Glycerol Carbonate as an Emulsifier for Light Crude Oil: Synthesis, Characterization, and Stability Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of GC
2.2. Chemical Structure Determination of GC
2.3. Critical Micelle Concentration (CMC)
2.4. Interaction with Light Crude Oil
2.4.1. Preparation of Emulsions and Stability
2.4.2. Superficial and Interfacial Tension and Surface Tension Reduction Effectiveness (∏cmc)
2.5. Optical Microscopy
3. Materials and Methods
3.1. Synthesis and Characterization of GC
3.2. Critical Micelle Concentration (CMC) of GC
3.3. Light Crude Oil
3.4. Preparation and Stability of Emulsions
3.5. Optical Microscopy
3.6. Interfacial and Surface Tension
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Midmore, B.R. Synergy between silica and polyoxyethylene surfactants in the formation of O/W emulsions. Colloids Surf. A 1998, 145, 133–143. [Google Scholar] [CrossRef]
- Aveyard, R.; Binks, B.P.; Clint, J.H. Emulsions stabilized solely by colloidal particles. Adv. Colloid Interface Sci. 2003, 100–102, 503–546. [Google Scholar] [CrossRef]
- McCelements, D.J. Food Emulsions: Principles, Practices, and Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Hiemenz, P.C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry, 3rd ed.; Marcel Dekker: New York, NY, USA, 1997. [Google Scholar]
- Israelachvili, J. Intermolecular and Surface Forces, 3rd ed.; Academic Press: London, UK, 2011. [Google Scholar]
- Kralova, I.; Sjoblom, J. Surfactants Used in Food Industry: A Review. J. Dispers. Sci. Technol. 2009, 30, 1363–1383. [Google Scholar] [CrossRef]
- Ahmed, N.S.; Nassar, A.M.; Zaki, N.N.; Gharieb, H.K. Formation of fluid heavy oil-in-water emulsions for pipeline transportation. J. Fuel 1999, 78, 593–600. [Google Scholar] [CrossRef]
- Kokal, S.L. Crude-oil emulsions: A state-of-the-art review. SPE Prod. Facil. 2005, 20, 5–13. [Google Scholar] [CrossRef]
- Hasan, S.W.; Ghannam, M.T.; Esmail, N. Heavy crude oil viscosity reduction and rheology for pipeline transportation. Fuel 2010, 89, 1095–1100. [Google Scholar] [CrossRef]
- Santos, I.C.M.; Oliveira, P.F.; Mansur, C.R.E. Factors that affect crude oil viscosity and techniques to reduce it: A review. Braz. J. Pet. Gas 2017, 11, 115–130. [Google Scholar] [CrossRef]
- Hossein, A.; Hasan, K. Study on emulsification of crude oil in water using emulsan biosurfactant for pipeline transportation. Pet. Sci. Technol. 2016, 34, 216–222. [Google Scholar]
- Deutsche Gesellschaft für Fettwissenschaft. Book Lipid/Fett; Wiley: Weinheim, Germany, 1999; Volume 101. [Google Scholar]
- Jahan, S.K.; Balzer, P.M. Environmental Toxicology II; WIT Press: Southampton, UK, 2008; Volume 110, pp. 281–290. [Google Scholar]
- Lewis, M.A. Chronic and sublethal toxicities of surfactants to aquatic animals: A review and risk assessment. Water Res. 1991, 25, 101–113. [Google Scholar] [CrossRef]
- Hall, W.S.; Patoczka, J.B.; Mirenda, R.J.; Porter, B.A.; Miller, E. Acute toxicity of industrial surfactants to Mysidopsis bahia. Arch. Environ. Contam. Toxicol. 1989, 18, 765–772. [Google Scholar] [CrossRef]
- Sonnati, M.O.; Amigoni, S.; de Givenchy, E.P.T.; Darmanin, T.; Choulet, O.; Guittard, F. Glycerol carbonate as a versatile building block for tomorrow: Synthesis, reactivity, properties and applications. Green Chem. 2013, 15, 283–306. [Google Scholar] [CrossRef]
- Clements, J.H. Reactive application of Cyclic alkyliene carbonates. Ind. Eng. Chem. Res. 2003, 42, 663–674. [Google Scholar] [CrossRef]
