An Efficient Method for the Selective Syntheses of Sodium Telluride and Symmetrical Diorganyl Tellurides and the Investigation of Reaction Pathways
Abstract
1. Introduction
2. Results and Discussion
2.1. Optimization for the Reaction Conditions
2.2. Synthesis of Dioramic Tellurides 1
2.3. Investigation of Reaction Pathways
3. Experimental Procedure
3.1. General Methods
3.2. General Procedure for the Synthesis of Diorganyl Tellurides 1
- Bis(2-phenylethyl) Telluride (1a) [27]. The use of 2-phenethyl bromide (429 μL, 3.1 mmol, 2.0 eq) and a 4 h reaction time at 25 °C in the general procedure afforded the title compound 1a (418 mg, 79%) as a bright yellow oil. Bp 140–142 °C; Rf 0.51 (1:2 Dichloromethane/n-hexane); HPLC tR 22.04 min (condition 1); λmax = 348 nm; IR (ZnSe) 3024, 2925, 1493, 1148, 694 cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.31–7.16 (m, 10 H, Ar), 3.05 (t, J = 8.0 Hz, 4 H, TeCH2), 2.83 (t, J = 8.0 Hz, 4 H, CH2); 13C NMR (100 MHz, CDCl3): δ = 142.73 (Ar), 128.50 (Ar), 128.12 (Ar), 126.30 (Ar), 38.74 (TeCH2), 3.47 (CH2); MS m/z 340 [M]+; HRMS (+EI) calcd for C16H18Te [M]+ 340.0471, found 340.0471.
- Di-n-butyl Telluride (1b) [28]. The use of 1-bromobutane (339 μL, 3.1 mmol, 2.0 eq) and a 3 h reaction time at 25 °C in the general procedure afforded the title compound 1b (292 mg, 77%) as a yellow oil. Bp 106–108 °C; Rf 0.44 (n-hexane); HPLC tR 24.67 min (condition 1); λmax = 348, 240 nm; IR (ZnSe) 2956, 2924, 2870, 1459, 1160 cm−1; 1H NMR (400 MHz, CDCl3): δ = 2.63 (t, J = 7.5 Hz, 4 H, TeCH2), 1.72 (quintet, J = 7.4 Hz, 4 H, CH2), 1.38 (sextet, J = 7.4 Hz, 4 H, CH2), 0.92 (t, J = 7.5 Hz, 6 H, CH3); 13C NMR (100 MHz, CDCl3): δ = 34.42 (TeCH2), 25.13 (CH2), 13.43 (CH2), 2.37 (CH2); MS m/z 244 [M]+; HRMS (+EI) calcd for C8H18Te [M]+ 244.0471, found 244.0473.
- Di-n-pentyl Telluride (1c) [29]. The use of 1-bromopentane (390 μL, 3.1 mmol, 2.0 eq) and a 3 h reaction time at 25 °C in the general procedure afforded the title compound 1c (317 mg, 75%) as a bright yellow oil. Bp 122–124 °C; Rf 0.42 (n-hexane); HPLC tR 30.93 min (condition 1); λmax = 345, 240 nm; IR (ZnSe) 2956, 2922, 2856, 1461, 1157 cm−1; 1H NMR (400 MHz, CDCl3): δ = 2.63 (t, J = 7.6 Hz, 4 H, TeCH2), 1.78–1.71 (m, 4 H, CH2), 1.39–1.31 (m, 8 H, CH2), 0.90 (t, J = 6.6 Hz, 6 H, CH3); 13C NMR (100 MHz, CDCl3): δ = 34.25 (TeCH2), 31.99 (CH2), 22.06 (CH2), 14.00 (CH2), 2.71 (CH3); MS m/z 272 [M]+; HRMS (+EI) calcd for C10H22Te [M]+ 272.0784, found 272.0781.
- Di-n-hexyl Telluride (1d) [30]. The use of 1-bromohexane (457 μL, 3.1 mmol, 2.0 eq) and a 3 h reaction time at 25 °C in the general procedure afforded the title compound 1d (380 mg, 81%) as a bright yellow oil. Bp 146–148 °C; Rf 0.47 (n-hexane); HPLC tR 41.21 min (condition 1); λmax = 347, 240 nm; IR (ZnSe) 2956, 2922, 2853, 1461, 1155 cm−1; 1H NMR (400 MHz, CDCl3): δ = 2.63 (t, J = 7.6 Hz, 4 H, TeCH2), 1.77–1.70 (m, 4 H, CH2), 1.40–1.27 (m, 12 H, CH2), 0.89 (t, J = 6.5 Hz, 6 H, CH3); 13C NMR (100 MHz, CDCl3): δ = 32.27 (TeCH2), 31.75 (CH2), 31.20 (CH2), 22.58 (CH2), 14.07 (CH2), 2.76 (CH3); MS m/z 300 [M]+; HRMS (+EI) calcd for C12H26Te [M]+ 300.1097, found 300.1096.
