Shaping the Physicochemical and Health-Promoting Properties of Carrot Snacks Produced by Microwave-Vacuum Drying with Preliminary Thermal and Enriching Treatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of Pre-Treatment, Drying Method, and Microwave-Vacuum-Drying Parameters on Physical Properties of Dried Carrot (The Technological Parameters)
2.1.1. Dry Matter Content and Water Activity of Fresh and Dried Carrot
2.1.2. Mass Loss of Dried Carrot
2.1.3. Color Parameters of Dried Carrot of Fresh and Dried Carrot
2.2. Influence of the Osmotic Pre-Treatment, Drying Method, and Microwave-Vacuum-Drying Parameters on Chemical Properties of Dried Carrot
2.2.1. Carotenoid Content of Fresh and Dried Carrot
2.2.2. Total Phenolic Content (TPC) of Fresh and Dried Carrot
2.2.3. Anthocyanins Content of Fresh and Dried Carrot
2.2.4. DPPH• and ABTS•+ Antioxidant Activity of Fresh and Dried Carrot
2.2.5. Vitamin C Profile of Fresh and Dried Carrot
2.2.6. Sugar Content Profile of Fresh and Dried Carrot
2.3. Comprehensive Summary of Results
3. Materials and Methods
3.1. Material and Experimental Procedure
3.2. Technological Methods
3.2.1. Pre-Treatment Methods
3.2.2. Drying Methods
3.3. Physical Determination
3.3.1. Dry Matter Content and Water Activity
3.3.2. Color Parameters
3.4. Chemical Determination
3.4.1. Extraction to Determine Bioactive Compounds and Antioxidant Activity
3.4.2. Carotenoids Content
3.4.3. Total Phenolic Content
3.4.4. Anthocyanins Content
3.4.5. Vitamin C Content
3.4.6. Antioxidant Activity Determined with DPPH•
3.4.7. Antioxidant Activity Determined with ABTS•+
3.4.8. Sugars Analysis
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boadi, N.O.; Badu, M.; Kortei, N.K.; Saah, S.A.; Annor, B.; Mensah, M.B.; Fiebor, A. Nutritional composition and antioxidant properties of three varieties of carrot (Daucus carota). Sci. Afr. 2021, 12, e00801. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Semik-Szczurak, D. The use of fruit extracts for production of apple chips with enhanced antioxidant activity. Natl. Inst. Public Health-Natl. Inst. Hyg. 2017, 68, 161–165. [Google Scholar]
- Huang, L.L.; Zhang, M. Trends in development of dried vegetable products as snacks. Dry. Technol. 2012, 30, 448–461. [Google Scholar] [CrossRef]
- Xu, Y.; Lang, X.; Xiao, Y.; Li, D.; Liu, C.; Song, J.; Zhou, C. Study on drying efficiency, uniformity, and physicochemical characteristics of carrot by tunnel microwave drying combined with explosion puffing drying. Dry. Technol. 2022, 40, 416–429. [Google Scholar] [CrossRef]
- Piwowar, A.; Teleszko, M.; Rychlik, M. Dried vegetables snacks-review of the process technologies and consumption preferences among students. J. Agribus. Rural. Dev. 2017, 1, 191–199. [Google Scholar] [CrossRef]
- Internet 1: The State of the Healthy Snack Market in 2021. Available online: https://www.glanbianutritionals.com/en-mx/nutriknowledge-center/insights/state-healthy-snack-market (accessed on 5 July 2024).
- Krivokapić, S.; Pejatović, T.; Perović, S. Chemical characterization, nutritional benefits and some processed products from carrot (Daucus carota L.). Poljopr. I Sumar. 2020, 66, 191–216. [Google Scholar] [CrossRef]
- Pérez, M.B.; Carvajal, S.; Beretta, V.; Bannoud, F.; Fangio, M.F.; Berli, F.; Fontana, A.; Salomón, M.V.; Gonzalez, R.; Valerga, L.; et al. Characterization of purple carrot germplasm for antioxidant capacity and root concentration of anthocyanins, phenolics, and carotenoids. Plants 2023, 12, 1796. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Janowicz, M.; Karwacka, M.; Galus, S.; Kowalska, J.; Gańko, K. The effect of hybrid drying methods on the quality of dried carrot. Appl. Sci. 2022, 12, 10588. [Google Scholar] [CrossRef]
