, D.; et al. On the electron-transfer mechanism in the contact-electrification effect. Adv. Mater. 2018, 30, 1706790. [Google Scholar] [CrossRef]
- Fan, J.C. Theoretical temperature dependence of solar cell parameters. Sol. Cells 1986, 17, 309–315. [Google Scholar] [CrossRef]
- Singh, P.; Singh, S.N.; Lal, M.; Husain, M. Temperature dependence of I-V characteristics and performance parameters of silicon solar cell. Sol. Energy Mater. Sol. Cells 2008, 92, 1611–1616. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef]
- He, L.; Wang, L.C.; Sun, H.; Ni, J.; Cao, Y.; He, Y.; Fan, K.N. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew. Chem. -Int. Ed. 2009, 48, 9538–9541. [Google Scholar] [CrossRef] [PubMed]
- Akiya, N.; Savage, P.E. Roles of water for chemical reactions in high-temperature water. Chem. Rev. 2002, 102, 2725–2750. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Lin, S.; Zhu, L.; Tang, Z.; Wang, Z.L. Effects of temperature on the tribovoltaic effect at liquid-solid interfaces. Adv. Mater. Interfaces 2021, 9, 2101757. [Google Scholar] [CrossRef]
- Zheng, M.; Lin, S.; Tang, Z.; Feng, Y.; Wang, Z.L. Photovoltaic effect and tribovoltaic effect at liquid-semiconductor interface. Nano Energy 2021, 83, 105810. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, D.; Gao, X.; Zhu, J.; Zhang, Y.; Zhang, M. Flexible liquid-based continuous direct-current tribovoltaic generators enable self-powered multi-modal sensing. Adv. Funct. Mater. 2023, 33, 2209484. [Google Scholar] [CrossRef]
- Chen, J.; Guo, H.; Zheng, J.; Huang, Y.; Liu, G.; Hu, C.; Wang, Z.L. Self-powered triboelectric micro liquid/gas flow sensor for microfluidic. ACS Nano 2016, 10, 8104–8112. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Shi, Z.; Zheng, R.; Ye, W.; Gao, X.; Zhao, W.; Yang, G. A superhydrophobic liquid-solid contact triboelectric nanogenerator as droplet sensor for biomedical applications. ACS Appl. Mater. Interfaces 2020, 12, 40021–40030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zheng, Y.; Wang, D.; Zhou, F. Solid-liquid triboelectrification in smart U-tube for multifunctional sensors. Nano Energy 2017, 40, 95–106. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Deng, W.; Jin, L.; Chun, F.; Pan, H.; Gua, B.; Zhang, H.; Lv, Z.; Yanga, W.; et al. Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring. ACS Nano 2017, 11, 7440–7446. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, S.; Zhang, S.; Ding, W.; Kien, P.; Wang, C.; Li, Z.; Pan, X.; Wang, Z.L. A highly-sensitive wave sensor based on liquid-solid interfacing triboelectric nanogenerator for smart marine equipment. Nano Energy 2019, 57, 574–580. [Google Scholar] [CrossRef]
- Xu, Q.; Shang, C.; Ma, H.; Hong, Q.; Li, C.; Ding, S.; Xue, L.; Sun, X.; Pan, Y.; Sugahara, T.; et al. A guided-liquid-based hybrid triboelectric nanogenerator for omnidirectional and high-performance ocean wave energy harvesting. Nano Energy 2023, 109, 108240. [Google Scholar] [CrossRef]
- Li, Z.; Yang, D.; Zhang, Z.; Lin, S.; Cao, B.; Wang, L.; Wang, Z.L.; Yin, F. A droplet-based electricity generator for large-scale raindrop energy harvesting. Nano Energy 2022, 100, 107443. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiang, C.; Li, X.; Dai, S.; Ying, Y.; Ping, J. Highly efficient raindrop energy-based triboelectric nanogenerator for self-powered intelligent greenhouse. ACS Nano 2021, 15, 12314–12323. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Z.; Zi, Y. Multi-mode water-tube-based triboelectric nanogenerator designed for low-frequency energy harvesting with ultrahigh volumetric charge density. Adv. Energy Mater. 2021, 11, 2100038. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, W.; Zhang, C.; Tan, Y.; Guo, J.; Sun, Z.; Deng, X. Harvesting electricity from water evaporation through micro-channels of natural wood. ACS Appl. Mater. Interfaces 2020, 12, 11232–11239. [Google Scholar] [CrossRef]
