Harnessing Oxidizing Potential of Nickel for Sustainable Hydrocarbon Functionalization
Abstract
:1. Introduction
2. Catalytic Hydrocarbon Functionalization
Entry | Compound | Alcohol TON | Ketone TON | A/K | Reaction Time (h) | Reference |
---|---|---|---|---|---|---|
1 | a [NiII(L1)(OAc)(H2O)]BPh4 | 587 | 69 | 8.5 | 1 | [8] |
2 | a [NiII2(L1)2(μ-NO3)2](BPh4)2 | 544 | 68 | 8.0 | 1 | [8] |
3 | b [NiII(L1)(CH3CN)2](BPh4)2 | 450 | 55 | 8.1 | 2 | [11] |
4 | a [NiII(L2)(OAc)(MeOH)]BPh4 | 657 | 88 | 7.5 | 1 | [8] |
5 | a [NiII(L2)(NO3)(MeCN)]NO3 | 567 | 61 | 9.3 | 1 | [8] |
6 | a [NiII(L3)(OAc)2] | 759 | 99 | 7.7 | 2 | [19] |
7 | a [NiII(L4)(TMG)] | 295 * | 5 * | 65.0 | 2 | [19] |
8 | a [NiII(L5)(OAc)2(H2O)] | 455 | 69 | 6.6 | 1 | [8] |
9 | a [NiII(L6)(OAc)]BPh4 | 257 | 8 | 32.1 | 1 | [8] |
10 | a [NiII(L6)(NO3)]BPh4 | 46 | 1 | 46 | 1 | [8] |
11 | a [NiII(L7)(OAc)(H2O)]BPh4 | 265 | 7 | 37.9 | 1 | [8] |
12 | a [NiII(L8)(OAc)] | 332 | 8 | 41.5 | 1 | [8] |
13 | a [NiII(L8)(NO3)] | 182 | 4 | 45.5 | 1 | [8] |
14 | b [NiII(L9)(H2O)(CH3CN)](ClO4)2 | 479 | 42 | 4.6 | 2 | [11] |
15 | b [NiII(L9)(CH3CN)2](BPh4)2 | 558 | 12 | 8.7 | 2 | [11] |
16 | b [NiII(L10)(CH3CN)2](BPh4)2 | 480 | 11 | 8.4 | 2 | [11] |
17 | b [NiII(L11)(CH3CN)2](BPh4)2 | 485 | 15 | 5.2 | 2 | [11] |
18 | b [NiII(L12)(CH3CN)2](BPh4)2 | 365 | 13 | 5.7 | 2 | [11] |
19 | b [NiII(L13)(CH3CN)2](BPh4)2 | 406 | 20 | 5.8 | 2 | [11] |
20 | b [NiII(L14)(CH3CN)2](BPh4)2 | 280 | 34 | 4.7 | 2 | [11] |
21 | b [NiII(L15)(CH3CN)](BPh4)2 | 487 | 46 | 10.6 | 2 | [12] |
22 | b [NiII(L16)(CH3CN)](BPh4)2 | 453 | 62 | 7.3 | 2 | [12] |
23 | b [NiII(L17)(CH3CN)](BPh4)2 | 424 | 60 | 7.1 | 2 | [12] |
24 | b [NiII(L18)(CH3CN)](BPh4)2 | 404 | 41 | 9.9 | 2 | [12] |
25 | b [NiII(L19)(CH3CN)](BPh4)2 | 272 | 30 | 9.1 | 2 | [12] |
26 | c [NiII2(L20)2(μ-OH)2] | 227 | 7 | 32 | 2 | [13] |
27 | c [NiII2(L21)2(μ-OH)2] | 210 | 4 | 53 | 2 | [13] |
28 | d [NiII2(L22)2(μ-OH)2] | 0 | 0 | 0 | 2 | [13] |
29 | d [NiII2(L23)2(μ-OH)2] | 0 | 0 | 0 | 2 | [13] |
30 | e [NiII(L30)] | 50 | 50 | 1 | 1 | [17] |
3. Fundamental Reactivity Studies
3.1. Ni-O2 Species
3.2. Ni-OOR Species
3.3. Ni-O(H) Species
3.4. Other Mononuclear Ni Species
3.5. Dinuclear Ni Species
4. Oxidative Chemistry of Nickel-Containing Metalloenzymes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fujita, E.; Goldman, A.S. Preface for Small-Molecule Activation: Carbon-Containing Fuels. Inorg. Chem. 2015, 54, 5040–5042. [Google Scholar] [CrossRef] [PubMed]
- Munz, D.; Strassner, T. Alkane C–H Functionalization and Oxidation with Molecular Oxygen. Inorg. Chem. 2015, 54, 5043–5052. [Google Scholar] [CrossRef]
- Grubert, E. At Scale, Renewable Natural Gas Systems Could Be Climate Intensive: The Influence of Methane Feedstock and Leakage Rates. Environ. Res. Lett. 2020, 15, 084041. [Google Scholar] [CrossRef]
