Recent Advances in Antifreeze Peptide Preparation: A Review
Abstract
:1. Introduction
2. Formation of Ice Crystals and Their Damage to Cells
2.1. Formation of Ice Crystals
2.1.1. Ice Crystallization
- (a)
- Nucleation of ice crystals
- (b) Growth of ice crystals
2.1.2. Ice Recrystallization
2.2. Ice Crystal-Induced Cell Damage
2.2.1. Osmotic Damage and CPA Toxicity-Induced Damage
2.2.2. Mechanical Injury
3. Proteolysis from Antifreezing Protein
4. Chemical Synthesis of Antifreezing Peptides
4.1. Antifreezing Peptides Based Ala-Dominated Sequence
4.2. Antifreezing Peptides Based on Proline
4.3. Antifreezing Peptides Based on Threonine
4.4. Antifreezing Peptides Based on Lysine
4.5. Other Chemical Synthesis Antifreezing Peptides
5. Microbial Synthesis of Antifreezing Peptides
6. Other Antifreezing Materials
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chang, T.; Zhao, G. Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. Adv. Sci. 2021, 8, 2002425. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, F.; Chen, X.; Cai, X.; Wu, J.; Du, M.; Huang, J.; Wang, S. Molecular simulation -based research on antifreeze peptides: Advances and perspectives. J. Futur. Foods 2022, 2, 203–212. [Google Scholar] [CrossRef]
- Biggs, C.I.; Bailey, T.L.; Graham, B.; Stubbs, C.; Fayter, A.; Gibson, M.I. Polymer mimics of biomacromolecular antifreezes. Nat. Commun. 2017, 8, 1546. [Google Scholar] [CrossRef]
- Bai, B.; Xue, C.; Wen, Y.; Lim, J.; Le, Z.; Shou, Y.; Shin, S.; Tay, A. Cryopreservation in the Era of Cell Therapy: Revisiting Fundamental Concepts to Enable Future Technologies. Adv. Funct. Mater. 2023, 33, 2303373. [Google Scholar] [CrossRef]
- Sun, L.; Zhu, Z.; Sun, D.-W. Regulating ice formation for enhancing frozen food quality: Materials, mechanisms and challenges. Trends Food Sci. Technol. 2023, 139, 104116. [Google Scholar] [CrossRef]
- Du, X.; Wang, B.; Li, H.; Liu, H.; Shi, S.; Feng, J.; Pan, N.; Xia, X. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4812–4846. [Google Scholar] [CrossRef]
- Ekpo, M.D.; Xie, J.; Hu, Y.; Liu, X.; Liu, F.; Xiang, J.; Zhao, R.; Wang, B.; Tan, S. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking. Int. J. Mol. Sci. 2022, 23, 2639. [Google Scholar] [CrossRef]
- Xiang, H.; Yang, X.; Ke, L.; Hu, Y. The properties, biotechnologies, and applications of antifreeze proteins. Int. J. Biol. Macromol. 2020, 153, 661–675. [Google Scholar] [CrossRef]
- Baskaran, A.; Kaari, M.; Venugopal, G.; Manikkam, R.; Joseph, J.; Bhaskar, P.V. Anti freeze proteins (Afp): Properties, sources and applications—A review. Int. J. Biol. Macromol. 2021, 189, 292–305. [Google Scholar] [CrossRef]
- Chen, X.; Wu, J.; Cai, X.; Wang, S. Production, structure–function relationships, mechanisms, and applications of antifreeze peptides. Compr. Rev. Food Sci. Food Saf. 2021, 20, 542–562. [Google Scholar] [CrossRef]
- Liu, M.; Bai, S.; Jiang, Z.; Li, H.; Tu, Z.; Liao, T.; Yu, W.; Qiu, L. Identification and isolation of a novel antifreeze peptide from crayfish shells. LWT 2024, 198, 116030. [Google Scholar] [CrossRef]
