Exploring the Impact of Water Content in Solvent Systems on Photochemical CO2 Reduction Catalyzed by Ruthenium Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Water Content on Catalytic Activity
2.2. Diffusion Rate Constants of Excited [Ru(bpy)3]2+ and BNAH
2.3. Electron Transfer on the Encounter Complex
2.4. Competition Between Cage-Escape and Back-Electron Transfer After Charge Separation
3. Materials and Methods
3.1. General Procedure
3.2. Photochemical CO2 Reduction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bizzarri, C. Homogeneous Systems Containing Earth-Abundant Metal Complexes for Photoactivated CO2 Reduction: Recent Advances. Eur. J. Org. Chem. 2022, 24, e202200185. [Google Scholar] [CrossRef]
- Fujita, E.; Grills, D.C.; Manbeck, G.F.; Polyansky, D.E. Understanding the Role of Inter- and Intramolecular Promoters in Electro and Photochemical CO2 Reduction Using Mn, Re, and Ru Catalysts. Acc. Chem. Res. 2022, 55, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Pirzada, B.M.; Dar, A.H.; Shaikh, M.N.; Qurashi, A. Reticular-Chemistry-Inspired Supramolecule Design as a Tool to Achieve Efficient Photocatalysts for CO2 Reduction. ACS Omega 2021, 6, 29291–29324. [Google Scholar] [CrossRef] [PubMed]
- Nakada, A.; Kumagai, H.; Robert, M.; Ishitani, O.; Maeda, K. Molecule/Semiconductor Hybrid Materials for Visible-Light CO2 Reduction: Design Principles and Interfacial Engineering. Acc. Mater. Res. 2021, 2, 458–470. [Google Scholar] [CrossRef]
- Son, H.-J.; Pac, C.; Kang, S.O. Inorganometallic Photocatalyst for CO2 Reduction. Acc. Chem. Res. 2021, 54, 4530–4544. [Google Scholar] [CrossRef]
- Maeda, K. Metal-Complex/Semiconductor Hybrid Photocatalysts and Photoelectrodes for CO2 Reduction Driven by Visible Light. Adv. Mater. 2019, 31, 1808205. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.-H.; Dong, L.-Z.; Liu, J.; Li, S.-L.; Lan, Y.Q. From Molecular Metal Complex to Metal-Organic Framework: The CO2 Reduction Photocatalysts with Clear and Tunable Structure. Coord. Chem. Rev. 2019, 390, 86–126. [Google Scholar] [CrossRef]
- Kuramochi, Y.; Ishitani, O.; Ishida, H. Reaction Mechanisms of Catalytic Photochemical CO2 Reduction Using Re(I) and Ru(II) Complexes. Coord. Chem. Rev. 2018, 373, 333–356. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Takeda, H.; Ishitani, O. Photocatalytic Reduction of CO2 Using Metal Complexes. J. Photochem. Photobiol. C 2015, 25, 106–137. [Google Scholar] [CrossRef]
- Elgrishi, N.; Chambers, M.B.; Wang, X.; Fontecave, M. Molecular Polypyridine-Based Metal Complexes as Catalysts for the Reduction of CO2. Chem. Soc. Rev. 2017, 46, 761–796. [Google Scholar] [CrossRef]
- Hawecker, J.; Lehn, J.-M.; Ziessel, R. Photochemical and Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (2,2′-Bipyridine)tricarbonylchlororhenium(I) and Related Complexes as Homogeneous Catalysts. Helv. Chim. Acta 1986, 69, 1990–2012. [Google Scholar] [CrossRef]