- Yoo, K.S.; Bang, H.; Pike, L.; Patil, B.S.; Lee, E.J. Comparing carotene, anthocyanins, and terpenoid concentrations in selected carrot lines of different colors. Hortic. Environ. Biot. 2020, 61, 385–393. [Google Scholar] [CrossRef]
- Ignaczak, A.; Salamon, A.; Kowalska, J.; Marzec, A.; Kowalska, H. Influence of Pre-Treatment and Drying Methods on the Quality of Dried Carrot Properties as Snacks. Molecules 2023, 28, 6407. [Google Scholar] [CrossRef]
- Moralar, A.; Çelen, S. Determination of some drying parameters of carrot dried using microwave method. El-Cezerî J. Sci. Eng. 2020, 7, 31–42. [Google Scholar] [CrossRef]
- Garcia-Amezquita, L.E.; Welti-Chanes, J.; Vergara-Balderas, F.T.; Bermudez-Aguirre, D. Freeze-drying: The Basic Process. Encycl. Food Health 2016, 104–109. [Google Scholar] [CrossRef]
- Kowalska, H.; Marzec, A.; Kowalska, J.; Ciurzyńska, A.; Czajkowska, K.; Cichowska, J.; Rybak, K.; Lenart, A. Osmotic dehydration of Honeoye strawberries in solutions enriched with natural bioactive molecules. LWT-Food Sci. Technol. 2017, 85, 500–505. [Google Scholar] [CrossRef]
- Ando, Y.; Hagiwara, S.; Nabetani, H.; Sotome, I.; Okunishi, T.; Okadome, H.; Orikasa, T.; Tagawa, A. Improvements of drying rate and structural quality of microwave-vacuum dried carrot by freeze-thaw pretreatment. LWT-Food Sci. Technol. 2019, 100, 294–299. [Google Scholar] [CrossRef]
- Reis, F.R. Blanching in the food industry. In Thermal Processing of Food Products by Steam and Hot Water; Woodhead Publishing: Sawston, UK, 2023; pp. 211–246. [Google Scholar] [CrossRef]
- Szczepańska, J.; Barba, F.J.; Skąpska, S.; Marszałek, K. High pressure processing of carrot juice: Effect of static and multi-pulsed pressure on the polyphenolic profile, oxidoreductases activity and colour. Food Chem. 2020, 307, 125549. [Google Scholar] [CrossRef]
- Mierzwa, D.; Kowalski, S.J.; Kroehnke, J. Hybrid drying of carrot preliminary processed with ultrasonically assisted osmotic dehydration. Food Technol. Biotech. 2017, 55, 197–205. [Google Scholar] [CrossRef]
- Olson, R.; Gavin-Smith, B.; Ferraboschi, C.; Kraemer, K. Food fortification: The advantages, disadvantages and lessons from sight and life programs. Nutrients 2021, 13, 1118. [Google Scholar] [CrossRef]
- Garcia-Casal, M.N.; Peña-Rosas, J.P.; Giyose, B.; Consultation Working Groups. Staple crops biofortified with increased vitamins and minerals: Considerations for a public health strategy. Ann. N. Y. Acad. Sci. 2017, 1390, 3–13. [Google Scholar] [CrossRef]
- Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Lech, K.; Nowicka, P. Osmotic dehydration as a pretreatment modulating the physicochemical and biological properties of the Japanese quince fruit dried by the convective and vacuum-microwave method. Food Bioprocess Technol. 2020, 13, 1801–1816. [Google Scholar] [CrossRef]
- Yusuf, E.H.; Wojdyło, A.; Lech, K.; Masztalerz, K.; Nowicka, P. The effect of combined drying process (OD-CD-VMD) on nutritional, phytochemical, and sensory profiles, and biological activities of colored dried carrot. LWT-Food Sci. Technol. 2023, 173, 114231. [Google Scholar] [CrossRef]
- Santarelli, V.; Neri, L.; Moscetti, R.; Di Mattia, C.D.; Sacchetti, G.; Massantini, R.; Pittia, P. Combined use of blanching and vacuum impregnation with trehalose and green tea extract as pre-treatment to improve the quality and stability of frozen carrots. Food Bioprocess Technol. 2021, 14, 1326–1340. [Google Scholar] [CrossRef]
- González-Pérez, J.E.; Jiménez-González, O.; Ramírez-Corona, N.; López-Malo, A. Use of response surface methodology to optimise vacuum impregnation of β-carotene from Daucus carota in Pachyrhizus erosus. Sustain. Food Technol. 2023, 1, 404–414. [Google Scholar] [CrossRef]