- Gunsalus, N.J.; Koppaka, A.; Park, S.H.; Bischof, S.M.; Hashiguchi, B.G.; Periana, R.A. Homogeneous Functionalization of Methane. Chem. Rev. 2017, 117, 8521–8573. [Google Scholar] [CrossRef] [PubMed]
- Periana, R.A.; Taube, D.J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Platinum Catalysts for the High-Yield Oxidation of Methane to a Methanol Derivative. Science 1998, 280, 560–564. [Google Scholar] [CrossRef]
- Nagataki, T.; Tachi, Y.; Itoh, S. NiII(TPA) as an Efficient Catalyst for Alkane Hydroxylation with m-CPBA. Chem. Commun. 2006, 38, 4016–4018. [Google Scholar] [CrossRef]
- Schröder, D.; Schwarz, H. C-H and C-C Bond Activation by Bare Transition-Metal Oxide Cations in the Gas Phase. Angew. Chem. Int. Ed. Engl. 1995, 34, 1973–1995. [Google Scholar] [CrossRef]
- Nagataki, T.; Ishii, K.; Tachi, Y.; Itoh, S. Ligand Effects on NiII-Catalysed Alkane-Hydroxylation with m-CPBA. Dalton Trans. 2007, 11, 1120–1128. [Google Scholar] [CrossRef]
- Itoh, S.; Tachi, Y. Structure and O2-Reactivity of Copper(I) Complexes Supported by Pyridylalkylamine Ligands. Dalton Trans. 2006, 38, 4531–4538. [Google Scholar] [CrossRef]
- Costas, M.; Chen, K.; Que, L. Biomimetic Nonheme Iron Catalysts for Alkane Hydroxylation. Coord. Chem. Rev. 2000, 200–202, 517–544. [Google Scholar] [CrossRef]
- Balamurugan, M.; Mayilmurugan, R.; Suresh, E.; Palaniandavar, M. Nickel(II) Complexes of Tripodal 4N Ligands as Catalysts for Alkane Oxidation Using m-CPBA as Oxidant: Ligand Stereoelectronic Effects on Catalysis. Dalton Trans. 2011, 40, 9413–9424. [Google Scholar] [CrossRef] [PubMed]
- Sankaralingam, M.; Balamurugan, M.; Palaniandavar, M.; Vadivelu, P.; Suresh, C.H. Nickel(II) Complexes of Pentadentate N5 Ligands as Catalysts for Alkane Hydroxylation by Using m-CPBA as Oxidant: A Combined Experimental and Computational Study. Chem.—A Eur. J. 2014, 20, 11346–11361. [Google Scholar] [CrossRef] [PubMed]
- Hikichi, S.; Hanaue, K.; Fujimura, T.; Okuda, H.; Nakazawa, J.; Ohzu, Y.; Kobayashi, C.; Akita, M. Characterization of Nickel(II)-Acylperoxo Species Relevant to Catalytic Alkane Hydroxylation by Nickel Complex with mCPBA. Dalton Trans. 2013, 42, 3346–3356. [Google Scholar] [CrossRef] [PubMed]
- Terao, I.; Horii, S.; Nakazawa, J.; Okamura, M.; Hikichi, S. Efficient Alkane Hydroxylation Catalysis of Nickel(II) Complexes with Oxazoline Donor Containing Tripodal Tetradentate Ligands. Dalton Trans. 2020, 49, 6108–6118. [Google Scholar] [CrossRef]
- Izumi, T.; Matsuba, N.; Nakazawa, J.; Hikichi, S. Aliphatic C–H Hydroxylation Activity and Durability of a Nickel Complex Catalyst According to the Molecular Structure of the Bis(Oxazoline) Ligands. Mol. Catal. 2021, 511, 111718. [Google Scholar] [CrossRef]
- Dobrov, A.; Darvasiová, D.; Zalibera, M.; Bučinský, L.; Puškárová, I.; Rapta, P.; Shova, S.; Dumitrescu, D.; Martins, L.M.D.R.S.; Pombeiro, A.J.L.; et al. Nickel(II) Complexes with Redox Noninnocent Octaazamacrocycles as Catalysts in Oxidation Reactions. Inorg. Chem. 2019, 58, 11133–11145. [Google Scholar] [CrossRef]