- Di-n-heptyl Telluride (1e) [31]. The use of 1-bromoheptane (493 μL, 3.1 mmol, 2.0 eq) and a 3 h reaction time at 25 °C in the general procedure afforded the title compound 1e (470 mg, 92%) as an orange oil. Bp 168–170 °C; Rf 0.49 (n-hexane); HPLC tR 17.25 min (condition 2); λmax = 347, 289, 240 nm; IR (ZnSe) 2956, 2921, 2852, 1459, 1154 cm−1; 1H NMR (400 MHz, CDCl3): δ = 2.62 (t, J = 7.6 Hz, 4 H, TeCH2), 1.77–1.70 (m, 4 H, CH2), 1.39–1.27 (m, 16 H, CH2), 0.88 (t, J = 6.9 Hz, 6 H, CH3); 13C NMR (100 MHz, CDCl3): δ = 32.31 (TeCH2), 32.04 (CH2), 31.99 (CH2), 28.67 (CH2), 22.65 (CH2), 14.09 (CH2), 2.77 (CH3); MS m/z 328 [M]+; HRMS (+EI) calcd for C14H30Te [M]+ 328.1410, found 328.1414.
- Di-n-octyl Telluride (1f) [32]. The use of 1-bromooctane (541 μL, 3.1 mmol, 2.0 eq) and a 3 h reaction time at 25 °C in the general procedure afforded the title compound 1f (515 mg, 93%) as a yellow oil. Bp 194–196 °C; Rf 0.49 (n-hexane); HPLC tR 29.68 min (condition 2); λmax = 350, 240 nm; IR (ZnSe) 2956, 2921, 2852, 1460, 1153 cm−1; 1H NMR (400 MHz, CDCl3): δ = 2.62 (t, J = 7.6 Hz, 4H, TeCH2), 1.77–1.70 (m, 4 H, CH2), 1.39–1.26 (m, 20 H, CH2), 0.88 (t, J = 6.9 Hz, 6 H, CH3); 13C NMR (100 MHz, CDCl3): δ = 32.30 (TeCH2), 32.08 (CH2), 31.85 (CH2), 29.22 (CH2), 28.96 (CH2), 22.67 (CH2), 14.12 (CH2), 2.78 (CH3); MS m/z 356 [M]+; HRMS (+EI) calcd for C16H34Te [M]+ 356.1723, found 356.1719.
- Bis(3-pentyl) Telluride (1g). The use of 3-bromopentane (390 μL, 3.1 mmol, 2.0 eq) and a 3 h reaction time at 25 °C in the general procedure afforded the title compound 1g (259 mg, 61%) as an orange oil. Bp 91–92 °C (dec); Rf 0.45 (n-hexane); HPLC tR 28.80 min (condition 1); λmax = 350, 293, 238 nm; IR (ZnSe) 2959, 2927, 2871, 2845, 1455, 1130 cm−1; 1H NMR (400 MHz, CDCl3): δ = 2.95 (quintet, J = 6.5 Hz, 2 H, TeCH), 1.82–1.71 (m, 8 H, CH2), 0.99 (t, J = 7.3 Hz, 12 H, CH3); 13C NMR (100 MHz, CDCl3): δ = 31.74 (TeCH), 30.54 (CH2), 13.91 (CH3); MS m/z 272 [M]+; HRMS (+EI) calcd for C10H22Te [M]+ 272.0784, found 272.0784.
- Bis(4-heptyl) Telluride (1h). The use of 4-bromoheptane (493 μL, 3.1 mmol, 2.0 eq) and a 3 h reaction time at 25 °C in the general procedure afforded the title compound 1h (389 mg, 76%) as an orange oil. Bp 100–102 °C (dec); Rf 0.45 (n-hexane); HPLC tR 12.40 min (condition 2); λmax = 344 nm; IR (ZnSe) 2956, 2926, 2871, 1459, 1133 cm−1; 1H NMR (400 MHz, CDCl3): δ = 3.07 (quintet, J = 6.6 Hz, 2 H, TeCH), 1.75–1.63 (m, 8 H, CH2), 1.56–1.34 (m, 8 H, CH2), 0.92 (t, J = 7.3 Hz, 12H, CH3); 13C NMR (100 MHz, CDCl3): δ = 40.47 (TeCH), 27.09 (CH2), 22.57 (CH2), 13.87 (CH3); MS m/z 328 [M]+; HRMS (+EI) calcd for C14H30Te [M]+ 328.1410, found 328.1409.