- Ochoa-Gómez, J.R.; Gómez-Jiménez-Aberasturi, O.; Ramírez-López, C.; Belsué, M. A brief review on industries al alternatives for the manufacturing of glycerol carbonate, a green chemical. Org. Process Res. Dev. 2012, 16, 389–399. [Google Scholar] [CrossRef]
- Dibenedetto, A.; Angelini, A.; Aresta, M.; Ethiraj, J.; Fragale, C.; Nocito, F. Conversion wastes into added value products: From glycerol to glycerol carbonate, glycidol, and epichlorohydrin using environmentally friendly synthetic routes. Tetrahedron 2011, 67, 1308–1313. [Google Scholar] [CrossRef]
- Roschat, W.; Phewphong, S.; Kaewpuang, T.; Promara, V. Synthesis of glycerol carbonate from transesterification of glycerol with dimethyl carbonate catalyzed by Cao from natural Sources as green and economical catalyst. Mater. Today Proc. 2018, 5, 13909–13915. [Google Scholar] [CrossRef]
- Mizuno, T.; Nakai, T.; Mihara, M. Facile synthesis of glycerol carbonate from glycerol using selenium-catalyzed carbonylation with carbon monoxide. Heteroat. Chem. 2010, 21, 541–545. [Google Scholar] [CrossRef]
- Zhang, Z.; Rackemann, D.W.; Dotherty, W.O.S.; O’Hara, I.M. Glycerol carbonate as green solvent for pretreatmen of sugarcaene bagasse. Biotechnol. Biofuels 2013, 6, 153. [Google Scholar] [CrossRef]
- Schäffner, B.; Schäffner, F.; Verevkin, S.P.; Börner, A. Organic Carbonates as solvents in synthesis and catalysis. Chem. Rev. 2010, 110, 4554–4581. [Google Scholar] [CrossRef]
- Maria, S.; Krister, H. Hyddrolyzable nonionic surfactants: Stability and physicochemical properties of surfactants containing carbonate, esters, and amide bonds. J. Colloid Interface Sci. 2005, 291, 570–576. [Google Scholar]
- Chen, B.H.; Miller, C.A.; Garrett, P.R. Rates of solubilization of triolien/fatty acid mixtures by nonionic surfactant solutions. Langmuir 1998, 14, 31–41. [Google Scholar] [CrossRef]
- Fuji, K.; Kondo, W.; Anorg, Z. Calcium glyceroxides formed in the System of calcium oxide-glycerol. J. Inorg. Gen. Chem. 1968, 359, 296–304. [Google Scholar] [CrossRef]
- Pretsch, E.; Buhlmann, P.; Affolter, C. Tables of Spectral Data for Structure Determination of Organic Compounds, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1989; p. 185. [Google Scholar]
- Platero-Prats, A.E.; de la Peña-O’Shea, V.A.; Snejko, N.; Monge, Á.; Gutiérrez-Puebla, E. Dynamic Calcium Metal-Organic Framework Acts a Selective Organic Solvent Sponge. Chem. Eur. J. 2010, 16, 11632–11640. [Google Scholar] [CrossRef] [PubMed]
- Murugavel, R.; Korah, R. Structural Diversity and Supramolecular Aggregation in Calcium, Strontium and Barium Salicylates Incorporating 1, 10-phenanthroline and 4,4, -Bipyridine: Probing the Softer Side of group 2 metal ions with Pyridinic Ligands. Inorg. Chem. 2007, 46, 11048–11062. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Hu, D.; Yao, F.; Zhu, Y. Characterization of TEMPO-oxidized cellulose scaffolds for tissue engineering applications. Mater. Chem. Phys. 2013, 143, 373–379. [Google Scholar] [CrossRef]
- Kaur, A.; Parkash, R.; Ali, A. 1H NMR assisted quantification of glycerol carbonate in the mixture of glycerol and glycerol carbonate. Talanta 2018, 178, 1001–1005. [Google Scholar] [CrossRef]
- Michele, A.; Angela, F.; Francesco, N.; Carla, F. Valorization of Bio-glycerol: New catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. J. Catal. 2009, 268, 106–114. [Google Scholar]
- Zdziennicka, A.; Szymczcyk, K.; Krawczyk, J.; Jańczuk, B. Critical micelle concentration of some surfactants and thermodynamic parameter of their micellization. Fluid Phase Equilibria 2012, 322–323, 126–134. [Google Scholar] [CrossRef]