- Corona, T.; Pfaff, F.F.; Acuña-Parés, F.; Draksharapu, A.; Whiteoak, C.J.; Martin-Diaconescu, V.; Lloret-Fillol, J.; Browne, W.R.; Ray, K.; Company, A. Reactivity of a Nickel(II) Bis(Amidate) Complex with Meta-Chloroperbenzoic Acid: Formation of a Potent Oxidizing Species. Chem.—A Eur. J. 2015, 21, 15029–15038. [Google Scholar] [CrossRef]
- Corona, T.; Draksharapu, A.; Padamati, S.K.; Gamba, I.; Martin-Diaconescu, V.; Acuña-Parés, F.; Browne, W.R.; Company, A. Rapid Hydrogen and Oxygen Atom Transfer by a High-Valent Nickel–Oxygen Species. J. Am. Chem. Soc. 2016, 138, 12987–12996. [Google Scholar] [CrossRef]
- Nagataki, T.; Itoh, S. Catalytic Alkane Hydroxylation Reaction with Nickel(II) Complexes Supported by Di- and Triphenol Ligands. Chem. Lett. 2007, 36, 748–749. [Google Scholar] [CrossRef]
- Fiedler, A.T.; Fischer, A.A. Oxygen Activation by Mononuclear Mn, Co, and Ni Centers in Biology and Synthetic Complexes. J. Biol. Inorg. Chem. 2017, 22, 407–424. [Google Scholar] [CrossRef]
- Jeoung, J.-H.; Nianios, D.; Fetzner, S.; Dobbek, H. Quercetin 2,4-Dioxygenase Activates Dioxygen in a Side-On O2–Ni Complex. Angew. Chem. Int. Ed. 2016, 55, 3281–3284. [Google Scholar] [CrossRef] [PubMed]
- Kieber-Emmons, M.T.; Annaraj, J.; Seo, M.S.; Van Heuvelen, K.M.; Tosha, T.; Kitagawa, T.; Brunold, T.C.; Nam, W.; Riordan, C.G. Identification of an “End-on” Nickel−Superoxo Adduct, [Ni(Tmc)(O2)]+. J. Am. Chem. Soc. 2006, 128, 14230–14231. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Sarangi, R.; Annaraj, J.; Kim, S.Y.; Kubo, M.; Ogura, T.; Solomon, E.I.; Nam, W. Geometric and Electronic Structure and Reactivity of a Mononuclear ‘Side-on’ Nickel(III)–Peroxo Complex. Nat. Chem. 2009, 1, 568–572. [Google Scholar] [CrossRef]
- Cho, J.; Kang, H.Y.; Liu, L.V.; Sarangi, R.; Solomon, E.I.; Nam, W. Mononuclear Nickel(II)-Superoxo and Nickel(III)-Peroxo Complexes Bearing a Common Macrocyclic TMC Ligand. Chem. Sci. 2013, 4, 1502–1508. [Google Scholar] [CrossRef]
- Kim, J.; Shin, B.; Kim, H.; Lee, J.; Kang, J.; Yanagisawa, S.; Ogura, T.; Masuda, H.; Ozawa, T.; Cho, J. Steric Effect on the Nucleophilic Reactivity of Nickel(III) Peroxo Complexes. Inorg. Chem. 2015, 54, 6176–6183. [Google Scholar] [CrossRef]
- Yao, S.; Bill, E.; Milsmann, C.; Wieghardt, K.; Driess, M. A “Side-on” Superoxonickel Complex [LNi(O2)] with a Square-Planar Tetracoordinate Nickel(II) Center and Its Conversion into [LNi(μ-OH)2NiL]. Angew. Chem. Int. Ed. 2008, 47, 7110–7113. [Google Scholar] [CrossRef]
- Company, A.; Yao, S.; Ray, K.; Driess, M. Dioxygenase-Like Reactivity of an Isolable Superoxo–Nickel(II) Complex. Chem.—A Eur. J. 2010, 16, 9669–9675. [Google Scholar] [CrossRef]