- Hawecker, J.; Lehn, J.-M.; Ziessel, R. Efficient Photochemical Reduction of CO2 to CO by Visible Light Irradiation of Systems Containing Re(bipy)(CO)3X or Ru(bipy)32+–Co2+ Combinations as Homogeneous Catalysts. J. Chem. Soc. Chem. Commun. 1983, 9, 536–538. [Google Scholar] [CrossRef]
- Gabrielsson, A.; Záliš, S.; Matousek, P.; Towrie, M.; Vlček, A. Ultrafast Photochemical Dissociation of an Equatorial CO Ligand from trans(X,X)-[Ru(X)2(CO)2(bpy)] (X = Cl, Br, I): A Picosecond Time-Resolved Infrared Spectroscopic and DFT Computational Study. Inorg. Chem. 2004, 43, 7380–7388. [Google Scholar] [CrossRef] [PubMed]
- Pinnick, D.V.; Durham, B. Photosubstitution Reactions of Ru(bpy)2XYn+ Complexes. Inorg. Chem. 1984, 23, 1440–1445. [Google Scholar] [CrossRef]
- Stor, G.J.; Morrison, S.L.; Stufkens, D.L.; Oskam, A. The Remarkable Photochemistry of fac-XMn(CO)3(α-diimine) (X = Halide): Formation of Mn2(CO)6(α-diimine)2 via the mer Isomer and Photocatalytic Substitution of X− in the Presence of PR3. Organometallics 1994, 13, 2641–2650. [Google Scholar] [CrossRef]
- Li, G.; Zhu, D.; Wang, X.; Su, Z.; Bryce, M.R. Dinuclear Metal Complexes: Multifunctional Properties and Applications. Chem. Soc. Rev. 2020, 49, 765–838. [Google Scholar] [CrossRef]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322–5363. [Google Scholar] [CrossRef]
- Lehn, J.-M.; Ziessel, R. Photochemical Reduction of Carbon Dioxide to Formate Catalyzed by 2,2′-Bipyridine- or 1,10-Phenanthroline-Ruthenium(II) Complexes. J. Organomet. Chem. 1990, 382, 157–173. [Google Scholar] [CrossRef]
- Ishida, H.; Terada, T.; Tanaka, K.; Tanaka, T. Photochemical Carbon Dioxide Reduction Catalyzed by Bis(2,2′-bipyridine)dicarbonylruthenium(2+) Using Triethanolamine and 1-Benzyl-1,4-dihydronicotinamide as an Electron Donor. Inorg. Chem. 1990, 29, 905–911. [Google Scholar] [CrossRef]
- Ishida, H.; Tanaka, K.; Tanaka, T. Photoreduction of CO2 in the [Ru(bpy)2(CO)2]2+/[Ru(bpy)3]2+ or [Ru(phen)3]2+/Triethanolamine/N,N-Dimethylformamide System. Chem. Lett. 1987, 16, 1035–1036. [Google Scholar] [CrossRef]
- Ishida, H.; Tanaka, K.; Tanaka, T. Photochemical CO2 Reduction by an NADH Model Compound in the Presence of [Ru(bpy)3]2+ and [Ru(bpy)2(CO)2]2+ (bpy = 2,2′-Bipyridine) in H2O/DMF. Chem. Lett. 1988, 17, 339–342. [Google Scholar] [CrossRef]
- Tamaki, Y.; Morimoto, T.; Koike, K.; Ishitani, O. Photocatalytic Reduction of CO2 with a Ru(II)-Re(I) Supramolecular Complex under Visible Light: Detailed Mechanistic Study. Proc. Natl. Acad. Sci. USA. 2012, 109, 15673–15678. [Google Scholar] [CrossRef] [PubMed]
- Voyame, P.; Toghill, K.E.; Méndez, M.A.; Girault, H.H. Photoreduction of CO2 Using [Ru(bpy)2(CO)L]n+ Catalysts in Biphasic Solution/Supercritical CO2 Systems. Inorg. Chem. 2013, 52, 10949–10957. [Google Scholar] [CrossRef]
- Paul, A.; Connolly, D.; Schulz, M.; Pryce, M.T.; Vos, J.G. Effect of Water during the Quantitation of Formate in Photocatalytic Studies on CO2 Reduction in Dimethylformamide. Inorg. Chem. 2012, 51, 1977–1979. [Google Scholar] [CrossRef]