- Di-c-pentyl Telluride (1i) [33]. The use of bromocyclopentane (318 μL, 3.1 mmol, 2.0 eq) and a 3 h reaction time at 25 °C in the general procedure afforded the title compound 1i (262 mg, 63%) as a yellow oil. Bp 117–119 °C; Rf 0.39 (n-hexane); HPLC tR 8.18 min (condition 1); λmax = 338 nm; IR (ZnSe) 2949, 2863, 1447, 1197 cm−1; 1H NMR (400 MHz, CDCl3): δ = 3.37 (quintet, J = 7.5 Hz, 2 H, TeCH), 2.18–2.12 (m, 4 H, CH2), 1.78–1.68 (m, 8 H, CH2), 1.61–1.54 (m, 4 H, CH2); 13C NMR (100 MHz, CDCl3): δ = 36.95 (TeCH), 25.52 (CH2), 18.39 (CH2); MS m/z 268 [M]+; HRMS (+EI) calcd for C10H18Te [M]+ 268.0471, found 268.0473.
- Di-c-hexyl Telluride (1j) [19]. The use of bromocyclohexane (388 μL, 3.1 mmol, 2.0 eq) and a 5 h reaction time at 25 °C in the general procedure afforded the title compound 1j (182 mg, 40%) as an orange oil. Bp 161–162 °C; Rf 0.38 (n-hexane); HPLC tR 9.94 min (condition 1); λmax = 337 nm; IR (ZnSe) 2920, 2848, 1444, 1166 cm−1; 1H NMR (400 MHz, CDCl3): δ = 3.33–3.26 (m, 2 H, TeCH), 2.13–2.08 (m, 4 H, CH2), 1.78–1.59 (m, 10 H, CH2), 1.42–1.32 (m, 6 H, CH2); 13C NMR (100 MHz, CDCl3): δ = 37.25 (TeCH), 28.18 (CH2), 25.95 (CH2), 22.67 (CH2); MS m/z 296 [M]+; HRMS (+EI) calcd for C12H22Te [M]+ 296.0784, found 296.0785.
- Di-c-heptyl Telluride (1k). The use of bromocycloheptane (431 μL, 3.1 mmol, 2.0 eq) and a 3 h reaction time at 25 °C in the general procedure afforded the title compound 1k (249 mg, 49%) as an orange oil. Bp 156–158 °C; Rf 0.47 (n-hexane); HPLC tR 12.06 min (condition 1); λmax = 347 nm; IR (ZnSe) 2917, 2850, 1454, 1182 cm−1; 1H NMR (400 MHz, CDCl3): δ = 3.44–3.38 (m, 2 H, TeCH), 2.20–2.14 (m, 4 H, CH2), 1.92–1.83 (m, 4 H, CH2), 1.68–1.43 (m, 16 H, CH2); 13C NMR (100 MHz, CDCl3): δ = 37.28 (TeCH), 28.20 (CH2), 25.97 (CH2), 22.68 (CH2); MS m/z 324 [M]+; HRMS (+EI) calcd for C14H26Te [M]+ 324.1097, found 324.1099.
- Diphenyl Telluride (1l) [34]. The use of iodobenzene (350 μL, 3.1 mmol, 2.0 eq) and a 4 h reaction time at 153 °C in the general procedure afforded the title compound 1l (295 mg, 67%) as a red oil. Bp 194–196 °C; Rf 0.50 (1:3 Dichloromethane/n-hexane); HPLC tR 19.36 min (condition 1); λmax = 328, 283, 253 nm; IR (ZnSe) 3051, 1571, 1472, 1015, 725 cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.70 (d, J = 7.2 Hz, 4 H, Ar), 7.30–7.18 (m, 6 H, Ar); 13C NMR (100 MHz, CDCl3): δ = 137.99 (Ar), 129.50 (Ar), 127.83 (Ar), 114.66 (Ar); MS m/z 284 [M]+; HRMS (+EI) calcd for C12H10Te [M]+ 283.9845, found 283.9842.