- Panda, C.; Chandra, A.; Corona, T.; Andris, E.; Pandey, B.; Garai, S.; Lindenmaier, N.; Künstner, S.; Farquhar, E.R.; Roithová, J.; et al. Nucleophilic versus Electrophilic Reactivity of Bioinspired Superoxido Nickel(II) Complexes. Angew. Chem. Int. Ed. 2018, 57, 14883–14887. [Google Scholar] [CrossRef]
- Rettenmeier, C.A.; Wadepohl, H.; Gade, L.H. Electronic Structure and Reactivity of Nickel(I) Pincer Complexes: Their Aerobic Transformation to Peroxo Species and Site Selective C–H Oxygenation. Chem. Sci. 2016, 7, 3533–3542. [Google Scholar] [CrossRef]
- Rettenmeier, C.A.; Wadepohl, H.; Gade, L.H. Structural Characterization of a Hydroperoxo Nickel Complex and Its Autoxidation: Mechanism of Interconversion between Peroxo, Superoxo, and Hydroperoxo Species. Angew. Chem. Int. Ed. 2015, 54, 4880–4884. [Google Scholar] [CrossRef]
- Mandimutsira, B.S.; Yamarik, J.L.; Brunold, T.C.; Gu, W.; Cramer, S.P.; Riordan, C.G. Dioxygen Activation by a Nickel Thioether Complex: Characterization of a NiIII2(μ-O)2 Core. J. Am. Chem. Soc. 2001, 123, 9194–9195. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Schenker, R.; Gu, W.; Brunold, T.C.; Cramer, S.P.; Riordan, C.G. A Monomeric Nickel−Dioxygen Adduct Derived from a Nickel(I) Complex and O2. Inorg. Chem. 2004, 43, 3324–3326. [Google Scholar] [CrossRef]
- McNeece, A.J.; Jesse, K.A.; Xie, J.; Filatov, A.S.; Anderson, J.S. Generation and Oxidative Reactivity of a Ni(II) Superoxo Complex via Ligand-Based Redox Non-Innocence. J. Am. Chem. Soc. 2020, 142, 10824–10832. [Google Scholar] [CrossRef]
- Snider, V.G.; Farquhar, E.R.; Allen, M.; Abu-Spetani, A.; Mukherjee, A. Design and Reactivity of Ni-Complexes Using Pentadentate Neutral-Polypyridyl Ligands: Possible Mimics of NiSOD. J. Inorg. Biochem. 2017, 175, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Hikichi, S.; Okuda, H.; Ohzu, Y.; Akita, M. Structural Characterization and Oxidation Activity of a Nickel(II) Alkylperoxo Complex. Angew. Chem. Int. Ed. 2009, 48, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, F.F.; Heims, F.; Kundu, S.; Mebs, S.; Ray, K. Spectroscopic Capture and Reactivity of S = 1/2 Nickel(III)–Oxygen Intermediates in the Reaction of a NiII-Salt with mCPBA. Chem. Commun. 2012, 48, 3730–3732. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jeong, H.Y.; Kim, S.; Kim, H.; Lee, S.; Cho, J.; Kim, C.; Lee, D. Proton Switch in the Secondary Coordination Sphere to Control Catalytic Events at the Metal Center: Biomimetic Oxo Transfer Chemistry of Nickel Amidate Complex. Chem.—A Eur. J. 2021, 27, 4700–4708. [Google Scholar] [CrossRef]
- Awasthi, A.; Leach, I.F.; Engbers, S.; Kumar, R.; Eerlapally, R.; Gupta, S.; Klein, J.E.M.N.; Draksharapu, A. Formation and Reactivity of a Fleeting NiIII Bisphenoxyl Diradical Species. Angew. Chem. 2022, 134, e202211345. [Google Scholar] [CrossRef]
- Pirovano, P.; Farquhar, E.R.; Swart, M.; McDonald, A.R. Tuning the Reactivity of Terminal Nickel(III)–Oxygen Adducts for C–H Bond Activation. J. Am. Chem. Soc. 2016, 138, 14362–14370. [Google Scholar] [CrossRef]