- Kowalska, H.; Trusińska, M.; Rybak, K.; Wiktor, A.; Witrowa-Rajchert, D.; Nowacka, M. Shaping the Properties of Osmo-Dehydrated Strawberries in Fruit Juice Concentrates. Appl. Sci. 2023, 13, 2728. [Google Scholar] [CrossRef]
- González-Pérez, J.E.; Jiménez-González, O.; Ramírez-Corona, N.; Guerrero-Beltrán, J.A.; López-Malo, A. Vacuum impregnation on apples with grape juice concentrate: Effects of pressure, processing time, and juice concentration. Innov. Food Sci. Emerg. Technol. 2022, 77, 102981. [Google Scholar] [CrossRef]
- Guz, T.; Rydzak, L.; Domin, M. Influence of selected parameters and different methods of implementing vacuum impregnation of apple tissue on its effectiveness. Processes 2020, 8, 428. [Google Scholar] [CrossRef]
- Yılmaz, F.M.; Ersus Bilek, S. Natural colorant enrichment of apple tissue with black carrot concentrate using vacuum impregnation. Int. J. Food Sci. Technol. 2017, 52, 1508–1516. [Google Scholar] [CrossRef]
- Mohammadi, X.; Deng, Y.; Matinfar, G.; Singh, A.; Mandal, R.; Pratap-Singh, A. Impact of three different dehydration methods on nutritional values and sensory quality of dried broccoli, oranges and carrots. Foods 2020, 9, m1464. [Google Scholar] [CrossRef]
- Gajewski, M.; Szymczak, P.; Bajer, M. The accumulation of chemical compounds in storage roots by carrots of different cultivars during vegetation period. Acta. Sci. Pol. Hortorum Cultus 2009, 8, 69–78. [Google Scholar]
- Pałacha, Z.; Makarewicz, M. Water activity of chosen food-stuff groups. Technol. Prog. Food Process 2011, 2, 24–29. [Google Scholar]
- Kowalska, H.; Marzec, A.; Kowalska, J.; Trych, U.; Masiarz, E.; Lenart, A. The use of a hybrid drying method with pre-osmotic treatment in strawberry bio-snack technology. Int. J. Food Eng. 2020, 16, 20180318. [Google Scholar] [CrossRef]
- González-Cavieres, L.; Pérez-Won, M.; Tabilo-Munizaga, G.; Jara-Quijada, E.; Díaz-Álvarez, R.; Lemus-Mondaca, R. Advances in vacuum microwave drying (VMD) systems for food products. Trends Food Sci. Technol. 2021, 116, 626–638. [Google Scholar] [CrossRef]
- González-Peña, M.A.; Lozada-Ramírez, J.D.; Ortega-Regules, A.E. Carotenoids from mamey (Pouteria sapota) and carrot (Daucus carota) increase the oxidative stress resistance of Caenorhabditis elegans. Biochem. Biophys. Rep. 2021, 26, 100989. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Nile, S.H.; Park, S.W. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Res. Int. 2015, 76, 735–750. [Google Scholar] [CrossRef] [PubMed]
- Varshney, K.; Mishra, K.B. An analysis of health benefits of carrot. Int. J. Innov. Res. Eng. Manag. 2022, 9, 211–214. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Choi, C.S.; Rhee, J.; Shin, Y.K.; Song, J.W.; Kim, S.H.; Kang, S.; Lee, J.G. Influence of root colour and tissue on phytochemical contents and antioxidant activities in carrot genotypes. Foods 2022, 12, 120. [Google Scholar] [CrossRef]
- Sharma, A.; Dhiman, A.K.; Mittal, S.; Attri, S.; Dubey, N. Carotenoid pigment: Significance as a natural food colourant and factors affecting its isolation. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 44–51. [Google Scholar] [CrossRef]
- Sun, T.; Rao, S.; Zhou, X.; Li, L. Plant carotenoids: Recent advances and future perspectives. Mol. Hortic. 2022, 2, 3. [Google Scholar] [CrossRef]
- Ahmad, T.; Cawood, M.; Iqbal, Q.; Ariño, A.; Batool, A.; Tariq, R.M.S.; Akhtar, S. Phytochemicals in Daucus Carota and their health benefits-review article. Foods 2019, 8, 424. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.; Cao, W.; Liu, W.; Duan, X.; Ren, G.; Song, C. Effects of freeze–thaw pre-treatment with different freezing methods on the microwave freeze drying of carrots. Int. J. Food Sci. Technol. 2024, 59, 7181–7192. [Google Scholar] [CrossRef]