- Bis(3-(trifluoromethyl)phenyl) Telluride (1m). The use of 3-iodobenzotrifluoride (452 μL, 3.1 mmol, 2.0 eq) and a 4 h reaction time at 153 °C in the general procedure afforded the title compound 1m (251 mg, 38%) as a brown oil. Bp 165–167 °C; Rf 0.44 (1:10 Dichloromethane/n-hexane); HPLC tR 21.96 min (condition 1); λmax = 290, 260 nm; IR (ZnSe) 2919, 1486, 1318, 1121, 791 cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.96 (s, 2 H, Ar), 7.85 (d, J = 7.8 Hz, 2 H, Ar), 7.57 (d, J = 7.8 Hz, 2 H, Ar), 7.35 (t, J = 7.8 Hz, 2 H, Ar); 13C NMR (100 MHz, CDCl3): δ = 141.28 (Ar), 134.51 (q, 3JCF = 3.8 Hz, Ar), 131.81 (q, 2JCF = 32.4 Hz, Ar), 129.92 (Ar), 125.17 (q, 3JCF = 3.8 Hz, Ar), 123.44 (q, 1JCF = 273 Hz, CF3), 114.70 (Ar); MS m/z 420 [M]+; HRMS (+EI) calcd for C14H8F6Te [M]+ 419.9592, found 419.9595.
- Bis(4-(trifluoromethyl)phenyl) Telluride (1n) [35]. The use of 4-iodobenzotrifluoride (462 μL, 3.1 mmol, 2.0 eq) and a 4 h reaction time at 153 °C in the general procedure afforded the title compound 1n (295 mg, 45%) as an orange solid. Mp 52–54 °C (lit [35]. 52–53 °C); Rf 0.56 (1:10 Dichloromethane/n-hexane); HPLC tR 38.14 min (condition 1); λmax = 225, 268, 299 nm; IR (ZnSe) 2930, 1596, 1393, 1320, 1161, 822 cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.79 (d, J = 8.1 Hz, 4 H, Ar), 7.48 (d, J = 8.1 Hz, 4 H, Ar); 13C NMR (100 MHz, CDCl3): δ = 138.03 (Ar), 137.31 (Ar), 130.46 (q, 2JCF = 32.8 Hz, Ar), 126.28 (q, 3JCF = 3.8 Hz, Ar), 123.94 (q, 1JCF = 272 Hz, CF3); MS m/z 420 [M]+; HRMS (+EI) calcd for C14H8F6Te [M]+ 419.9592, found 419.9594.
- Bis(4-nitrophenyl) Telluride (1o) [36]. The use of 4-iodonitrobenzene (782 mg, 3.1 mmol, 2.0 eq) and a 4 h reaction time at 153 °C in the general procedure afforded the title compound 1o (235 mg, 40%) as an orange solid. Mp 170–172 °C (lit [36]. 170–172 °C); Rf 0.18 (1:1 Dichloromethane/n-hexane); HPLC tR 12.74 min (condition 1); λmax = 318, 238 nm; IR (ZnSe) 3056, 1590, 1499, 1335, 836 cm−1; 1H NMR (400 MHz, CDCl3): δ = 8.08 (d, J = 8.3 Hz, 4 H, Ar), 7.83 (d, J = 8.2 Hz, 4 H, Ar); 13C NMR (100 MHz, CDCl3): δ = 138.25 (Ar), 137.32 (Ar), 124.40 (Ar), 123.94 (Ar); MS m/z 374 [M]+; HRMS (+EI) calcd for C12H8N2O4Te [M]+ 373.9546, found 373.9547.
- Bis(4-cyanophenyl) Telluride (1p) [37]. The use of 4-iodobenzonitrle (719 mg, 3.1 mmol, 2.0 eq) and a 4 h reaction time at 153 °C in the general procedure afforded the title compound 1p (192 mg, 37%) as an orange solid. Mp 140–141 °C (lit [37]. 141 °C); Rf 0.28 (1:1 Dichloromethane/n-hexane); HPLC tR 12.83 min (condition 1); λmax = 318, 238 nm; IR (ZnSe) 3081, 2222, 1580, 1477, 812 cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 7.5 Hz, 4 H, Ar), 7.50 (d, J = 7.5 Hz, 4 H, Ar); 13C NMR (100 MHz, CDCl3): δ = 138.13 (Ar), 137.35 (Ar), 132.81 (Ar), 132.44 (Ar), 118.27 (CN); MS m/z 334 [M]+; HRMS (+EI) calcd for C14H8N2Te [M]+ 333.9750, found 333.9749.