- Jenkelunas, P.J.; Li-Chan, E.C. Production and assessment of Pacific hake (Merluccius productus) hydrolysates as cryoprotectants for frozen fish mince. Food Chem. 2018, 239, 535–543. [Google Scholar] [CrossRef]
- Gandini, E.; Sironi, M.; Pieraccini, S. Modelling of short synthetic antifreeze peptides: Insights into ice-pinning mechanism. J. Mol. Graph. Model. 2020, 100, 107680. [Google Scholar] [CrossRef]
- Dissanayake, R.; Combita, D.; Ahmed, M. Enhanced Cryopreservation Efficacies of Ice Recrystallization Inhibiting Nanogels. ACS Appl. Mater. Interfaces 2023, 15, 45689–45700. [Google Scholar] [CrossRef]
- Cui, Y.; Nash, A.M.; Castillo, B.; Solis, L.D.S.; Aghlara-Fotovat, S.; Levitan, M.; Kim, B.; Diehl, M.; Veiseh, O. Development of Serum-Free Media for Cryopreservation of Hydrogel Encapsulated Cell-Based Therapeutics. Cell. Mol. Bioeng. 2022, 15, 425–437. [Google Scholar] [CrossRef]
- Ng, J.Y.; Tan, K.Y.F.; Ee, P.L.R. Sugar-Assisted Cryopreservation of Stem Cell-Laden Gellan Gum–Collagen Interpenetrating Network Hydrogels. Biomacromolecules 2022, 23, 2803–2813. [Google Scholar] [CrossRef]
- Weng, L.; Beauchesne, P.R. Dimethyl sulfoxide-free cryopreservation for cell therapy: A review. Cryobiology 2020, 94, 9–17. [Google Scholar] [CrossRef]
- Murray, K.A.; Gibson, M.I. Chemical approaches to cryopreservation. Nat. Rev. Chem. 2022, 6, 579–593. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, W.; Wei, H.; Deng, S.; Yu, X.; Huang, T. The mechanisms and applications of cryoprotectants in aquatic products: An overview. Food Chem. 2023, 408, 135202. [Google Scholar] [CrossRef]
- Parandi, E.; Pero, M.; Kiani, H. Phase change and crystallization behavior of water in biological systems and innovative freezing processes and methods for evaluating crystallization. Discov. Food 2022, 2, 6. [Google Scholar] [CrossRef]
- Lin, M.; Cao, H.; Li, J. Control strategies of ice nucleation, growth, and recrystallization for cryopreservation. Acta Biomater. 2023, 155, 35–56. [Google Scholar] [CrossRef]
- Zaragotas, D.; Liolios, N.T.; Anastassopoulos, E. Supercooling, ice nucleation and crystal growth: A systematic study in plant samples. Cryobiology 2016, 72, 239–243. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.-Y. Control of ice nucleation: Freezing and antifreeze strategies. Chem. Soc. Rev. 2018, 47, 7116–7139. [Google Scholar] [CrossRef]
- Sreter, J.A.; Foxall, T.L.; Varga, K. Intracellular and Extracellular Antifreeze Protein Significantly Improves Mammalian Cell Cryopreservation. Biomolecules 2022, 12, 669. [Google Scholar] [CrossRef]
- Pegg, D.E. The relevance of ice crystal formation for the cryopreservation of tissues and organs. Cryobiology 2020, 93, 3–11. [Google Scholar] [CrossRef]
- Liu, X.; Hu, Y.; Zhang, W.; Yang, D.; Pan, Y.; Ekpo, M.D.; Xie, J.; Zhao, R.; Tan, S. Tricine as a Novel Cryoprotectant with Osmotic Regulation, Ice Recrystallization Inhibition and Antioxidant Properties for Cryopreservation of Red Blood Cells. Int. J. Mol. Sci. 2022, 23, 8462. [Google Scholar] [CrossRef]