- Kuramochi, Y.; Kamiya, M.; Ishida, H. Photocatalytic CO2 Reduction in N,N-Dimethylacetamide/Water as an Alternative Solvent System. Inorg. Chem. 2014, 53, 3326–3332. [Google Scholar] [CrossRef]
- Kuramochi, Y.; Hashimoto, M.; Satake, A. Methane Formation Induced via Face-to-Face Orientation of Cyclic Fe Porphyrin Dimer in Photocatalytic CO2 Reduction. Molecules 2024, 29, 2453. [Google Scholar] [CrossRef]
- An, D.; Nishioka, S.; Yasuda, S.; Kanazawa, T.; Kamakura, Y.; Yokoi, T.; Nozawa, S.; Maeda, K. Alumina-Supported Alpha-Iron(III) Oxyhydroxide as a Recyclable Solid Catalyst for CO2 Photoreduction under Visible Light. Angew. Chem. Int. Ed. 2022, 61, e202204948. [Google Scholar] [CrossRef]
- Rotundo, L.; Grills, D.C.; Gobetto, R.; Priola, E.; Nervi, C.; Polyansky, D.E.; Fujita, E. Photochemical CO2 Reduction Using Rhenium(I) Tricarbonyl Complexes with Bipyridyl-Type Ligands with and without Second Coordination Sphere Effects. ChemPhotoChem 2021, 5, 526–537. [Google Scholar] [CrossRef]
- Hong, D.; Kawanishi, T.; Tsukakoshi, Y.; Kotani, H.; Ishizuka, T.; Kojima, T. Efficient Photocatalytic CO2 Reduction by a Ni(II) Complex Having Pyridine Pendants through Capturing a Mg2+ Ion as a Lewis-Acid Cocatalyst. J. Am. Chem. Soc. 2019, 141, 20309–20317. [Google Scholar] [CrossRef]
- Lee, S.K.; Kondo, M.; Okamura, M.; Enomoto, T.; Nakamura, G.; Masaoka, S. Function-Integrated Ru Catalyst for Photochemical CO2 Reduction. J. Am. Chem. Soc. 2018, 140, 16899–16903. [Google Scholar] [CrossRef]
- Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Visible-Light-Driven CO2 Reduction with Carbon Nitride: Enhancing the Activity of Ruthenium Catalysts. Angew. Chem. Int. Ed. 2015, 54, 2406. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Arai, T.; Morikawa, T.; Uemura, K.; Suzuki, T.M.; Tanaka, H.; Kajino, T. Selective CO2 Conversion to Formate Conjugated with H2O Oxidation Utilizing Semiconductor/Complex Hybrid Photocatalysts. J. Am. Chem. Soc. 2011, 133, 15240–15243. [Google Scholar] [CrossRef]
- Suzuki, T.M.; Yoshino, S.; Takayama, T.; Iwase, A.; Kudo, A.; Morikawa, T. Z-Schematic and Visible-Light-Driven CO2 Reduction Using H2O as an Electron Donor by a Particulate Mixture of a Ru-Complex/(CuGa)1−xZn2xS2 Hybrid Catalyst, BiVO4, and an Electron Mediator. Chem. Commun. 2018, 54, 10199–10202. [Google Scholar] [CrossRef]
- Kuramochi, Y.; Fukaya, K.; Yoshida, M.; Ishida, H. Trans-(Cl)-[Ru(5,5′-Diamide-2,2′-Bipyridine)(CO)2Cl2]: Synthesis, Structure, and Photocatalytic CO2 Reduction Activity. Chem. Eur. J. 2015, 21, 10049–10060. [Google Scholar] [CrossRef]
- Goodwin, M.J.; Dickenson, J.J.; Ripak, A.; Deetz, A.M.; McCarthy, J.S.; Meyer, G.J.; Troian-Gautier, L. Factors that Impact Photochemical Cage Escape Yields. Chem. Rev. 2024, 124, 7379–7464. [Google Scholar] [CrossRef] [PubMed]
- Nakada, A.; Koike, K.; Nakashima, T.; Morimoto, T.; Ishitani, O. Photocatalytic CO2 Reduction to Formic Acid Using a Ru(II)–Re(I) Supramolecular Complex in an Aqueous Solution. Inorg. Chem. 2015, 54, 1800–1807. [Google Scholar] [CrossRef]