- Bis(4-methylphenyl) Telluride (1q) [36]. The use of 4-iodotoluene (685 mg, 3.1 mmol, 2.0 eq) and a 4 h reaction time at 153 °C in the general procedure afforded the title compound 1q (294 mg, 61%) as an orange solid. Mp 61–62 °C (lit [36]. 67 °C); Rf 0.30 (1:20 Dichloromethane/n-hexane); HPLC tR 23.24 min (condition 1); λmax = 328, 281, 234, 211 nm; IR (ZnSe) 3019, 1484, 1008, 797 cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.58 (d, J = 7.8 Hz, 4 H, Ar), 7.02 (d, J = 8.0 Hz, 4 H, Ar), 2.32 (s, 6 H, CH3); 13C NMR (100 MHz, CDCl3): δ = 138.08 (Ar), 137.75 (Ar), 130.37 (Ar), 130.13 (Ar), 21.20 (CH3); MS m/z 312 [M]+; HRMS (+EI) calcd for C14H14Te [M]+ 312.0158, found 312.0161.
- Bis(4-methoxyphenyl) Telluride (1r) [36]. The use of 4-iodoanisole (735 mg, 3.1 mmol, 2.0 eq) and a 4 h reaction time at 153 °C in the general procedure afforded the title compound 1r (231 mg, 43%) as a brown solid. Mp 51–53 °C (lit [36]. 53–54 °C); Rf 0.40 (1:1 Dichloromethane/n-hexane); HPLC tR 18.24 min (condition 1); λmax = 245 nm; IR (ZnSe) 3006, 2942, 2840, 1487, 1280, 1026, 832 cm−1; 1H NMR (400 MHz, CDCl3): δ = 7.62 (d, J = 8.0 Hz, 4 H, Ar), 6.76 (d, J = 8.0 Hz, 4 H, Ar), 3.78 (s, 6 H, CH3); 13C NMR (100 MHz, CDCl3): δ = 159.68 (Ar), 139.72 (Ar), 115.39 (Ar), 104.30 (Ar), 55.16 (CH3); MS m/z 344 [M]+; HRMS (+EI) calcd for C14H14O2Te [M]+ 344.0056, found 344.0058.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological Activity of Selenium and Its Impact on Human Health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A. Biochemistry of Tellurium. Biol. Trace Elem. Res. 1996, 55, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Harry, G.J.; Goodrum, J.F.; Bouldin, T.W.; Wagner-Recio, M.; Toews, A.D.; Morell, P. Tellurium-Induced Neuropathy: Metabolic Alterations Associated with Demyelination and Remyelination in Rat Sciatic Nerve. J. Neurochem. 1989, 52, 938–945. [Google Scholar] [CrossRef]
- Irfan, M.; Rehman, R.; Razali, M.R.; Shafiq-Ur-Rehman; Ateeq-Ur-Rehman; Iqbal, M.A. Organotellurium Compounds: An Overview of Synthetic Methodologies. Rev. Inorg. Chem. 2020, 40, 193–232. [Google Scholar] [CrossRef]
- Sredni, B.; Caspi, R.R.; Klein, A.; Kalechmans, Y.; Danziger, Y.; BenYa’akov, M.; Tamari, T.; Shalit, F.; Albeck, M. A New Immunomodulating Compound (AS-101) with Potential Therapeutic Application. Nature 1987, 330, 173–176. [Google Scholar] [CrossRef]
- Ba, L.A.; Döring, M.; Jamier, V.; Jacob, C. Tellurium: An Element with Great Biological Potency and Potential. Org. Biomol. Chem. 2010, 8, 4203–4216. [Google Scholar] [CrossRef]
- Giles, G.I.; Giles, N.M.; Collins, C.A.; Holt, K.; Fry, F.H.; Lowden, P.A.S.; Gutowski, N.J.; Jacob, C. Electrochemical, in Vitro and Cell Culture Analysis of Integrated Redox Catalysts: Implications for Cancer Therapy. Chem. Commun. 2003, 2030–2031. [Google Scholar] [CrossRef]
- Turner, R.J.; Weiner, J.H.; Taylor, D.E. Tellurite-Mediated Thiol Oxidation in Escherichia Coli. Microbiology 1999, 145, 2549–2557. [Google Scholar] [CrossRef]