- Ninagawa, T.; Eguchi, A.; Kawamura, Y.; Konishi, T.; Narumi, A. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera. Cryobiology 2016, 73, 20–29. [Google Scholar] [CrossRef]
- Wragg, N.M.; Tampakis, D.; Stolzing, A. Cryopreservation of Mesenchymal Stem Cells Using Medical Grade Ice Nucleation Inducer. Int. J. Mol. Sci. 2020, 21, 8579. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; Ekpo, M.D.; Chen, J.; Chen, X.; Zhang, W.; Zhao, R.; Xie, J.; He, Y.; Tan, S. Dimethylglycine Can Enhance the Cryopreservation of Red Blood Cells by Reducing Ice Formation and Oxidative Damage. Int. J. Mol. Sci. 2023, 24, 6696. [Google Scholar] [CrossRef]
- Tas, R.P.; Sampaio-Pinto, V.; Wennekes, T.; van Laake, L.W.; Voets, I.K. From the freezer to the clinic. Embo Rep. 2021, 22, e52162. [Google Scholar] [CrossRef]
- Xie, Y.; Zhu, K.; Wang, Y.; Chen, T. Effect of cytoskeleton on ice crystal growth in cells during freezing. Int. J. Food Prop. 2018, 21, 2400–2410. [Google Scholar] [CrossRef]
- Yang, F.; Jiang, W.; Chen, X.; Wu, J.; Huang, J.; Cai, X.; Wang, S. Investigation on the quality regulating mechanism of antifreeze peptides on frozen surimi: From macro to micro. Food Res. Int. 2023, 163, 112299. [Google Scholar] [CrossRef]
- Cui, M.; Li, J.; Li, J.; Wang, F.; Li, X.; Yu, J.; Huang, Y.; Liu, Y. Screening and characterization of a novel antifreeze peptide from silver carp muscle hydrolysate. Food Chem. 2023, 403, 134480. [Google Scholar] [CrossRef]
- Dang, M.; Wang, R.; Jia, Y.; Du, J.; Wang, P.; Xu, Y.; Li, C. The Antifreeze and Cryoprotective Activities of a Novel Antifreeze Peptide from Ctenopharyngodon idella Scales. Foods 2022, 11, 1830. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, H.; Qi, D.; Motta, A.; Fröhlich-Nowoisky, J.; Chen, J.; Sun, Y.; Bonn, M. Ice Recrystallization Inhibition Activity of Silk Proteins. J. Phys. Chem. Lett. 2023, 14, 8145–8150. [Google Scholar] [CrossRef]
- Li, L.; Wu, J.-H.; Zhang, L.; Chen, X.; Wu, Y.; Liu, J.-H.; Geng, X.-Q.; Wang, Z.-W.; Wang, S.-Y. Investigation of the physiochemical properties, cryoprotective activity and possible action mechanisms of sericin peptides derived from membrane separation. LWT 2017, 77, 532–541. [Google Scholar] [CrossRef]
- Fan, Q.; Dou, M.; Mao, J.; Hou, Y.; Liu, S.; Zhao, L.; Lv, J.; Liu, Z.; Wang, Y.; Rao, W.; et al. Strong Hydration Ability of Silk Fibroin Suppresses Formation and Recrystallization of Ice Crystals During Cryopreservation. Biomacromolecules 2022, 23, 478–486. [Google Scholar] [CrossRef]
- Cao, H.; Zheng, X.; Liu, H.; Yuan, M.; Ye, T.; Wu, X.; Yin, F.; Li, Y.; Yu, J.; Xu, F. Cryo-protective effect of ice-binding peptides derived from collagen hydrolysates on the frozen dough and its ice-binding mechanisms. LWT 2020, 131, 109678. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Y.; Chen, B.; Xie, Y.; Nie, W.; Zhou, H.; Xu, B. Effect of pigskin gelatin hydrolysate on the porcine meat quality during freezing. Meat Sci. 2022, 192, 108907. [Google Scholar] [CrossRef]