- Li, C.; Liu, X.; Yang, D.; Liu, Z. Triboelectric nanogenerator based on a moving bubble in liquid for mechanical energy harvesting and water level monitoring. Nano Energy 2022, 95, 106998. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, S.; Zheng, M.; Wang, Z.L. Triboelectric nanogenerator as a probe for measuring the charge transfer between liquid and solid surfaces. ACS Nano 2021, 15, 14830–14837. [Google Scholar] [CrossRef] [PubMed]
- Huangfu, X.; Guo, Y.; Mugo, S.M.; Zhang, Q. Hydrovoltaic nanogenerators for self-powered sweat electrolyte analysis. Small 2023, 19, 2207134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Guan, H.; Zhong, T.; Zhao, T.; Xing, L.; Xue, X. Wearable battery-free perspiration analyzing sites based on sweat flowing on ZnO nanoarrays. NanoMicro Lett. 2020, 12, 105. [Google Scholar] [CrossRef] [PubMed]
Type | Nanomaterials | Year | Power Density | References |
---|---|---|---|---|
S-L TENG | Nanoparticles (AgNPs) | 2020 | 7.7V | [95] |
Nanofiber (TPU) | 2024 | 282V | [98] | |
Nanowire array (PS) | 2019 | 18.4V | [99] | |
Hydrovoltaic generator | Nanoparticles (Al2O3/CB) | 2022 | 5.86V | [100] |
Nanofiber (NNF) | 2024 | 4.82V | [101] | |
Nanowire array (SiNWs) | 2024 | 1.28V | [102] |
Type | Strengths | Weaknesses |
---|---|---|
S-L TENG | • Wide selection of materials. • Environment adaptability. • Wide operating frequency range. • The structure is relatively simple. | • The low charge density restricts the conversion efficiency. • The wear and heat are heavy, which affects the service life of the equipment. • The charge transfer is complex. |
TVNG | • No additional circuitry required. • Can be operated at low mechanical forces. | • Low conversion efficiency. • It is difficult to achieve large-scale applications. • The interface charge is less, affecting power generation. |
Hydrovoltaic generator | • Can work continuously in the water environment. • The design is relatively simple. • Lightweight structure. | • Low output power. • Constrained by the environment; the scope of application is limited. • Complex surface treatment. |
REWOD generator | • Combined with rotation and water flow, energy output improves. • Suitable for high-voltage applications. | • Complex mechanical components. • The device is easy to wear. • Poor long-term reliability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, K.; Wang, Y.; Li, B.; Li, P.; Wang, X.; Gao, L. Advancements in Solid–Liquid Nanogenerators: A Comprehensive Review and Future Prospects. Molecules 2024, 29, 5716. https://doi.org/10.3390/molecules29235716
Dai K, Wang Y, Li B, Li P, Wang X, Gao L. Advancements in Solid–Liquid Nanogenerators: A Comprehensive Review and Future Prospects. Molecules. 2024; 29(23):5716. https://doi.org/10.3390/molecules29235716
Chicago/Turabian StyleDai, Kejie, Yan Wang, Baozeng Li, Pengfei Li, Xueqing Wang, and Lingxiao Gao. 2024. "Advancements in Solid–Liquid Nanogenerators: A Comprehensive Review and Future Prospects" Molecules 29, no. 23: 5716. https://doi.org/10.3390/molecules29235716
APA StyleDai, K., Wang, Y., Li, B., Li, P., Wang, X., & Gao, L. (2024). Advancements in Solid–Liquid Nanogenerators: A Comprehensive Review and Future Prospects. Molecules, 29(23), 5716. https://doi.org/10.3390/molecules29235716