- Lin, Z.; Lee, C.; Chang, H.; Chang, H. Antibacterial Activities of Tellurium Nanomaterials. Chem. Asian J. 2012, 7, 930–934. [Google Scholar] [CrossRef]
- Morena, A.G.; Bassegoda, A.; Hoyo, J.; Tzanov, T. Hybrid Tellurium–Lignin Nanoparticles with Enhanced Antibacterial Properties. ACS Appl. Mater. Interfaces 2021, 13, 14885–14893. [Google Scholar] [CrossRef]
- Andersson, C.; Brattsand, R.; Hallberg, A.; Engman, L.; Persson, J.; Moldéus, P.; Cotgreave, I. Diaryl Tellurides as Inhibitors of Lipid Peroxidation in Biological and Chemical Systems. Free Rad. Res. 1994, 20, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and Organotellurium Compounds: Toxicology and Pharmacology. Chem. Rev. 2004, 104, 6255–6286. [Google Scholar] [CrossRef] [PubMed]
- Gay, B.M.; Luchese, C.; Nogueira, C.W.; Wendler, P.; Macedo, A.; Dos Santos, A.A. Antioxidant Effect of Functionalized Alkyl-Organotellurides: A Study in Vitro. J. Enzyme Inhib. Med. Chem. 2010, 25, 467–475. [Google Scholar] [CrossRef]
- Kim, C.; Lim, Y.J.; Kim, Y.E.; Cho, H.; Lee, S.H. Studies on the Selective Syntheses of Sodium Ditelluride and Dialkyl Ditellurides. Molecules 2022, 27, 8991. [Google Scholar] [CrossRef]
- Lim, Y.J.; Shin, N.H.; Kim, C.; Kim, Y.E.; Cho, H.; Park, M.; Lee, S.H. An Efficient and Practical Method for the Selective Synthesis of Sodium Diselenide and Diorganyl Diselenides through Selenium Reduction. Tetrahedron 2020, 76, 131720. [Google Scholar] [CrossRef]
- Shin, N.H.; Lim, Y.J.; Kim, C.; Kim, Y.E.; Jeong, Y.R.; Cho, H.; Park, M.; Lee, S.H. An Efficient Method for Selective Syntheses of Sodium Selenide and Dialkyl Selenides. Molecules 2022, 27, 5224. [Google Scholar] [CrossRef]
- Rossi, R.A.; Penenory, A.B. Direct (One Pot) Synthesis of Organoselenium and Organotellurium Compounds from the Metals. J. Org. Chem. 1981, 46, 4580–4582. [Google Scholar] [CrossRef]
- Higa, K.T.; Harris, D.C.; Sliwka, M.J.; Lincoln, D.E.; Nissim, S.H. Diallyl Telluride and Synthesis of Diorgano Tellurides. US Patent 5,035,874, 30 July 1991. [Google Scholar]
- Karaghiosoff, K.; Klapötke, T.M.; Krumm, B.; Ruscitti, O.P. Synthesis and Characterization of Dicyclohexyl Telluride; Raman Spectra and Multinuclear NMR Studies of Dialkyl Tellurides. J. Organomet. Chem. 1999, 577, 69–75. [Google Scholar] [CrossRef]
- Suzuki, H.; Nakamura, T.; Sakaguchi, T.; Ohta, K. A Convenient Synthesis of Functionalized Dibenzotellurophenes and Related Compounds via the Intramolecular Telluro Coupling Reaction. the Positive Effect of Heavy Chalcogen Atoms on the Molecular Hyperpolarizability of a Captodative Conjugation System. J. Org. Chem. 1995, 60, 5274–5278. [Google Scholar] [CrossRef]
- Wang, L.; Wang, M.; Huang, F. A Simple Copper Salt-Catalyzed Synthesis of Unsymmetrical Diaryl Selenides and Tellurides from Arylboronic Acids with Diphenyl Diselenide and Ditelluride. Synlett 2005, 13, 2007–2010. [Google Scholar] [CrossRef]
- Saba, S.; Rafique, J.; Braga, A.L. Synthesis of Unsymmetrical Diorganyl Chalcogenides under Greener Conditions: Use of an Iodine/DMSO System, Solvent- and Metal-Free Approach. Adv. Synth. Catal. 2015, 357, 1446–1452. [Google Scholar] [CrossRef]