- Surís-Valls, R.; Hogervorst, T.P.; Schoenmakers, S.M.C.; Hendrix, M.M.R.M.; Milroy, L.; Voets, I.K. Inhibition of Ice Recrystallization by Nanotube-Forming Cyclic Peptides. Biomacromolecules 2022, 23, 520–529. [Google Scholar] [CrossRef]
- Qin, Q.; Zhao, L.; Liu, Z.; Liu, T.; Qu, J.; Zhang, X.; Li, R.; Yan, L.; Yan, J.; Jin, S.; et al. Bioinspired l-Proline Oligomers for the Cryopreservation of Oocytes via Controlling Ice Growth. ACS Appl. Mater. Interfaces 2020, 12, 18352–18362. [Google Scholar] [CrossRef]
- Han, L.; Wang, H.; Cai, W.; Shao, X. Mechanism of Binding of Polyproline to Ice via Interfacial Water: An Experimental and Theoretical Study. J. Phys. Chem. Lett. 2023, 14, 4127–4133. [Google Scholar] [CrossRef]
- Warren, M.T.; Galpin, I.; Bachtiger, F.; Gibson, M.I.; Sosso, G.C. Ice Recrystallization Inhibition by Amino Acids: The Curious Case of Alpha- and Beta-Alanine. J. Phys. Chem. Lett. 2022, 13, 2237–2244. [Google Scholar] [CrossRef]
- Kim, Y.D.; Jung, W.H.; Ahn, D.J.; Lim, D.-K. Self-Assembled Nanostructures of Homo-Oligopeptide as a Potent Ice Growth Inhibitor. Nano Lett. 2023, 23, 9500–9507. [Google Scholar] [CrossRef]
- Piao, Z.; Park, J.K.; Patel, M.; Lee, H.J.; Jeong, B. Poly(l-Ala-co-l-Lys) Exhibits Excellent Ice Recrystallization Inhibition Activity. ACS Macro Lett. 2021, 10, 1436–1442. [Google Scholar] [CrossRef]
- Park, S.; Piao, Z.; Park, J.K.; Lee, H.J.; Jeong, B. Ice Recrystallization Inhibition Using l-Alanine/l-Lysine Copolymers. ACS Appl. Polym. Mater. 2022, 4, 2896–2907. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Li, K.; Gutowski, V.; Yin, Y.; Wang, J. Fabrication of Anti-Icing Surfaces by Short α-Helical Peptides. ACS Appl. Mater. Interfaces 2018, 10, 1957–1962. [Google Scholar] [CrossRef]
- Murray, A.; Kilbride, P.; Gibson, M.I. Proline pre-conditioning of Jurkat cells improves recovery after cryopreservation. RSC Med. Chem. 2023, 14, 1704–1711. [Google Scholar] [CrossRef]
- Rojas, R.; Aróstica, M.; Carvajal-Rondanelli, P.; Albericio, F.; Guzmán, F.; Cárdenas, C. Relationship between type II polyproline helix secondary structure and thermal hysteresis activity of short homopeptides. Electron. J. Biotechnol. 2022, 59, 62–73. [Google Scholar] [CrossRef]
- Graham, B.; Bailey, T.L.; Healey, J.R.J.; Marcellini, M.; Deville, S.; Gibson, M.I. Polyproline as a Minimal Antifreeze Protein Mimic That Enhances the Cryopreservation of Cell Monolayers. Angew. Chem. Int. Ed. 2017, 56, 15941–15944. [Google Scholar] [CrossRef]
- Judge, N.; Georgiou, P.G.; Bissoyi, A.; Ahmad, A.; Heise, A.; Gibson, M.I. High Molecular Weight Polyproline as a Potential Biosourced Ice Growth Inhibitor: Synthesis, Ice Recrystallization Inhibition, and Specific Ice Face Binding. Biomacromolecules 2023, 24, 2459–2468. [Google Scholar] [CrossRef]
- Maddah, M.; Shahabi, M.; Peyvandi, K. How Does DcAFP, a Plant Antifreeze Protein, Control Ice Inhibition through the Kelvin Effect? Ind. Eng. Chem. Res. 2021, 60, 18230–18242. [Google Scholar] [CrossRef]