- Pirovano, P.; Farquhar, E.R.; Swart, M.; Fitzpatrick, A.J.; Morgan, G.G.; McDonald, A.R. Characterization and Reactivity of a Terminal Nickel(III)–Oxygen Adduct. Chem.—A Eur. J. 2015, 21, 3785–3790. [Google Scholar] [CrossRef]
- Duan, P.-C.; Manz, D.-H.; Dechert, S.; Demeshko, S.; Meyer, F. Reductive O2 Binding at a Dihydride Complex Leading to Redox Interconvertible μ-1,2-Peroxo and μ-1,2-Superoxo Dinickel(II) Intermediates. J. Am. Chem. Soc. 2018, 140, 4929–4939. [Google Scholar] [CrossRef]
- Holze, P.; Corona, T.; Frank, N.; Braun-Cula, B.; Herwig, C.; Company, A.; Limberg, C. Activation of Dioxygen at a Lewis Acidic Nickel(II) Complex: Characterization of a Metastable Organoperoxide Complex. Angew. Chem. Int. Ed. 2017, 56, 2307–2311. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Furutachi, H.; Fujinami, S.; Tosha, T.; Ohtsu, H.; Ikeda, O.; Suzuki, A.; Nomura, M.; Uruga, T.; Tanida, H.; et al. Sequential Reaction Intermediates in Aliphatic C−H Bond Functionalization Initiated by a Bis(μ-Oxo)Dinickel(III) Complex. Inorg. Chem. 2006, 45, 2873–2885. [Google Scholar] [CrossRef] [PubMed]
- Itoh, S.; Bandoh, H.; Nagatomo, S.; Kitagawa, T.; Fukuzumi, S. Aliphatic Hydroxylation by a Bis(μ-Oxo)Dinickel(III) Complex. J. Am. Chem. Soc. 1999, 121, 8945–8946. [Google Scholar] [CrossRef]
- Itoh, S.; Bandoh, H.; Nakagawa, M.; Nagatomo, S.; Kitagawa, T.; Karlin, K.D.; Fukuzumi, S. Formation, Characterization, and Reactivity of Bis(μ-Oxo)Dinickel(III) Complexes Supported by A Series of Bis[2-(2-Pyridyl)Ethyl]Amine Ligands. J. Am. Chem. Soc. 2001, 123, 11168–11178. [Google Scholar] [CrossRef]
- Shiren, K.; Ogo, S.; Fujinami, S.; Hayashi, H.; Suzuki, M.; Uehara, A.; Watanabe, Y.; Moro-oka, Y. Synthesis, Structures, and Properties of Bis(μ-Oxo)Nickel(III) and Bis(μ-Superoxo)Nickel(II) Complexes: An Unusual Conversion of a NiIII2(μ-O)2 Core into a NiII2(μ-OO)2 Core by H2O2 and Oxygenation of Ligand. J. Am. Chem. Soc. 2000, 122, 254–262. [Google Scholar] [CrossRef]
- Padamati, S.K.; Angelone, D.; Draksharapu, A.; Primi, G.; Martin, D.J.; Tromp, M.; Swart, M.; Browne, W.R. Transient Formation and Reactivity of a High-Valent Nickel(IV) Oxido Complex. J. Am. Chem. Soc. 2017, 139, 8718–8724. [Google Scholar] [CrossRef]
- Treviño, R.E.; Shafaat, H.S. Protein-Based Models Offer Mechanistic Insight into Complex Nickel Metalloenzymes. Curr. Opin. Chem. Biol. 2022, 67, 102110. [Google Scholar] [CrossRef]
- Company, A.; McDonald, A.R. 8.34—Bio-Relevant Chemistry of Nickel. In Comprehensive Coordination Chemistry III; Constable, E.C., Parkin, G., Que, L., Jr., Eds.; Elsevier: Oxford, UK, 2021; pp. 846–877. [Google Scholar] [CrossRef]
- Szajna, E.; Arif, A.M.; Berreau, L.M. Aliphatic Carbon−Carbon Bond Cleavage Reactivity of a Mononuclear Ni(II) Cis-β-Keto−Enolate Complex in the Presence of Base and O2: A Model Reaction for Acireductone Dioxygenase (ARD). J. Am. Chem. Soc. 2005, 127, 17186–17187. [Google Scholar] [CrossRef]