- Hailm, N.H.; Panuganti, S.R.; Misra, S.; Ibrahim, J.M.B.M. Emulsion stability prediction tool. Egypt. J. Pet. 2023, 32, 19–25. [Google Scholar] [CrossRef]
- Magniont, C.; Escadeillas, G.; Oms-Multon, C.; De Caro, P. The benefits of incorporating glycerol carbonate into an innovative pozzolanic matrix. Cem. Concr. Res. 2010, 40, 1072–1080. [Google Scholar] [CrossRef]
- Soni, M. A simple laboratory experiment to measure the surface tension of a liquid in contact with air. J. Pharmacogn. Phytochem. 2019, 8, 2197–2202. [Google Scholar]
- Mateo, S. Proprietés Physico-Chimiques et Réactivité du Carbonate de Glycerol-Faisabilité de L’btention des α-Monoéthers de Glycérol et Propriétés Solvantes. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2001. [Google Scholar]
- Mohammed, R.A.; Bailey, A.I.; Luckham, P.F.; Taylor, S.E. Dewatering of crude oil emulsions 2 Interfacial properties of the asphaltene constituents of crude oil. Colloids Surf. A Physicochem. Eng. Asp. 1993, 80, 237–242. [Google Scholar] [CrossRef]
- Chen, H.; Han, L.; Luo, P.; Ye, Z. The ultralow interfacial tension between crude oils and gemini surfactant solutions. J. Colloid Interface Sci. 2005, 285, 872–874. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Ke, H.; Wang, T.; Xiao, J.; Du, N.; Yu, L. Self-assembly of imidazolium-based surfec active ionic liquids in aqueous solution: The role of different substituent group on aromatic counterions. J. Mol. Liq. 2017, 240, 556–563. [Google Scholar] [CrossRef]
- Zhao, M.; Zheng, L. Micelle formation by N-alky-N-methylpyrrolidinium bromide in aqueous solution. Phys. Chem. Chem. Phys. 2011, 13, 1332–1337. [Google Scholar] [CrossRef]
- Nazar, M.; Shah, M.U.H.; Yahya, W.Z.N.; Goto, M.; Moniruzzaman, M. Surface active ionic liquid and Teen-80 blend as an effective dispersant for crude oil spill remediation. Environ. Technol. Innov. 2021, 24, 101868. [Google Scholar] [CrossRef]
- Riehm, D.A.; McCormick, A.V. The role of dispersants’ dynamic interfacial tension in effective crude oil spill dispersion. Mar. Pollut. Bull. 2014, 84, 155–163. [Google Scholar] [CrossRef]
- Whitby, C.P.; Djerdjev, A.M.; Beattie, J.K.; Warr, G.G. In situ Determination of the Size and Polydispersity of Concentrated Emulsions. Langmuir 2007, 23, 1694–1700. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, F.; Zhang, Z.; Ren, C.; Lin, Y. Micellization and thermodynamic study of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids in aqueous solution. J. Chem. Eng. Data 2014, 59, 1120–1129. [Google Scholar] [CrossRef]
- Bhat, A.R.; Wani, F.A.; Alzahrani, K.A.; Alshehri, A.A.; Malik, M.A.; Patel, R. Effect of rifampicin on the interfacial properties of imidazolium ionic liquids and its solubility therein. J. Mol. Liq. 2019, 292, 111347. [Google Scholar] [CrossRef]
- Kumar, H.; Sharma, P. Influence of amphiphilic drugs on the micellization behavior of imidazolium based ionic liquids: A review. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2022; Volume 2357, p. 030021. [Google Scholar]
- Pal, A.; Chaudhary, S. Ionic liquids effect on critical micelle concentration of SDS: Conductivity, fluorescence and NMR studies. Fluid Phase Equilibria 2014, 372, 100–104. [Google Scholar] [CrossRef]
- Fuguet, E.; Ràfols, C.; Rosés, M.; Bosch, E. Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal. Chim. Acta 2005, 548, 95–100. [Google Scholar] [CrossRef]
- Kodavaty, J.; Singh, M.; Bharti, A. Investigation of critical micelles concentration of saccharide-surfactant-polymer complex. Mater. Today Proc. 2023, 72, 511–513. [Google Scholar] [CrossRef]