- Xue, B.; Zhao, L.; Qin, X.; Qin, M.; Lai, J.; Huang, W.; Lei, H.; Wang, J.; Wang, W.; Li, Y.; et al. Bioinspired Ice Growth Inhibitors Based on Self-Assembling Peptides. ACS Macro Lett. 2019, 8, 1383–1390. [Google Scholar] [CrossRef]
- Lee, C.; Lee, Y.; Jung, W.H.; Kim, T.-Y.; Kim, T.; Kim, D.-N.; Ahn, D.J. Peptide-DNA origami as a cryoprotectant for cell preservation. Sci. Adv. 2022, 8, eadd0185. [Google Scholar] [CrossRef]
- Andrews, N.L.P.; Fan, J.Z.; Forward, R.L.; Chen, M.C.; Loock, H.-P. Determination of the thermal, oxidative and photochemical degradation rates of scintillator liquid by fluorescence EEM spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 73–81. [Google Scholar] [CrossRef]
- Lu, L.; Xing, J.-J.; Guo, X.-N.; Sun, X.-H.; Zhu, K.-X. Enhancing the freezing–thawing tolerance of frozen dough using ε-poly-L-lysine treated yeast. Food Biosci. 2020, 37, 100699. [Google Scholar] [CrossRef]
- Lu, L.; Yang, Z.; Guo, X.-N.; Xing, J.-J.; Zhu, K.-X. Thermal-aggregation behavior of gluten in frozen dough induced by ε-poly-L-lysine treated yeast. Food Chem. 2021, 359, 129985. [Google Scholar] [CrossRef]
- Tachibana, R.; Takeuchi, H.; Yoshikawa-Terada, K.; Maezawa, T.; Nishioka, M.; Takayama, E.; Tanaka, H.; Tanaka, K.; Hyon, S.-H.; Gen, Y.; et al. Carboxylated Poly-L-lysine Potentially Reduces Human Sperm DNA Fragmentation after Freeze-Thawing, and Its Function Is Enhanced by Low-Dose Resveratrol. Cells 2023, 12, 2585. [Google Scholar] [CrossRef]
- Bibi, S.; Awan, M.A.; Rakha, B.A.; Ejaz, R.; Qadeer, S.; Arshad, J.; Anjum, M.Z.; Akhter, S. Evaluation of carboxylated poly-l-lysine for cryopreservation of Labeo rohita sperm. Reprod. Domest. Anim. 2023, 58, 990–996. [Google Scholar] [CrossRef]
- Rajan, R.; Kumar, N.; Matsumura, K. Design of an Ice Recrystallization-Inhibiting Polyampholyte-Containing Graft Polymer for Inhibition of Protein Aggregation. Biomacromolecules 2022, 23, 487–496. [Google Scholar] [CrossRef]
- Rajan, R.; Kumar, N.; Zhao, D.; Dai, X.; Kawamoto, K.; Matsumura, K. Polyampholyte-Based Polymer Hydrogels for the Long-Term Storage, Protection and Delivery of Therapeutic Proteins. Adv. Heal. Mater. 2023, 12, e2203253. [Google Scholar] [CrossRef]
- Dai, X.; Zhao, D.; Matsumura, K.; Rajan, R. Polyampholytes and Their Hydrophobic Derivatives as Excipients for Suppressing Protein Aggregation. ACS Appl. Bio Mater. 2023, 6, 2738–2746. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, J.; Li, Z.; Wang, J.; Huang, Y. Nonionic and Water-Soluble Poly(d/l-serine) as a Promising Biomedical Polymer for Cryopreservation. ACS Appl. Mater. Interfaces 2021, 13, 18454–18461. [Google Scholar] [CrossRef]
- Kozuch, D.J.; Stillinger, F.H.; Debenedetti, P.G. Genetic Algorithm Approach for the Optimization of Protein Antifreeze Activity Using Molecular Simulations. J. Chem. Theory Comput. 2020, 16, 7866–7873. [Google Scholar] [CrossRef]