- Ozawa, K.; Tamaki, Y.; Kamogawa, K.; Koike, K.; Ishitani, O. Ishitani, Factors determining formation efficiencies of one-electron-reduced species of redox photosensitizers. J. Chem. Phys. 2020, 153, 154302. [Google Scholar] [CrossRef] [PubMed]
- Draper, F.; DiLuzio, S.; Sayre, H.J.; Pham, L.N.; Coote, M.L.; Doeven, E.H.; Francis, P.S.; Connell, T.U. Maximizing Photon-to-Electron Conversion for Atom Efficient Photoredox Catalysis. J. Am. Chem. Soc. 2024, 146, 26830–26843. [Google Scholar] [CrossRef]
- Ripak, A.; Vega Salgado, A.K.; Valverde, D.; Cristofaro, S.; de Gary, A.; Olivier, Y.; Elias, B.; Troian-Gautier, L. Factors Controlling Cage Escape Yields of Closed—and Open-Shell Metal Complexes in Bimolecular Photoinduced Electron Transfer. J. Am. Chem. Soc. 2024, 146, 22818–22828. [Google Scholar] [CrossRef]
- De Kreijger, S.; Ripak, A.; Elias, B.; Troian-Gautier, L. Investigation of the Excited-State Electron Transfer and Cage Escape Yields Between Halides and a Fe(III) Photosensitizer. J. Am. Chem. Soc. 2024, 146, 10286–10292. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.; Bürgin, T.H.; Wenger, O.S. Cage Escape Governs Photoredox Reaction Rates and Quantum Yields. Nat. Chem. 2024, 16, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Ishida, H.; Fujiki, K.; Ohba, T.; Ohkubo, K.; Tanaka, K.; Terada, T.; Tanaka, T. Ligand Effects of Ruthenium 2,2′-Bipyridine and 1,10-Phenanthroline Complexes on the Electrochemical Reduction of CO2. J. Chem. Soc., Dalton Trans. 1990, 10, 2155–2160. [Google Scholar] [CrossRef]
- Ishida, H.; Tanaka, K.; Tanaka, T. Electrochemical CO2 Reduction Catalyzed by [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)CI]+. The Effect of pH on the Formation of CO and HCOO−. Organometallics 1987, 6, 181–186. [Google Scholar] [CrossRef]
- Chardon-Noblat, S.; Deronzier, A.; Ziessel, R.; Zsoldos, D. Electroreduction of CO2 Catalyzed by Polymeric [Ru(bpy)(CO)2]n Films in Aqueous Media: Parameters Influencing the Reaction Selectivity. J. Electroanal. Chem. 1998, 444, 253–260. [Google Scholar] [CrossRef]
- Chardon-Noblat, S.; Deronzier, A.; Ziessel, R.; Zsoldos, D. Selective Synthesis and Electrochemical Behavior of trans(Cl)- and cis(Cl)-[Ru(bpy)(CO)2Cl2] Complexes (bpy = 2,2′-Bipyridine). Comparative Studies of Their Electrocatalytic Activity toward the Reduction of Carbon Dioxide. Inorg. Chem. 1997, 36, 5384–5389. [Google Scholar] [CrossRef]
- Chardon-Noblat, S.; Collomb-Dunand-Sauthier, M.N.; Deronzier, A.; Ziessel, R.; Zsoldos, D. Formation of Polymeric [{Ru0(bpy)(CO)2}n] Films by Electrochemical Reduction of [Ru(bpy)2(CO)2](PF6)2: Its Implication in CO2 Electrocatalytic Reduction. Inorg. Chem. 1994, 33, 4410–4412. [Google Scholar] [CrossRef]
- Collomb-Dunand-Sauthier, M.N.; Deronzier, A.; Ziessel, R. Electrocatalytic Reduction of Carbon Dioxide with Mono(bipyridine)carbonylruthenium Complexes in Solution or as Polymeric Thin Films. Inorg. Chem. 1994, 33, 2961–2967. [Google Scholar] [CrossRef]