- Ramesh, M.N.; Wolf, W.; Tevini, D.; Bognar, A. Microwave Blanching of Vegetables. J. Food. Sci. 2002, 67, 390–398. [Google Scholar] [CrossRef]
- Mendonça, K.S.D.; Corrêa, J.L.G.; Junqueira, J.R.D.J.; Souza, A.U.D. Two-stage power level to improve microwave vacuum drying of restructured Peruvian carrot chips. Ciênc. Agrotec. 2023, 47, e010523. [Google Scholar] [CrossRef]
- Liu, P.; Mujumdar, A.S.; Zhang, M.; Jiang, H. Comparison of three blanching treatments on the color and anthocyanin level of the microwave-assisted spouted bed drying of purple flesh sweet potato. Dry. Technol. 2015, 33, 66–71. [Google Scholar] [CrossRef]
- Deng, L.Z.; Pan, Z.; Mujumdar, A.S.; Zhao, J.H.; Zheng, Z.A.; Gao, Z.J. High-humidity hot air impingement blanching (HHAIB) enhances drying quality of apricots by inactivating the enzymes, reduce drying time and altering cellular structure. Food Control 2019, 96, 104–111. [Google Scholar] [CrossRef]
- Moura, J.D.S.; Sousa, R.P.E.; Martins, L.H.D.S.; Costa, C.E.F.D.; Chisté, R.C.; Lopes, A.S. Thermal Degradation of Carotenoids from Jambu Leaves (Acmella oleracea) during Convective Drying. Foods 2023, 12, 1452. [Google Scholar] [CrossRef] [PubMed]
- Priecina, L.; Karklina, D. Influence of steam treatment and drying on carrots composition and concentration of phenolics, organic acids and carotenoids. Proc. Latv. Acad. Sci. 2018, 72, 103–112. [Google Scholar] [CrossRef]
- Kapoor, S.; Aggarwal, P. Drying method affects bioactive compounds and antioxidant activity of carrot. Int. J. Veg. Sci. 2015, 21, 467–481. [Google Scholar] [CrossRef]
- Ma, J.; Chen, C.; Ma, J.; Ma, W.; Yang, J. Analysis of bioactive compounds and antioxidant capacities in different varieties of carrots. J. Phys. Conf. Ser. 2020, 1549, 32054. [Google Scholar] [CrossRef]
- Han, Z.; Zhu, M.; Wan, X.; Zhai, X.; Ho, C.T.; Zhang, L. Food polyphenols and Maillard reaction: Regulation effect and chemical mechanism. Crit. Rev. Food Sci. Nut. 2022, 64, 4904–4920. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M.; Saari, N. Effect of drying techniques on the total phenolic. J. Med. Plants Res. 2012, 6, 161–167. [Google Scholar] [CrossRef]
- Minutti-López Sierra, P.; Gallardo-Velázquez, T.; Osorio-Revilla, G.; Meza-Márquez, O.G. Chemical composition and antioxidant capacity in strawberry cultivars (Fragaria x ananassa Duch.) by FT-MIR spectroscopy and chemometrics. CyTA-J. Food 2019, 17, 724–732. [Google Scholar] [CrossRef]
- Tabtiang, S.; Umroong, P.; Soponronnarit, S. Comparative study of the effects of thermal blanching pretreatments and puffing temperature levels on the microstructure and qualities of crisp banana slices. J. Food Process Eng. 2022, 45, e13931. [Google Scholar] [CrossRef]
- Mapelli-Brahm, P.; Corte-Real, J.; Meléndez-Martínez, A.J.; Bohn, T. Bioaccessibility of phytoene and phytofluene is superior to other carotenoids from selected fruit and vegetable juices. Food Chem. 2017, 229, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J. Stabilization and use of chokeberry anthocyanin dye for coloring beverages. Acta Sci. Half. Technol. Alimony 2002, 1, 37–45. [Google Scholar]
- Odriozola-Serrano, I.; Hernández-Jover, T.; Martín-Belloso, O. Comparative evaluation of UV-HPLC methods and reducing agents to determine vitamin C in fruits. Food Chem. 2007, 105, 1151–1158. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- El Kossori, R.L.; Villaume, C.; El Boustani, E.; Sauvaire, Y.; Méjean, L. Composition of pulp, skin and seeds of prickly pears fruit (Opuntia ficus indica sp.). Plant. Foods Hum. Nutr. 1998, 52, 263–270. [Google Scholar] [CrossRef]