- Saba, S.; Botteselle, G.V.; Godoi, M.; Frizon, T.E.A.; Galetto, F.Z.; Rafique, J.; Braga, A.L. Copper-Catalyzed Synthesis of Unsymmetrical Diorganyl Chalcogenides (Te/Se/S) from Boronic Acids under Solvent-Free Conditions. Molecules 2017, 22, 1367. [Google Scholar] [CrossRef] [PubMed]
- Goldani, B.; do Sacramento, M.; Lenardão, E.J.; Schumacher, R.F.; Barcellos, T.; Alves, D. Synthesis of Symmetrical and Unsymmetrical Tellurides via Silver Catalysis. New J. Chem. 2018, 42, 15603–15609. [Google Scholar] [CrossRef]
- Liu, J.; Tian, M.; Li, Y.; Shan, X.; Li, A.; Lu, K.; Fagnoni, M.; Protti, S.; Zhao, X. Metal-Free Synthesis of Unsymmetrical Aryl Selenides and Tellurides via Visible Light-Driven Activation of Arylazo Sulfones. Eur. J. Org. Chem. 2020, 47, 7358–7367. [Google Scholar] [CrossRef]
- Sun, N.; Zheng, K.; Zhang, M.; Zheng, G.; Jin, L.; Hu, B.; Shen, Z.; Hu, X. Cu-Catalyzed Chan–Lam Synthesis of Unsymmetrical Aryl Chalcogenides under Aqueous Micellar Conditions. Green Chem. 2023, 25, 2782–2789. [Google Scholar] [CrossRef]
- Detty, M.R. Mild Reductions of Oxides of the Group 6a Elements Sulfur, Selenium, and Tellurium with (Phenylseleno)trimethylsilane. J. Org. Chem. 1979, 44, 4528–4531. [Google Scholar] [CrossRef]
- Balfe, M.P.; Chaplin, C.A.; Phillips, H. The Oxidation of Certain Alkyl Tellurides. J. Chem. Soc. 1938, 341–347. [Google Scholar] [CrossRef]
- Balfe, M.P.; Nandi, K.N. Further Experiments on the Oxidation of Alkyl Tellurides. J. Chem. Soc. 1941, 70–72. [Google Scholar] [CrossRef]
- You, Y.; Ahsan, K.; Detty, M.R. Mechanistic Studies of the Tellurium(II)/Tellurium(IV) Redox Cycle in Thiol Peroxidase-Like Reactions of Diorganotellurides in Methanol. J. Am. Chem. Soc. 2003, 125, 4918–4927. [Google Scholar] [CrossRef]
- Suzuki, H.; Nakamura, T. Sodium Telluride in N-Methyl-2-Pyrrolidone; an Efficient Telluration System for the Synthesis of Aromatic Tellurides and Ditellurides. Synthesis 1992, 6, 549–551. [Google Scholar] [CrossRef]
- Kirsch, G.; Goodman, M.M.; Knapp, F.F. Organotellurium Compounds of Biological Interest-Unique Properties of the N-Chlorosuccinimide Oxidation Product of 9-Telluraheptadecanoic Acid. Organometallics 1983, 2, 357–363. [Google Scholar] [CrossRef]
- Neto, P.B.R.; Santana, S.O.; Levitre, G.; Galdino, D.; Oliveira, J.L.; Ribeiro, R.T.; Barros, M.E.S.B.; Bieber, L.W.; Menezes, P.H.; Navarro, M. Electrochemical Synthesis of Organochalcogenides in Aqueous Medium. Green Chem. 2016, 18, 657–661. [Google Scholar] [CrossRef]
- Suzuki, H.; Inouye, M. A Convenient Synthesis of Symmetrical Diaryl Tellurides using Tellurium/Rongalite as Telluration System. Chem. Lett. 1985, 14, 389–390. [Google Scholar] [CrossRef]
- Engman, L.; Perssorv, N.J.; Andersson, C.M.; Berglundb, M. Application of the Hammett Equation to the Electrochemical Oxidation of Diary1 Chalcogenides and Aryl Methyl Chalcogenides. J. Chem. Soc. Perkin Trans. 2 1992, 8, 1309–1313. [Google Scholar] [CrossRef]
- Engman, L. New General Synthesis of Diaryl Tellurides from Aromatic Amines. J. Org. Chem. 1983, 48, 2920–2922. [Google Scholar] [CrossRef]