- Collomb-Dunand-Sauthier, M.N.; Deronzier, A.; Ziessel, R. Electrocatalytic Reduction of CO2 in Water on a Polymeric [{Ru0(bpy)(CO)2}n] (bpy = 2,2′-Bipyridine) Complex Immobilized on Carbon Electrodes. J. Chem. Soc. Chem. Commun. 1994, 189–191. [Google Scholar] [CrossRef]
- Machan, C.W.; Sampson, M.D.; Kubiak, C.P. A Molecular Ruthenium Electrocatalyst for the Reduction of Carbon Dioxide to CO and Formate. J. Am. Chem. Soc. 2015, 137, 8564–8571. [Google Scholar]
- Kuramochi, Y.; Itabashi, J.; Toyama, M.; Ishida, H. Photochemical CO2 Reduction Catalyzed by trans(Cl)-[Ru(2,2′-Bipyridine)(CO)2Cl2] Bearing Two Methyl Groups at 4,4′-, 5,5′- or 6,6′-Positions in the Ligand. ChemPhotoChem 2018, 2, 314–322. [Google Scholar] [CrossRef]
- Kuramochi, Y.; Itabashi, J.; Fukaya, K.; Enomoto, A.; Yoshida, M.; Ishida, H. Unexpected Effect of Catalyst Concentration on Photochemical CO2 Reduction by trans(Cl)–Ru(bpy)(CO)2Cl2: New Mechanistic Insight into the CO/HCOO− Selectivity. Chem. Sci. 2015, 6, 3063–3074. [Google Scholar] [CrossRef] [PubMed]
- Kavarnos, G.J. Fundamentals of Photoinduced Electron Transfer; VCH Publishers: New York, NY, USA, 1993. [Google Scholar]
- Thompson, D.W.; Ito, A.; Meyer, T.J. [Ru(bpy)3]2+* and other remarkable metal-to-ligand charge transfer (MLCT) excited states. Pure. Appl. Chem. 2013, 85, 1257–1305. [Google Scholar] [CrossRef]
- Bock, C.R.; Connor, J.A.; Gutierrez, A.R.; Meyer, T.J.; Whitten, D.G.; Sullivan, B.P.; Nagle, J.K. Estimation of Excited-State Redox Potentials by Electron-Transfer Quenching. Application of Electron-Transfer Theory to Excited-State Redox Processes. J. Am. Chem. Soc. 1979, 101, 4815–4824. [Google Scholar] [CrossRef]
- Kim, H.-B.; Kitamura, N.; Kawanishi, Y.; Tazuke, S. Photoinduced Electron-Transfer Reactions of Ruthenium(II) Complexes. 2. Oxidative Quenching of Excited Ru(bpy)32+ by Neutral Organic Electron Acceptors. J. Phys. Chem. 1989, 93, 5757–5764. [Google Scholar] [CrossRef]
- Kitamura, N.; Kim, H.-B.; Okano, S.; Tazuke, S. Photoinduced Electron-Transfer Reactions of Ruthenium(II) Complexes. 1. Reductive Quenching of Excited Ru(bpy)32+ by Aromatic Amines. J. Phys. Chem. 1989, 93, 5750–5756. [Google Scholar] [CrossRef]
- Kim, H.-B.; Kitamura, N.; Kawanishi, Y.; Tazuke, S. Bell-Shaped Temperature Dependence in Quenching of Excited Ru(bpy)32+ by Organic Acceptor. J. Am. Chem. Soc. 1987, 109, 2506–2508. [Google Scholar] [CrossRef]
- Sun, H.; Hoffman, M.Z. Reductive Quenching of the Excited States of Ruthenium(II) Complexes Containing 2,2′-Bipyridine, 2,2′-Bipyrazine, and 2,2′-Bipyrimidine Ligands. J. Phys. Chem. 1994, 98, 11719–11726. [Google Scholar] [CrossRef]
- Hoffman, M.Z. Cage Escape Yields from the Quenching of *Ru(bpy)32+ by Methylviologen in Aqueous Solution. J. Phys. Chem. 1988, 92, 3458–3464. [Google Scholar] [CrossRef]