- Wang, Y.; Stebe, K.J.; de la Fuente-Nunez, C.; Radhakrishnan, R. Computational Design of Peptides for Biomaterials Applications. ACS Appl. Bio Mater. 2024, 7, 617–625. [Google Scholar] [CrossRef]
- Zhu, K.; Zheng, Z.; Dai, Z. Identification of antifreeze peptides in shrimp byproducts autolysate using peptidomics and bioinformatics. Food Chem. 2022, 383, 132568. [Google Scholar] [CrossRef]
- Khan, M.; Ibrahim, S.; Adamu, A.; Rahman, M.; Bakar, M.; Noordin, M.; Loqman, M. Pre-grafting histological studies of skin grafts cryopreserved in a helix antarctic yeast oriented antifreeze peptide (Afp1m). Cryobiology 2020, 92, 26–33. [Google Scholar] [CrossRef]
- Qi, H.; Gao, Y.; Zhang, L.; Cui, Z.; Sui, X.; Ma, J.; Yang, J.; Shu, Z.; Zhang, L. Rational Design of and Mechanism Insight into an Efficient Antifreeze Peptide for Cryopreservation. Engineering 2024, 34, 164–173. [Google Scholar] [CrossRef]
- Rutella, G.S.; Tagliazucchi, D.; Solieri, L. Survival and bioactivities of selected probiotic lactobacilli in yogurt fermentation and cold storage: New insights for developing a bi-functional dairy food. Food Microbiol. 2016, 60, 54–61. [Google Scholar] [CrossRef]
- Abdel-Hamid, M.; Romeih, E.; Gamba, R.R.; Nagai, E.; Suzuki, T.; Koyanagi, T.; Enomoto, T.; Abdel-Hamid, M.; Romeih, E.; Gamba, R.R.; et al. The biological activity of fermented milk produced by Lactobacillus casei ATCC 393 during cold storage. Int. Dairy J. 2019, 91, 1–8. [Google Scholar] [CrossRef]
- Chen, X.; Wu, J.; Li, X.; Yang, F.; Huang, D.; Huang, J.; Wang, S.; Guyonnet, V. Snow flea antifreeze peptide for cryopreservation of lactic acid bacteria. npj Sci. Food 2022, 6, 10. [Google Scholar] [CrossRef]
- Chen, X.; Wu, J.; Yang, F.; Zhou, M.; Wang, R.; Huang, J.; Rong, Y.; Liu, J.; Wang, S. New insight into the mechanism by which antifreeze peptides regulate the physiological function of Streptococcus thermophilus subjected to freezing stress. J. Adv. Res. 2023, 45, 127–140. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, H.; Yang, J.; Chen, X.; Zhang, L. Development of Low Immunogenic Antifreeze Peptides for Cryopreservation. Ind. Eng. Chem. Res. 2023, 62, 12063–12072. [Google Scholar] [CrossRef]
- Forbes, J.; Bissoyi, A.; Eickhoff, L.; Reicher, N.; Hansen, T.; Bon, C.G.; Walker, V.K.; Koop, T.; Rudich, Y.; Braslavsky, I.; et al. Water-organizing motif continuity is critical for potent ice nucleation protein activity. Nat. Commun. 2022, 13, 5019. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.; Sun, J.; Li, Y.; Liu, K.; Wang, F.; Zhang, H.; Su, J. Bioengineered Protein Fibers with Anti-Freezing Mechanical Behaviors. Adv. Funct. Mater. 2022, 32, 2209006. [Google Scholar] [CrossRef]
- Stevens, C.A.; Bachtiger, F.; Kong, X.-D.; Abriata, L.A.; Sosso, G.C.; Gibson, M.I.; Klok, H.-A. A minimalistic cyclic ice-binding peptide from phage display. Nat. Commun. 2021, 12, 2675. [Google Scholar] [CrossRef]
- Naullage, P.M.; Molinero, V. Slow Propagation of Ice Binding Limits the Ice-Recrystallization Inhibition Efficiency of PVA and Other Flexible Polymers. J. Am. Chem. Soc. 2020, 142, 4356–4366. [Google Scholar] [CrossRef]