Type of Sample | Dry Matter Content [%] | Water Activity [-] | Mass Loss After Pre-Treatment [%] | Mass Loss After Drying [%] | |||
---|---|---|---|---|---|---|---|
Fresh carrot | 14.40 ± 0.73 | 0.987 ± 0.00 | - | ||||
CD | 87.87 ± 0.53 a’ A | 0.404 ± 0.01 b’ | - | 88.67 ± 0.36 B | |||
CD_PG | 85.57 ± 0.21 a’ AB | 0.442 ± 0.03 b’ | 15.75 ± 0.72 | 84.00 ± 0.08 A | |||
CD_CH | 89.09 ± 0.03 a’ AB | 0.352 ± 0.04 b’ | 15.20 ± 0.80 | 84.11 ± 0.31 A | |||
CD_SB | 88.64 ± 0.33 a’ C | 0.310 ± 0.01b’ | 9.73 ± 0.61 | 88.49 ± 0.11 B | |||
CD_W_BL | 89.50 ± 0.10 a’ C | 0.441 ± 0.01 b’ | 13.99 ± 0.38 | 89.80 ± 0.50 B | |||
CD_M_BL | 91.75 ± 0.34 a’ AB | 0.366 ± 0.01 b’ | 12.34 ± 0.41 | 93.66 ± 0.50 B | |||
FD | 96.60 ± 0.08 b’ A | 0.078 ± 0.01 a’ | - | 86.21 ± 0.39 B | |||
FD_PG | 95.25 ± 0.65 b’ AB | 0.125 ± 0.02 a’ | 6.82 ± 0.26 | 82.49 ± 0.22 A | |||
FD_CH | 95.47 ± 0.41 b’ AB | 0.128 ± 0.00 a’ | 10.09 ± 0.52 | 82.44 ± 0.37 A | |||
FD_SB | 95.87 ± 0.20 b’ C | 0.093 ± 0.00 a’ | 8.95 ± 0.61 | 85.94 ± 0.68 B | |||
FD_W_BL | 99.57 ± 0.23 b’ C | 0.070 ± 0.02 a’ | 8.28 ± 0.18 | 90.71 ± 0.50 B | |||
FD_M_BL | 96.18 ± 0.10 b’ AB | 0.135 ± 0.01 a’ | 8.15 ± 0.03 | 86.81 ± 0.50 B | |||
MVD_3.5_250 | 86.73 ± 0.99 a’ A B’ | 0.565 ± 0.01 b’ A’ | - | 87.20 ± 0.38 B | |||
MVD_6.5_250 | 76.03 ± 0.16 a’ A A’ | 0.531 ± 0.03 b’ B’ | - | 90.78 ± 0.25 B | |||
MVD_3.5_400 | 88.00 ± 0.41 a’ A A’B’ | 0.535 ± 0.01 b’ B’ | - | 88.47 ± 0.82 B | |||
MVD_6.5_400 | 82.39 ± 1.47 a’ A A’B’ | 0.562 ± 0.01 b’ A’B’ | - | 87.08 ± 0.32 B | |||
MVD_3.5_250_PG | 98.57 ± 0.22 a’ AB B’ | 0.444 ± 0.00 b’ A’ | 68.43 ± 0.15 | 85.03 ± 0.28 A | |||
MVD_6.5_250_PG | 91.44 ± 0.40 a’ AB A’ | 0.380 ± 0.03 b’ B’ | 65.74 ± 0.22 | 85.75 ± 0.48 A | |||
MVD_3.5_400_PG | 82.77 ± 2.04 a’ AB A’B’ | 0.542 ± 0.04 b’ B’ | 60.75 ± 0.63 | 84.74 ± 0.39 A | |||
MVD_6.5_400_PG | 94.07 ± 1.60 a’ AB A’B’ | 0.213 ± 0.01 b’ A’B’ | 62.84 ± 0.44 | 84.10 ± 0.35 A | |||
MVD_3.5_250_CH | 92.63 ± 1.07 a’ AB B’ | 0.343 ± 0.06 b’ A’ | 55.03 ± 0.83 | 84.01 ± 0.11 A | |||
MVD_6.5_250_CH | 81.73 ± 1.73 a’ AB A’ | 0.527 ± 0.00 b’ B’ | 51.90 ± 0.55 | 84.09 ± 0.32 A | |||
MVD_3.5_400_CH | 85.59 ± 1.22 a’ AB A’B’ | 0.563 ± 0.00 b’ B’ | 50.96 ± 0.94 | 84.45 ± 1.40 A | |||
MVD_6.5_400_CH | 93.46 ± 1.37 a’ AB A’B’ | 0.518 ± 0.00 b’ A’B’ | 48.91 ± 0.19 | 85.28 ± 0.59 A | |||
MVD_3.5_250_SB | 95.05 ± 0.79 a’ C B’ | 0.202 ± 0.01 b’ A’ | 73.14 ± 0.53 | 89.67 ± 0.23 B | |||
MVD_6.5_250_SB | 91.19 ± 2.95 a’ C A’ | 0.425 ± 0.07 b’ B’ | 70.03 ± 0.75 | 88.47 ± 0.14 B | |||
MVD_3.5_400_SB | 94.90 ± 0.86 a’ C A’B’ | 0.254 ± 0.04 b’ B’ | 69.07 ± 0.04 | 89.85 ± 0.17 B | |||
MVD_6.5_400_SB | 91.20 ± 0.04 a’ C A’B’ | 0.367 ± 0.00 b’ A’B’ | 61.12 ± 1.14 | 88.59 ± 0.32 B | |||
MVD_3.5_250_W_BL | 95.43 ± 0.10 a’ C B’ | 0.391 ± 0.00 b’ A’ | 68.83 ± 0.01 | 88.73 ± 0.33 B | |||
MVD_6.5_250_W_BL | 91.90 ± 1.31 a’ C A’ | 0.529 ± 0.05 b’ B’ | 66.17 ± 0.17 | 88.44 ± 0.01 B | |||
MVD_3.5_400_W_BL | 94.64 ± 0.17 a’ C A’B’ | 0.497 ± 0.01 b’ B’ | 66.95 ± 0.13 | 90.47 ± 0.51 B | |||
MVD_6.5_400_W_BL | 89.64 ± 0.55 a’ C A’B’ | 0.455 ± 0.01 b’ A’B’ | 65.57 ± 0.08 | 90.13 ± 0.43 B | |||
MVD_3.5_250_M_BL | 92.74 ± 0.65 a’ AB B’ | 0.304 ± 0.02 b’ A’ | 71.47 ± 0.48 | 87.29 ± 0.07 B | |||
MVD_6.5_250_M_BL | 87.37 ± 1.06 a’ AB A’ | 0.398 ± 0.05 b’ B’ | 65.46 ± 0.63 | 86.55 ± 0.10 B | |||
MVD_3.5_400_M_BL | 89.33 ± 0.19 a’ AB A’B’ | 0.403 ± 0.01 b’ B’ | 69.36 ± 0.23 | 88.45 ± 0.86 B | |||
MVD_6.5_400_M_BL | 91.20 ± 0.58 a’ AB A’B’ | 0.408 ± 0.03 b’ A’B’ | 73.81 ± 0.65 | 88.83 ± 0.33 B | |||