- Szajna-Fuller, E.; Rudzka, K.; Arif, A.M.; Berreau, L.M. Acireductone Dioxygenase- (ARD-) Type Reactivity of a Nickel(II) Complex Having Monoanionic Coordination of a Model Substrate: Product Identification and Comparisons to Unreactive Analogues. Inorg. Chem. 2007, 46, 5499–5507. [Google Scholar] [CrossRef]
- Broering, E.P.; Truong, P.T.; Gale, E.M.; Harrop, T.C. Synthetic Analogues of Nickel Superoxide Dismutase: A New Role for Nickel in Biology. Biochemistry 2013, 52, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Shearer, J. Insight into the Structure and Mechanism of Nickel-Containing Superoxide Dismutase Derived from Peptide-Based Mimics. Acc. Chem. Res. 2014, 47, 2332–2341. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-J.; Huang, Q.-Q.; Zhang, J.-J. A Series of NiII-Flavonolate Complexes as Structural and Functional ES (Enzyme-Substrate) Models of the NiII-Containing Quercetin 2,3-Dioxygenase. Dalton Trans. 2014, 43, 6480–6489. [Google Scholar] [CrossRef]
- Berreau, L.M.; Borowski, T.; Grubel, K.; Allpress, C.J.; Wikstrom, J.P.; Germain, M.E.; Rybak-Akimova, E.V.; Tierney, D.L. Mechanistic Studies of the O2-Dependent Aliphatic Carbon−Carbon Bond Cleavage Reaction of a Nickel Enolate Complex. Inorg. Chem. 2011, 50, 1047–1057. [Google Scholar] [CrossRef]
- Khamespanah, F.; Patel, N.M.; Forney, A.K.; Heitger, D.R.; Amarasekarage, C.M.; Springer, L.E.; Belecki, K.; Lucas, H.R. Flavonol Dioxygenase Chemistry Mediated by a Synthetic Nickel Superoxide. J. Inorg. Biochem. 2023, 238, 112021. [Google Scholar] [CrossRef]
- Barondeau, D.P.; Kassmann, C.J.; Bruns, C.K.; Tainer, J.A.; Getzoff, E.D. Nickel Superoxide Dismutase Structure and Mechanism. Biochemistry 2004, 43, 8038–8047. [Google Scholar] [CrossRef]
- Boer, J.L.; Mulrooney, S.B.; Hausinger, R.P. Nickel-Dependent Metalloenzymes. Arch. Biochem. Biophys. 2014, 544, 142–152. [Google Scholar] [CrossRef]
- Wuerges, J.; Lee, J.-W.; Yim, Y.-I.; Yim, H.-S.; Kang, S.-O.; Carugo, K.D. Crystal Structure of Nickel-Containing Superoxide Dismutase Reveals Another Type of Active Site. Proc. Natl. Acad. Sci. USA 2004, 101, 8569–8574. [Google Scholar] [CrossRef]
- Fiedler, A.T.; Bryngelson, P.A.; Maroney, M.J.; Brunold, T.C. Spectroscopic and Computational Studies of Ni Superoxide Dismutase: Electronic Structure Contributions to Enzymatic Function. J. Am. Chem. Soc. 2005, 127, 5449–5462. [Google Scholar] [CrossRef]
- Bryngelson, P.A.; Maroney, M.J. Nickel Superoxide Dismutase. In Nickel and Its Surprising Impact in Nature; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 417–443. [Google Scholar] [CrossRef]
- Deshpande, A.R.; Pochapsky, T.C.; Ringe, D. The Metal Drives the Chemistry: Dual Functions of Acireductone Dioxygenase. Chem. Rev. 2017, 117, 10474–10501. [Google Scholar] [CrossRef]