- Mabrouk, M.M.; Hamed, N.A.; Mansour, F.R. Spectroscopic methods for determination of critical micelle concentrations of surfactants; a comprehensive review. Appl. Spectrosc. Rev. 2003, 58, 206–234. [Google Scholar] [CrossRef]
- Atta, N.F.; Darwish, S.A.; Khalil, S.E.; Galal, A. Effect of surfactants on the voltammetric response and determination of an antihypertensive drug. Talanta 2007, 72, 1438–1445. [Google Scholar] [CrossRef]
- Racaud, C.; Groenen Serrano, K.; Savall, A. Voltammetric determination of the critical micellar concentration of surfactants by using a boron doped diamond anode. J. Appl. Electrochem. 2010, 40, 1845–1851. [Google Scholar] [CrossRef]
- Villalobos-Neri, E.E.; Páramo-García, U.; Mayen-Mondragon, R.; Gallardo-Rivas, N.V. Electrochemical study of interaction between imidazole-based-ionic-liquid and light petroleum in oil/water emulsion. Int. J. Electrochem. Sci. 2021, 16, 210611. [Google Scholar] [CrossRef]
- Plassard, L.; Mouret, A.; Nieto-Draghi, C.; Dalmazzone, C.; Langevin, D.; Argillier, J.F. Comparison of Methods Used to Investigate Coalescence in Emulsions. Langmuir 2024, 40, 10847–10855. [Google Scholar] [CrossRef]
- Adeyemi, B.J.; Sulaimon, A.A. Investigating the kinetics of water-in-crude oil emulsion stability. ARPN J. Eng. Appl. Sci. 2015, 10, 7131–7136. [Google Scholar]
- Wang, X.; Alvarado, V. Effects of aqueous-phase salinity on water-in-crude oil emulsion stability. J. Dispers. Sci. Technol. 2012, 33, 165–170. [Google Scholar] [CrossRef]
- Daaou, M.; Bendedouch, D. Water pH and surfactant addition effects on the stability of an Algerian crude oil emulsion. J. Saudi Chem. Soc. 2012, 16, 333–337. [Google Scholar] [CrossRef]
- Bashforth, F.; Adams, J.C. An Attempt to Test the Theory of Capillary Action; Cambridge University Press: London, UK, 1883. [Google Scholar]
Emulsion | Time (Days) | |
---|---|---|
Without GC | With GC | |
80/20 | 41 | 19 |
40 | 21 | |
41 | 20 | |
70/30 | 48 | 25 |
49 | 24 | |
52 | 28 | |
60/40 | 36 | 13 |
34 | 11 | |
37 | 16 |
Emulsion | ƴ = mN/m | Interfacial Tension | ∏cmc | |
---|---|---|---|---|
Without GC | GC | mN/m | ||
80/20 | 37.38 | 33.02 | 30.73 | 68.698 |
70/30 | 36.29 | 32.43 | 17.15 | 68.757 |
70/30 | 36.29 | 32.43 | 17.15 | 68.757 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales Cepeda, A.B.; Villalobos Neri, E.E.; Macclesh del Pino Pérez, L.A.; Gonzalez Pedraza, E.J. Glycerol Carbonate as an Emulsifier for Light Crude Oil: Synthesis, Characterization, and Stability Analysis. Molecules 2024, 29, 4937. https://doi.org/10.3390/molecules29204937
Morales Cepeda AB, Villalobos Neri EE, Macclesh del Pino Pérez LA, Gonzalez Pedraza EJ. Glycerol Carbonate as an Emulsifier for Light Crude Oil: Synthesis, Characterization, and Stability Analysis. Molecules. 2024; 29(20):4937. https://doi.org/10.3390/molecules29204937
Chicago/Turabian StyleMorales Cepeda, Ana Beatriz, Elda Elizabeth Villalobos Neri, Luis Alejandro Macclesh del Pino Pérez, and Eric Joaquin Gonzalez Pedraza. 2024. "Glycerol Carbonate as an Emulsifier for Light Crude Oil: Synthesis, Characterization, and Stability Analysis" Molecules 29, no. 20: 4937. https://doi.org/10.3390/molecules29204937
APA StyleMorales Cepeda, A. B., Villalobos Neri, E. E., Macclesh del Pino Pérez, L. A., & Gonzalez Pedraza, E. J. (2024). Glycerol Carbonate as an Emulsifier for Light Crude Oil: Synthesis, Characterization, and Stability Analysis. Molecules, 29(20), 4937. https://doi.org/10.3390/molecules29204937