MVD_3.5_250_P-CD | 88.08 ± 1.42 a’ B ’ | 0.272 ± 0.03 b’ A’ | 54.41 ± 0.65 | 87.02 ± 0.25 B | |||
MVD_6.5_250_P-CD | 94.06 ± 0.70 a’ C A’ | 0.356 ± 0.04 b’ B’ | 50.82 ± 1.56 | 89.39 ± 1.25 B | |||
MVD_3.5_400_P-CD | 92.24 ± 0.05 a’ C A’B’ | 0.416 ± 0.00 b’ B’ | 51.12 ± 0.52 | 87.87 ± 0.14 B | |||
MVD_6.5_400_P-CD | 97.81 ± 0.30 a’ C A’B’ | 0.283 ± 0.03 b’ A’B’ | 50.00 ± 0.67 | 88.85 ± 0.15 B | |||
One-way analysis of variance (ANOVA) | |||||||
Factors | P-probability/Homogenous groups | ||||||
Type of drying method (a’, b’) | 0.0001 * | CD a’ FD b’ MVD a’ | 0.0000 * | CD b’ FD a’ MVD b’ | - | 0.0538 | |
Type of pre-treatment (A, B, C) | 0.0000 * | W_P A PG AB CH AB SB C W_BL C M_BL AB P-CD C | 0.1064 | 0.8526 | 0.0000 * | W_P B PG A CH A SB B W_BL B M_BL B P-CD B | |
Two-way analysis of variance (ANOVA) | |||||||
Interaction of MVD drying parameters (A’, B’) | 0.0141 * | 3.5/250 B’ 6.5/250 A’ 3.5/400 A’B’ 6.5/400 A’B’ | 0.0147 * | 3.5/250 A’ 6.5/250 B’ 3.5/400 B’ 6.5/400 A’B’ | - | 0.4672 |
Blanching in Water | Microwave Blanching | ||
---|---|---|---|
Convection drying | |||
Freeze-drying | |||
Pre-convection drying | Blanching in water | Microwave blanching | |
Microwave-vacuum drying (3.5 kPa/250 W) | |||
Microwave-vacuum drying (6.5 kPa/250 W) | |||
Microwave-vacuum drying (3.5 kPa/400 W) | |||
Microwave-vacuum drying (6.5 kPa/400 W) | |||
Type of Samples | Lutein [mg/100 g d.m.] | α-carotene [mg/100 g d.m.] | β-carotene [mg/100 g d.m.] | Total Carotenoids Content [mg/100 g d.m.] | ||||
---|---|---|---|---|---|---|---|---|
Fresh carrot | 1.00 ± 0.09 | 10.28 ± 0.21 | 25.88 ± 0.08 | 37.16 ± 0.20 | ||||
CD | 2.60 ± 0.15 c’ A | 9.23 ± 1.03 c’ AB | 21.16 ± 2.65 b’ AB | 32.99 ± 3.83 b’ AB | ||||
CD_PG | 1.29 ± 0.11 c’ A | 4.57 ± 1.27 c’ A | 8.38 ± 2.23 b’ A | 14.23 ± 3.61 b’ A | ||||
CD_CH | 1.05 ± 0.33 c’ A | 5.06 ± 1.35 c’ A | 10.80 ± 3.39 b’ AB | 16.91 ± 5.07 b’ A | ||||
CD_SB | 1.67 ± 0.13 c’ A | 8.65 ± 0.10 c’ AB | 18.05 ± 0.80 b’ AB | 28.37 ± 1.03 b’ AB | ||||
CD_W_BL | 1.88 ± 0.01 c’ B | 6.09 ± 0.42 c’ B | 13.75 ± 0.10 b’ B | 21.73 ± 1.43 b’ B | ||||
CD_M_BL | 1.68 ± 0.06 c’ A | 8.96 ± 1.11 c’ AB | 24.80 ± 2.64 b’ AB | 35.44 ± 3.81 b’ AB | ||||
FD | 0.34 ± 0.02 a’ A | 0.76 ± 0.01 a’ AB | 2.03 ± 0.11 a’ AB | 3.20 ± 0.12 a’ AB | ||||
FD_PG | 0.20 ± 0.04 a’ A | 1.40 ± 0.35 a’ A | 3.27 ± 0.26 a’ A | 4.86 ± 0.66 a’ A | ||||
FD_CH | 0.30 ± 0.02 a’ A | 1.82 ± 0.03 a’ A | 4.15 ± 0.20 a’ AB | 6.27 ± 0.25 a’ A | ||||
FD_SB | 0.37 ± 0.04 a’ A | 2.29 ± 0.11a’ AB | 5.00 ± 0.01 a’ AB | 7.65 ± 0.16 a’ AB | ||||
FD_W_BL | 0.76 ± 0.09 a’ B | 2.59 ± 0.34 a’ B | 7.63 ± 0.72 a’ B | 10.98 ± 1.15 a’ B | ||||
FD_M_BL | 0.72 ± 0.01 a’ A | 4.40 ± 0.30 a’ AB | 10.80 ± 0.56 a’ AB | 15.92 ± 0.86 a’ AB | ||||
MVD_3.5_250 | 0.74 ± 0.07 b’ A | 2.24 ± 0.51 b’ AB | 4.12 ± 0.74 a’ AB | 7.11 ± 1.31 a’ AB | ||||
MVD_6.5_250 | 0.71 ± 0.22 b’ A | 4.86 ± 1.82 b’ AB | 9.11 ± 3.25 a’ AB | 14.68 ± 5.29 a’ AB | ||||
MVD_3.5_400 | 1.65 ± 0.14 b’ A | 5.93 ± 0.16 b’ AB | 9.67 ± 0.19 a’ AB | 17.25 ± 0.50 a’ AB | ||||
MVD_6.5_400 | 0.43 ± 0.10 b’ A | 2.17 ± 0.33 b’ AB | 5.38 ± 0.82 a’ AB | 7.99 ± 1.25 a’ AB | ||||
MVD_3.5_250_PG | 0.78 ± 0.03 b’ A | 4.66 ± 0.47 b’ A | 10.94 ± 1.71 a’ A | 16.37 ± 2.21 a’ A | ||||
MVD_6.5_250_PG | 0.37 ± 0.02 b’ A | 1.85 ± 0.01 b’ A | 6.20 ± 0.00 a’ A | 8.42 ± 0.02 a’ A | ||||
MVD_3.5_400_PG | 0.67 ± 0.05 b’ A | 2.12 ± 0.15 b’ A | 6.50 ± 1.18 a’ A | 9.32 ± 1.38 a’ A | ||||
MVD_6.5_400_PG | 0.27 ± 0.01 b’ A | 0.55 ± 0.00 b’ A | 1.47 ± 0.12 a’ A | 2.28 ± 0.12 a’ A | ||||
MVD_3.5_250_CH | 0.29 ± 0.08 b’ A | 2.02 ± 0.27 b’ A | 5.69 ± 1.49 a’ AB | 8.00 ± 1.85 a’ A | ||||
MVD_6.5_250_CH | 0.79 ± 0.24 b’ A | 3.74 ± 1.10 b’ A | 8.88 ± 2.21 a’ AB | 13.40 ± 3.55 a’ A | ||||