- Degrand, C. Electrochemical Synthesis by the SRN1 Mechanism of 4-Phenylselenobenzonitrile and 4-Phenyltellurobenzonitrile. J. Chem. Soc. Chem. Commun. 1986, 315, 1113–1115. [Google Scholar] [CrossRef]
Entry | Na2Te Formation a | Yields (%) (1a:2a) b | Yields (%) (1a) c | ||
---|---|---|---|---|---|
NaBH4 (eq) | Temp (°C) | Time (h) | |||
1 | 2.0 | 60 | 1.0 | 50 (8.0:1) | 44 |
2 | 2.0 | 49 (6.4:1) | 42 | ||
3 | 80 | 1.0 | 73 (23:1) | 70 | |
4 | 2.0 | 80 (12:1) | 74 | ||
5 | 100 | 0.5 | 72 (17:1) | 68 | |
6 | 1.0 | 84 (8.3:1) | 75 | ||
7 | 2.5 | 60 | 1.0 | 67 (15:1) | 63 |
8 | 2.0 | 80 (21:1) | 76 | ||
9 | 80 | 0.5 | 64 (1.0:0) | 64 | |
10 | 1.0 | 79 (1.0:0) | 79 | ||
11 | 2.0 | 61 (7.0:1) | 53 | ||
12 | 100 | 0.5 | 65 (2.6:1) | 47 | |
13 | 1.0 | 69 (15:1) | 65 | ||
14 | 3.0 | 60 | 1.0 | 67 (1.0:0) | 67 |
15 | 2.0 | 73 (42:1) | 71 | ||
16 | 80 | 0.5 | 62 (1.0:0) | 62 | |
17 | 1.0 | 63 (32:1) | 61 | ||
18 | 100 | 0.5 | 68 (10:1) | 62 | |
19 | 1.0 | 74 (6.3:1) | 64 |
Entry | Reaction with RX | Product | Yields (%) b | |||
---|---|---|---|---|---|---|
RX | RX (eq) | Time (h) | Temp (°C) | |||
1 | 2.0 | 4 | 25 | 79 | ||
2 | n-BuBr | 2.0 | 3 | 25 | 77 | |
3 | n-PenBr | 2.0 | 3 | 25 | 75 | |
4 | n-HexBr | 2.0 | 3 | 25 | 81 | |
5 | n-HepBr | 2.0 | 3 | 25 | 92 | |
6 | n-OctBr | 2.0 | 3 | 25 | 93 | |
7 | 3-Br-Pen | 2.0 | 3 | 25 | 61 | |
8 | 4-Br-Hep | 2.0 | 3 | 25 | 76 | |
9 | c-PenBr | 2.0 | 3 | 25 | 63 | |
10 | c-HexBr | 2.0 | 5 | 25 | 40 | |
11 | c-HepBr | 2.0 | 3 | 25 | 49 | |
12 | 2.0 | 4 | 153 | 67 | ||
13 | 2.0 | 4 | 153 | 38 | ||
14 | 2.0 | 4 | 153 | 45 | ||
15 | 2.0 | 4 | 153 | 40 | ||
16 | 2.0 | 4 | 153 | 37 | ||
17 | 2.0 | 4 | 153 | 61 | ||
18 | 2.0 | 4 | 153 | 43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.; Lim, Y.J.; Kim, Y.E.; Murthy, A.S.N.; Cho, H.; Lee, H.; Park, M.-S.; Lee, S.H. An Efficient Method for the Selective Syntheses of Sodium Telluride and Symmetrical Diorganyl Tellurides and the Investigation of Reaction Pathways. Molecules 2024, 29, 5398. https://doi.org/10.3390/molecules29225398
Kim C, Lim YJ, Kim YE, Murthy ASN, Cho H, Lee H, Park M-S, Lee SH. An Efficient Method for the Selective Syntheses of Sodium Telluride and Symmetrical Diorganyl Tellurides and the Investigation of Reaction Pathways. Molecules. 2024; 29(22):5398. https://doi.org/10.3390/molecules29225398
Chicago/Turabian StyleKim, Chorong, Yoo Jin Lim, Ye Eun Kim, Akula S. N. Murthy, Hyunsung Cho, Hyejeong Lee, Myung-Sook Park, and Sang Hyup Lee. 2024. "An Efficient Method for the Selective Syntheses of Sodium Telluride and Symmetrical Diorganyl Tellurides and the Investigation of Reaction Pathways" Molecules 29, no. 22: 5398. https://doi.org/10.3390/molecules29225398
APA StyleKim, C., Lim, Y. J., Kim, Y. E., Murthy, A. S. N., Cho, H., Lee, H., Park, M.-S., & Lee, S. H. (2024). An Efficient Method for the Selective Syntheses of Sodium Telluride and Symmetrical Diorganyl Tellurides and the Investigation of Reaction Pathways. Molecules, 29(22), 5398. https://doi.org/10.3390/molecules29225398