- Burkey, A.A.; Ghousifam, N.; Hillsley, A.V.; Brotherton, Z.W.; Rezaeeyazdi, M.; Hatridge, T.A.; Harris, D.T.; Sprague, W.W.; Sandoval, B.E.; Rosales, A.M.; et al. Synthesis of Poly(allyl glycidyl ether)-Derived Polyampholytes and Their Application to the Cryopreservation of Living Cells. Biomacromolecules 2023, 24, 1475–1482. [Google Scholar] [CrossRef]
- Gao, S.; Zhu, K.; Zhang, Q.; Niu, Q.; Chong, J.; Ren, L.; Yuan, X. Development of Icephilic ACTIVE Glycopeptides for Cryopreservation of Human Erythrocytes. Biomacromolecules 2022, 23, 530–542. [Google Scholar] [CrossRef]
- Pesenti, T.; Zhu, C.; Gonzalez-Martinez, N.; Tomás, R.M.F.; Gibson, M.I.; Nicolas, J. Degradable Polyampholytes from Radical Ring-Opening Copolymerization Enhance Cellular Cryopreservation. ACS Macro Lett. 2022, 11, 889–894. [Google Scholar] [CrossRef]
- Tomás, R.M.F.; Bissoyi, A.; Congdon, T.R.; Gibson, M.I. Assay-ready Cryopreserved Cell Monolayers Enabled by Macromolecular Cryoprotectants. Biomacromolecules 2022, 23, 3948–3959. [Google Scholar] [CrossRef]
Main Amino Acid | Sequence | IRI Activity (MGLS, Concentration) | TH Activity (°C, Concentration) | Cell Recovery Rate | Reference |
---|---|---|---|---|---|
Ala | AAAAA | 17%, 1.0 mg/mL | 1.05 °C, 1.0 mg/mL | N/A | [23] |
L-Ala-co-L-lys | 11%, 10 mg/mL | 0.2 °C, 1.0 mg/mL | N/A | [24,25] | |
DTASDAAAAAAL | N/A | 0.46 °C, 10 mg/mL | N/A | [26] | |
KATATAKA | 24.3%, 7.5 mM | N/A | N/A | [27] | |
Pro | Pron (n = 8) | 30%, 36.84 mg/mL | N/A | 99% of oocytes | [30] |
Pron (n = 15) | 50%, 20 mg/mL | N/A | N/A | [31] | |
Pron (n = 515) | 9%, 5 mg/mL | N/A | N/A | [33] | |
Thr | TTTTT | 40%, 1.0 mg/mL | 1.09 °C, 1.0 mg/mL | N/A | [23] |
2-naphthylacetyl-G-F-F-PThr | N/A | N/A | 82% of SMMC-7721, 88% of L-O2 | [35] | |
DNA-PThr | N/A | N/A | 56% of HSC-3 | [36] | |
Ser | D/L-Polyserine | 59.7%, 60 mg/mL | N/A | 49.8% of sheep’s red blood cell | [40] |
Glu | DEYEESGPGIVH | N/A | 1.37 °C, 10 mg/mL | N/A | [41] |
Gly | AVDAGTGNDELIIGGDVSG | N/A | N/A | 70.9% of NIH-3T3, 34.9% of RAW264.7, and 95.7% of GLC-82. | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, B.; Wang, J.; Chen, H.; Lin, S.; Pan, B.; Wang, N. Recent Advances in Antifreeze Peptide Preparation: A Review. Molecules 2024, 29, 4913. https://doi.org/10.3390/molecules29204913
Xia B, Wang J, Chen H, Lin S, Pan B, Wang N. Recent Advances in Antifreeze Peptide Preparation: A Review. Molecules. 2024; 29(20):4913. https://doi.org/10.3390/molecules29204913
Chicago/Turabian StyleXia, Bo, Juntao Wang, Honghao Chen, Shuyan Lin, Buchun Pan, and Nan Wang. 2024. "Recent Advances in Antifreeze Peptide Preparation: A Review" Molecules 29, no. 20: 4913. https://doi.org/10.3390/molecules29204913
APA StyleXia, B., Wang, J., Chen, H., Lin, S., Pan, B., & Wang, N. (2024). Recent Advances in Antifreeze Peptide Preparation: A Review. Molecules, 29(20), 4913. https://doi.org/10.3390/molecules29204913