MVD_3.5_400_CH | 0.65 ± 0.05 b’ A | 2.73 ± 0.29 b’ A | 7.44 ± 1.27 a’ AB | 10.82 ± 1.62 a’ A | ||||
MVD_6.5_400_CH | 0.46 ± 0.06 b’ A | 1.62 ± 0.05 b’ A | 3.68 ± 0.13 a’ AB | 5.76 ± 0.14 a’ A | ||||
MVD_3.5_250_SB | 0.24 ± 0.09 b’ A | 3.98 ± 0.94 b’ AB | 8.54 ± 1.43 a’ AB | 12.77 ± 2.46 a’ AB | ||||
MVD_6.5_250_SB | 0.47 ± 0.07 b’ A | 5.29 ± 0.90 b’ AB | 11.06 ± 2.00 a’ AB | 16.82 ± 2.98 a’ AB | ||||
MVD_3.5_400_SB | 0.57 ± 0.02 b’ A | 7.32 ± 0.35 b’ AB | 16.08 ± 0.24 a’ AB | 23.97 ± 0.57 a’ AB | ||||
MVD_6.5_400_SB | 0.51 ± 0.03 b’ A | 4.99 ± 0.41 b’ AB | 9.30 ± 0.87 a’ AB | 14.80 ± 1.31 a’ AB | ||||
MVD_3.5_250_W_BL | 1.67 ± 0.01 b’ B | 2.66 ± 0.13 b’ B | 5.73 ± 0.72 a’ B | 25.40 ± 0.74 a’ B | ||||
MVD_6.5_250_W_BL | 0.73 ± 0.04 b’ B | 2.61 ± 0.06 b’ B | 4.31 ± 0.12 a’ B | 22.81 ± 7.68 a’ B | ||||
MVD_3.5_400_W_BL | 0.85 ± 0.05 b’ B | 3.35 ± 0.24 b’ B | 7.15 ± 0.03 a’ B | 22.23 ± 0.26 a’ B | ||||
MVD_6.5_400_W_BL | 1.76 ± 0.01 b’ B | 9.98 ± 1.27 b’ B | 18.66 ± 3.45 a’ B | 25.85 ± 3.24 a’ B | ||||
MVD_3.5_250_M_BL | 2.02 ± 0.04 b’ A | 9.51 ± 0.37 b’ AB | 13.87 ± 0.40 a’ AB | 10.06 ± 0.87 a’ AB | ||||
MVD_6.5_250_M_BL | 2.08 ± 0.54 b’ A | 8.67 ± 2.78 b’ AB | 12.06 ± 4.37 a’ AB | 7.66 ± 0.14 a’ AB | ||||
MVD_3.5_400_M_BL | 2.31 ± 0.16 b’ A | 6.90 ± 0.05 b’ AB | 13.02 ± 0.05 a’ AB | 11.35 ± 0.22 a’ AB | ||||
MVD_6.5_400_M_BL | 2.73 ± 0.02 b’ A | 8.24 ± 1.06 b’ AB | 14.88 ± 2.16 a’ AB | 30.41 ± 4.73 a’ AB | ||||
MVD_3.5_250_P-CD | 1.08 ± 0.11 b’ A | 4.43 ± 0.44 b’ A | 9.76 ± 1.39 a’ AB | 15.27 ± 1.94 a’ AB | ||||
MVD_6.5_250_P-CD | 0.88 ± 0.02 b’ A | 3.86 ± 0.12 b’ A | 8.68 ± 0.15 a’ AB | 13.42 ± 0.24 a’ AB | ||||
MVD_3.5_400_P-CD | 1.34 ± 0.15 b’ A | 3.42 ± 0.34 b’ A | 7.75 ± 0.73 a’ AB | 12.51 ± 1.22 a’ AB | ||||
MVD_6.5_400_P-CD | 0.92 ± 0.16 b’ A | 2.05 ± 0.54 b’ A | 4.51 ± 0.54 a’ AB | 7.49 ± 1.24 a’ AB | ||||
One-way analysis of variance (ANOVA) | ||||||||
Factors | P-probability/Homogenous groups | |||||||
Type of drying method (a’, b’, c’) | 0.0000 * | CD c’ FD a’ MVD b’ | 0.0000 * | CD c’ FD a’ MVD b’ | 0.0000 * | CD c’ FD a’ MVD b’ | 0.0001 * | CD c’ FD a’ MVD b’ |
Two-way analysis of variance (ANOVA) | ||||||||
Type of pre-treatment (A, B) | 0.0000 * | W_P A PG A CH A SB A W_BL B M_BL A P-CD A | 0.0001 * | W_P AB PG A CH A SB AB W_BL B M_BL AB P-CD A | 0.0086 * | W_P AB PG A CH AB SB AB W_BL B M_BL AB P-CD AB | 0.0014 * | W_P AB PG A CH A SB AB W_BL B M_BL AB P-CD AB |
Interaction of MVD drying parameters (A’, B’, C’) | 0.9508 | 0.7296 | 0.4922 | 0.5932 |
Type of Samples | Cy-3-O-gal [mg/100 g d.m.] | Cy-3-O-glu [mg/100 g d.m.] | Cy-3-O-ara [mg/100 g d.m.] | Cy-3-O-xyl [mg/100 g d.m.] | Total Anthocyanins [mg/100 g d.m.] |
---|---|---|---|---|---|
CD_CH | 1.28 ± 0.27 b’ | 0.10 ± 0.01 b’ | 0.26 ± 0.12 b’ | 2.67 ± 0.35 a’ | 4.30 ± 0.63 b’ |
FD_CH | 12.61 ± 0.43 c’ | 0.74 ± 0.04 c’ | 5.15 ± 0.17 c’ | 4.07 ± 0.18 b’ | 22.57 ± 0.79 c’ |
MVD_3.5_250_CH | 0.31 ± 0.05 a’ B’ | 0.05 ± 0.00 a’ | 0.10 ± 0.05 a’ | 2.78 ± 0.15 a’ B’ | 3.24 ± 0.21 a’ B’ |
MVD_3.5_400_CH | 0.30 ± 0.02 a’ B’ | 0.02 ± 0.00 a’ | 0.09 ± 0.02 a’ | 2.25 ± 0.38 a’ A’B’ | 2.67 ± 0.37 a’ A’B’ |
MVD_6.5_250_CH | 0.23 ± 0.04 a’ A’ | 0.04 ± 0.02 a’ | 0.09 ± 0.02 a’ | 2.03 ± 0.10 a’ A’ | 2.40 ± 0.10 a’ A’ |
MVD_6.5_400_CH | 0.26 ± 0.03 a’ A’B’ | 0.03 ± 0.02 a’ | 0.07 ± 0.03 a’ | 2.38 ± 0.22 a’ A’B’ | 2.75 ± 0.23 a’ A’B’ |
Type of Samples | AA [mg/100 g d.m.] | DHAA [mg/100 g d.m.] | Total Vitamin C (AA + DHAA) [mg/100 g d.m.] |
---|---|---|---|
Fresh carrot | 0.06 ± 0.01 A | 4.83 ± 0.04 a’b’ BC | 4.89 ± 0.04 a’ A |
CD_PG | 4.77 ± 0.17 A | 1.04 ± 0.63 a’ A | 5.81 ± 0.46 c’ A |
CD_CH | 0.92 ± 0.08 A | 3.43 ± 0.11 a’ AB | 4.34 ± 0.03 c’ A |