- Prasad, D.R.; Hessler, D.; Hoffman, M.Z. Quantum yield of formation of methylviologen radical cation from the photolysis of the Ru(bpz)32+/methylviologen/EDTA system. Chem. Phys. Lett. 1985, 121, 61–64. [Google Scholar] [CrossRef]
- Petersen, R.C. Petersen, Interactions in the binary liquid system N,N-Dimethylacetamide—Water: Viscosity and density. J. Phys. Chem. 1960, 64, 184–185. [Google Scholar] [CrossRef]
- Assarsson, P.; Eirich, F.R. Properties of Amides in Aqueous Solution. I. A. Viscosity and Density Changes of Amide-Water Systems. B. An Analysis of Volume Deficiencies of Mixtures Based on Molecular Size Differences (Mixing of Hard Spheres). J. Phys. Chem. 1968, 72, 2710–2719. [Google Scholar] [CrossRef]
- Hamada, T.; Tsukamoto, M.; Ohtsuka, H.; Sakaki, S. Charge Effects in Photoinduced Electron-Transfer Reactions between [Ru(bpy)3]2+ and Viologen Derivatives. Bull. Chem. Soc. Jpn. 1998, 71, 2281–2291. [Google Scholar] [CrossRef]
- Clark, C.D.; Hoffman, M.Z. Ion-Pairing Control of Excited-State Electron-Transfer Reactions. Quenching, Charge Recombination, and Back Electron Transfer. J. Phys. Chem. 1996, 100, 7526–7532. [Google Scholar] [CrossRef]
- Pac, C.; Miyauchi, Y.; Ishitani, O.; Ihama, M.; Yasuda, M.; Sakurai, H. Redox-Photosensitized Reactions. II. Ru(bpy)32+-Photosensitized Reactions of 1-Benzyl-1,4-dihydronicotinamide with Aryl-Substituted Enones, Derivatives of Methyl Cinnamate, and Substituted Cinnamonitriles: Electron-Transfer Mechanism and Structure-Reactivity Relationships. J. Org. Chem. 1984, 49, 26–34. [Google Scholar]
- Fukuzumi, S.; Koumitsu, S.; Hironaka, K.; Tanaka, T. Energetic Comparison between Photoinduced Electron-Transfer Reactions from NADH Model Compounds to Organic and Inorganic Oxidants and Hydride-Transfer Reactions from NADH Model Compounds to p-Benzoquinone Derivatives. J. Am. Chem. Soc. 1987, 109, 305–316. [Google Scholar] [CrossRef]
- Sreenath, K.; Suneesh, C.V.; Gopidas, K.R.; Flowers, R.A., II. Generation of Triarylamine Radical Cations through Reaction of Triarylamines with Cu(II) in Acetonitrile. A Kinetic Investigation of the Electron-Transfer Reaction. J. Phys. Chem. A 2009, 113, 6477–6483. [Google Scholar] [CrossRef] [PubMed]
- Rohdewald, P.; Moldner, M. Dielectric Constants of Amide-Water Systems. J. Phys. Chem. 1973, 77, 373–377. [Google Scholar] [CrossRef]
- Aminabhavi, T.M.; Gopalakrishna, B. Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of N,N-Dimethylformamide, Dimethyl Sulfoxide, N,N-Dimethylacetamide, Acetonitrile, Ethylene Glycol, Diethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K. J. Chem. Eng. Data 1995, 40, 856–861. [Google Scholar]
- Ohno, T.; Yoshimura, A.; Mataga, N. Bell-Shaped Energy Gap Dependence of Backward Electron-Transfer Rate of Geminate Radical Pairs Produced by Electron-Transfer Quenching of Ru(II) Complexes by Aromatic Amines. J. Phys. Chem. 1986, 90, 3295–3297. [Google Scholar] [CrossRef]
- Kelly, J.M.; O’Connell, C.M.; Vos, J.G. Preparation, Spectroscopic Characterisation, Electrochemical and Photochemical Properties of cis-Bis(2,2’-Bipyridyl)Carbonylruthenium(II) Complexes. J. Chem. Soc. Dalton Trans. 1986, 253–258. [Google Scholar]
- Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishi, S.; Tobita, S. Reevaluation of Absolute Luminescence Quantum Yields of Standard Solutions Using a Spectrometer with an Integrating Sphere and a Back-Thinned CCD Detector. Phys. Chem. Chem. Phys. 2009, 11, 9850–9860. [Google Scholar] [CrossRef]
- Mauzerall, D.; Westheimer, F.H. 1-Benzyldihydronicotinamide—A Model for Reduced DPN. J. Am. Chem. Soc. 1955, 77, 2261–2264. [Google Scholar] [CrossRef]
Water Content [Vol.%] | Viscosity [a] [mPa s (=cP)] | kdiff [M−1s−1] | kq [b] [M−1s−1] |
---|---|---|---|
0 | 0.93 | 7.1 × 109 | 4.5 × 108 |
10 | 1.9 | 3.5 × 109 | 2.6 × 108 |
20 | 3.1 | 2.1 × 109 | 1.3 × 108 |
30 | 3.9 | 1.7 × 109 | 9.8 × 107 |
40 | 3.9 | 1.7 × 109 | 5.5 × 107 |
Water Content [vol.%] | Emission Peak [nm] ([eV]) | E1/2 [a] (BNAH+/BNAH) [V] | E1/2 [a] (Ru2+/Ru+) [V] | wp [eV] |
---|---|---|---|---|
0 | 617 (2.01) | +0.14 | −1.65 | 0.0268 |
10 | 613 (2.00) | +0.14 | −1.68 | 0.0238 |
20 | 615 (2.02) | +0.14 | −1.71 | 0.0200 |
30 | 613 (2.02) | +0.14 | −1.73 | 0.0176 |
40 | 613 (2.02) | +0.14 | −1.76 | 0.0162 |
Water Content [Vol.%] | εs [a] | n [b] | λo/4 [eV] | −∆GET [eV] | kq’ [M−1s−1] |
---|---|---|---|---|---|
0 | 38.9 | 1.44 | 0.120 | 0.307 | 4.8 × 108 |
10 | 43.9 | 1.43 | 0.121 | 0.279 | 2.8 × 108 |
20 | 52.3 | 1.43 | 0.123 | 0.253 | 1.4 × 108 |
30 | 59.3 | 1.42 | 0.125 | 0.234 | 1.0 × 108 |
40 | 64.3 | 1.41 | 0.127 | 0.200 | 5.7 × 107 |
Water Content [vol.%] | ηq [a] | kCE [s−1] | kCE ηq/kCE’ ηq’ [b] | TON [c] | |
---|---|---|---|---|---|
[Ru(bpy)2(CO)2]2+ | Trans(Cl)-[Ru(Ac-5Bpy-NHMe)(CO)2Cl2] | ||||
0 | 0.98 | 1.7 × 109 | 2.2 | 154 (0.59) | 203 (0.97) |
10 | 0.96 | 8.0 × 108 | 1 | 258 (1) | 209 (1) |
20 | 0.91 | 4.6 × 108 | 0.54 | 202 (0.78) | 102 (0.49) |
30 | 0.89 | 3.5 × 108 | 0.41 | 145 (0.56) | 64 (0.31) |
40 | 0.81 | 3.4 × 108 | 0.36 | 104 (0.40) | 45 (0.22) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuramochi, Y.; Kamiya, M.; Ishida, H. Exploring the Impact of Water Content in Solvent Systems on Photochemical CO2 Reduction Catalyzed by Ruthenium Complexes. Molecules 2024, 29, 4960. https://doi.org/10.3390/molecules29204960
Kuramochi Y, Kamiya M, Ishida H. Exploring the Impact of Water Content in Solvent Systems on Photochemical CO2 Reduction Catalyzed by Ruthenium Complexes. Molecules. 2024; 29(20):4960. https://doi.org/10.3390/molecules29204960
Chicago/Turabian StyleKuramochi, Yusuke, Masaya Kamiya, and Hitoshi Ishida. 2024. "Exploring the Impact of Water Content in Solvent Systems on Photochemical CO2 Reduction Catalyzed by Ruthenium Complexes" Molecules 29, no. 20: 4960. https://doi.org/10.3390/molecules29204960
APA StyleKuramochi, Y., Kamiya, M., & Ishida, H. (2024). Exploring the Impact of Water Content in Solvent Systems on Photochemical CO2 Reduction Catalyzed by Ruthenium Complexes. Molecules, 29(20), 4960. https://doi.org/10.3390/molecules29204960