- Ragsdale, S.W. Nickel-Based Enzyme Systems. J. Biol. Chem. 2009, 284, 18571–18575. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Pochapsky, T.C.; Abeles, R.H. Mechanistic Studies of Two Dioxygenases in the Methionine Salvage Pathway of Klebsiella Pneumoniae. Biochemistry 2001, 40, 6379–6387. [Google Scholar] [CrossRef] [PubMed]
- Chai, S.C.; Ju, T.; Dang, M.; Goldsmith, R.B.; Maroney, M.J.; Pochapsky, T.C. Characterization of Metal Binding in the Active Sites of Acireductone Dioxygenase Isoforms from Klebsiella ATCC 8724. Biochemistry 2008, 47, 2428–2438. [Google Scholar] [CrossRef] [PubMed]
- Al-Mjeni, F.; Ju, T.; Pochapsky, T.C.; Maroney, M.J. XAS Investigation of the Structure and Function of Ni in Acireductone Dioxygenase. Biochemistry 2002, 41, 6761–6769. [Google Scholar] [CrossRef]
- Pochapsky, T.C.; Pochapsky, S.S.; Ju, T.; Hoefler, C.; Liang, J. A Refined Model for the Structure of Acireductone Dioxygenase from Klebsiella ATCC 8724 Incorporating Residual Dipolar Couplings. J. Biomol. NMR 2006, 34, 117–127. [Google Scholar] [CrossRef]
- Deshpande, A.R.; Wagenpfeil, K.; Pochapsky, T.C.; Petsko, G.A.; Ringe, D. Metal-Dependent Function of a Mammalian Acireductone Dioxygenase. Biochemistry 2016, 55, 1398–1407. [Google Scholar] [CrossRef]
- Sparta, M.; Valdez, C.E.; Alexandrova, A.N. Metal-Dependent Activity of Fe and Ni Acireductone Dioxygenases: How Two Electrons Reroute the Catalytic Pathway. J. Mol. Biol. 2013, 425, 3007–3018. [Google Scholar] [CrossRef]
- Kieber-Emmons, M.T.; Riordan, C.G. Dioxygen Activation at Monovalent Nickel. Acc. Chem. Res. 2007, 40, 618–625. [Google Scholar] [CrossRef]
- Yao, S.; Driess, M. Lessons from Isolable Nickel(I) Precursor Complexes for Small Molecule Activation. Acc. Chem. Res. 2012, 45, 276–287. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Tian, G.; Liu, Y. Insights into the Dioxygen Activation and Catalytic Mechanism of the Nickel-Containing Quercetinase. Catal. Sci. Technol. 2018, 8, 2340–2351. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khazanov, T.M.; Mukherjee, A. Harnessing Oxidizing Potential of Nickel for Sustainable Hydrocarbon Functionalization. Molecules 2024, 29, 5188. https://doi.org/10.3390/molecules29215188
Khazanov TM, Mukherjee A. Harnessing Oxidizing Potential of Nickel for Sustainable Hydrocarbon Functionalization. Molecules. 2024; 29(21):5188. https://doi.org/10.3390/molecules29215188
Chicago/Turabian StyleKhazanov, Thomas M., and Anusree Mukherjee. 2024. "Harnessing Oxidizing Potential of Nickel for Sustainable Hydrocarbon Functionalization" Molecules 29, no. 21: 5188. https://doi.org/10.3390/molecules29215188
APA StyleKhazanov, T. M., & Mukherjee, A. (2024). Harnessing Oxidizing Potential of Nickel for Sustainable Hydrocarbon Functionalization. Molecules, 29(21), 5188. https://doi.org/10.3390/molecules29215188