CD_SB | 41.15 ± 0.36 B | 1.46 ± 0.11 a’ C | 42.62 ± 0.25 c’ B |
FD_PG | 0.02 ± 0.00 A | 2.35 ± 0.04 b’ A | 2.37 ± 0.03 a’ A |
FD_CH | 0.05 ± 0.02 A | 4.45 ± 0.03 b’ AB | 4.40 ± 0.01 a’ A |
FD_SB | 10.33 ± 0.40 B | 7.41 ± 0.04 b’ C | 17.74 ± 0.37 a’ B |
MVD_3.5_250_PG | 0.87 ± 0.02 A | 0.19 ± 0.02 a’ A | 1.06 ± 0.00 b’ A |
MVD_6.5_250_PG | 0.48 ± 0.01 A | 0.51 ± 0.04 a’ A | 0.99 ± 0.05 b’ A |
MVD_3.5_400_PG | 0.84 ± 0.00 A | 0.78 ± 0.05 a’ A | 1.62 ± 0.04 b’ A |
CMVD_6.5_400_PG | 0.14 ± 0.05 A | 1.06 ± 0.04 a’ A | 1.20 ± 0.01 b’ A |
MVD_3.5_250_CH | 0.45 ± 0.01 A | 1.26 ± 0.30 a’ AB | 1.72 ± 0.29 b’ A |
MVD_6.5_250_CH | 0.39 ± 0.08 A | 1.05 ± 0.10 a’ AB | 1.44 ± 0.02 b’ A |
MVD_3.5_400_CH | 0.27 ± 0.00 A | 1.59 ± 0.03 a’ AB | 1.86 ± 0.02 b’ A |
MVD_6.5_400_CH | 0.41 ± 0.02 A | 1.40 ± 0.06 a’ AB | 1.81 ± 0.04 b’ A |
MVD_3.5_250_SB | 35.29 ± 0.64 B | 3.00 ± 1.86 a’ C | 38.29 ± 1.23 b’ B |
MVD_6.5_250_SB | 36.23 ± 1.49 B | 4.70 ± 0.32 a’ C | 40.93 ± 1.17 b’ B |
MVD_3.5_400_SB | 31.50 ± 0.44 B | 4.20 ± 0.35 a’ C | 35.70 ± 0.79 b’ B |
MVD_6.5_400_SB | 40.65 ± 0.17 B | 4.32 ± 0.56 a’ C | 44.97 ± 0.39 b’ B |
NFC Juice | pH [-] | Water Activity [-] | Color Parameters | ||
---|---|---|---|---|---|
L* | a* | b* | |||
Pomegranate (PG) | 3.23 ± 0.01 b | 0.974 ± 0.002 b | 19.16 ± 0.07 b | 10.26 ± 0.1 b | 4.06 ± 0.08 b |
Chokeberry (CH) | 3.60 ± 0.01 b | 0.971 ± 0.001 a | 1.40 ± 0.08 a | −0.02 ± 0.15 a | −0.25 ± 0.14 a |
Sea buckthorn (SB) | 2.77 ± 0.01 a | 0.985 ± 0.001 c | 44.18 ± 0.03 c | 23.33 ± 0.04 c | 53.04 ± 0.12 c |
Sugar Content [g/L] | ||||
---|---|---|---|---|
NFC Juice | Saccharose | Glucose | Fructose | Sorbitol |
Pomegranate (PG) | 4.47 ± 0.07 b | 60.62 ± 0.29 c | 68.00 ± 0.06 c | ≤150 mg/L # |
Chokeberry (CH) | <1 a | 34.56 ± 0.27 b | 21.59 ± 0.48 b | 43.95 ± 0.59 |
Sea buckthorn (SB) | 14.58 ± 0.50 c | 10.17 ± 0.03 a | 2.88 ± 0.16 a | ≤150 mg/L # |
Parameters/ Cycles | Cycle I | Cycle II | Cycle III | Cycle IV Stabilization |
---|---|---|---|---|
Pressure (kPa) | 3.5/6.5 | 3.5/6.5 | 3.5/6.5 | - |
Microwave power (W) | 250/400 | - | 250/400 | - |
Temperature (°C) | 70 | - | 70 | - |
Time (s) | 120–630 | 210 | 120–630 | 210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignaczak, A.; Woźniak, Ł.; Salamon, A.; Szczepańska-Stolarczyk, J.; Trych, U.; Chobot, M.; Kowalska, J.; Kowalska, H. Shaping the Physicochemical and Health-Promoting Properties of Carrot Snacks Produced by Microwave-Vacuum Drying with Preliminary Thermal and Enriching Treatment. Molecules 2024, 29, 5100. https://doi.org/10.3390/molecules29215100
Ignaczak A, Woźniak Ł, Salamon A, Szczepańska-Stolarczyk J, Trych U, Chobot M, Kowalska J, Kowalska H. Shaping the Physicochemical and Health-Promoting Properties of Carrot Snacks Produced by Microwave-Vacuum Drying with Preliminary Thermal and Enriching Treatment. Molecules. 2024; 29(21):5100. https://doi.org/10.3390/molecules29215100
Chicago/Turabian StyleIgnaczak, Anna, Łukasz Woźniak, Agnieszka Salamon, Justyna Szczepańska-Stolarczyk, Urszula Trych, Małgorzata Chobot, Jolanta Kowalska, and Hanna Kowalska. 2024. "Shaping the Physicochemical and Health-Promoting Properties of Carrot Snacks Produced by Microwave-Vacuum Drying with Preliminary Thermal and Enriching Treatment" Molecules 29, no. 21: 5100. https://doi.org/10.3390/molecules29215100
APA StyleIgnaczak, A., Woźniak, Ł., Salamon, A., Szczepańska-Stolarczyk, J., Trych, U., Chobot, M., Kowalska, J., & Kowalska, H. (2024). Shaping the Physicochemical and Health-Promoting Properties of Carrot Snacks Produced by Microwave-Vacuum Drying with Preliminary Thermal and Enriching Treatment. Molecules, 29(21), 5100. https://doi.org/10.3390/molecules29215100