The Comprehensive Profiling of the Chemical Components in the Raw and Processed Roots of Scrophularia ningpoensis by Combining UPLC-Q-TOF-MS Coupled with MS/MS-Based Molecular Networking
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of the Components from S. ningpoensis
2.1.1. Identification of Iridoid Glycosides
2.1.2. Identification of Phenylpropanoid Glycosides
2.1.3. Identification of Cyclopeptides
2.1.4. Identification of New Compounds
2.2. Analysis of Changes in Compounds in Differently Processed SR
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample Preparation
3.3. UPLC–Q–TOF–MS Analysis
3.4. Establishment of the Chemical Compounds Database
3.5. Data Analysis of the Molecular Networking in the GNPS Platform and Heatmap Diagrams
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Chen, Y.; Zhang, L.; Gong, X.; Gong, H.; Cheng, R.; Qiu, F.; Zhong, X.; Huang, Z. Iridoid glycosides from Radix Scrophulariae attenuates focal cerebral ischemia-reperfusion injury via inhibiting endoplasmic reticulum stress-mediated neuronal apoptosis in rats. Mol. Med. Rep. 2020, 21, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.M.; Abad, M.J.; Fernández, L.; Silván, A.M.; De Santos, J.; Bermejo, P. Phenylpropanoid glycosides from Scrophularia scorodonia: In vitro anti-inflammatory activity. Life Sci. 2004, 74, 2515–2526. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Hao, R.; Hu, Y.; Wei, Y.; Xie, Y.; Shen, Y.; Rui, Q.; Yu, G. Harpagide alleviate neuronal apoptosis and blood-brain barrier leakage by inhibiting TLR4/MyD88/NF-κB signaling pathway in Angiotensin II-induced microglial activation in vitro. Chem. Biol. Interact. 2021, 348, 109653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.C.; Gu, W.L.; Wu, X.M.; Li, Y.M.; Chen, C.X.; Huang, X.Y. Active components from Radix Scrophulariae inhibits the ventricular remodeling induced by hypertension in rats. SpringerPlus 2016, 5, 358. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.; Lee, A.Y.; Song, J.; Yang, S.; Park, I.; Lim, J.; Jung, T.; Ko, J.; Kim, J.; Lim, K.S.; et al. Scrophularia buergeriana attenuates allergic inflammation by reducing NF-κB activation. Phytomedicine 2020, 67, 153159. [Google Scholar] [CrossRef]
- Tasdemir, D.; Guner, N.; Perozzo, R.; Brun, R.; Donmez, A.; Calis, I.; Ruedi, P. Anti-protozoal and plasmodial FabI enzyme inhibiting metabolites of Scrophularia lepidota roots. Phytochemistry 2005, 66, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ma, L.; Park, N.H.; Shi, W. Cariogenic actinomyces identified with a beta-glucosidase-dependent green color reaction to Gardenia jasminoides extract. J. Clin. Microbiol. 2001, 39, 3009–3012. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Chen, C.; Yang, X.; Yu, J.; Zhao, R.; Gu, W. Modern research progress of Chinese materia medica diaphoretic processing method. Chin. Tradit. Herb. Drugs 2018, 49, 489–493. [Google Scholar]
- Johnson, A.R.; Carlson, E.E. Collision-induced dissociation mass spectrometry: A powerful tool for natural product structure elucidation. Anal. Chem. 2015, 87, 10668–10678. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, Y.; Zu, X.; Ye, J.; Liang, Y.; Cheng, T.; Zhang, W. Comprehensive profiling of the chemical components and potential markers in raw and processed Cistanche tubulosa by combining ultra-high-performance liquid chromatography coupled with tandem mass spectrometry and MS/MS-based molecular networking. Anal. Bioanal. Chem. 2021, 413, 129–139. [Google Scholar] [CrossRef]
- Qiu, S.; Yang, W.Z.; Shi, X.J.; Yao, C.L.; Yang, M.; Liu, X.; Jiang, B.H.; Wu, W.Y.; Guo, D.A. A green protocol for efficient discovery of novel natural compounds characterization of new ginsenosides from the stems and leaves of Panax ginseng as a case study. Anal. Chim. Acta. 2015, 893, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Hou, J.; Yao, C.; Bi, Q.; Wang, X.; Li, Z.; Jin, Q.; Lei, M.; Feng, Z.; Wu, W.; et al. A high-efficiency strategy integrating offline two-dimensional separation and data post-processing with dereplication: Characterization of bufadienolides in Venenum Bufonis as a case study. J. Chromatogr. A 2019, 1603, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Pan, H.; Wang, H.; Yao, S.; Yang, W.; Hou, J.; Jin, Q.; Wu, W.; Guo, D. Global profiling combined with predicted metabolites screening for discovery of natural compounds: Characterization of ginsenosides in the leaves of Panax notoginseng as a case study. J. Chromatogr. A 2018, 1538, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guo, L.; Ding, X.; An, Q.; Wang, L.; Hao, S.; Li, W.; Wang, T.; Gao, Z.; Zheng, Y.; et al. Molecular networking, network pharmacology, and molecular docking approaches employed to investigate the changes in Ephedrae herba before and after honey-processing. Molecules 2022, 27, 4057. [Google Scholar] [CrossRef]
- Aron, A.T.; Gentry, E.C.; McPhail, K.L.; Nothias, L.F.; Nothias-Esposito, M.; Bouslimani, A.; Petras, D.; Gauglitz, J.M.; Sikora, N.; Vargas, F.; et al. Reproducible molecular networking of untargeted mass spectrometry data using gnps. Nat. Protoc. 2020, 15, 1954–1991. [Google Scholar] [CrossRef]
- Watrous, J.; Roach, P.; Alexandrov, T.; Heath, B.S.; Yang, J.Y.; Kersten, R.D.; van der Voort, M.; Pogliano, K.; Gross, H.; Raaijmakers, J.M.; et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl. Acad. Sci. USA 2012, 109, 1743–1752. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef]
- De Vijlder, T.; Valkenborg, D.; Lemière, F.; Romijn, E.P.; Laukens, K.; Cuyckens, F. A tutorial in small molecule identification via electrospray ionization-mass spectrometry: The practical art of structural elucidation. Mass Spectrom. Rev. 2018, 37, 607–629. [Google Scholar] [CrossRef] [PubMed]
- Frank, A.M.; Monroe, M.E.; Shah, A.R.; Carver, J.J.; Bandeira, N.; Moore, R.J.; Anderson, G.A.; Smith, R.D.; Pevzner, P.A. Spectral archives: Extending spectral libraries to analyze both identified and unidentified spectra. Nat. Methods 2011, 8, 587–591. [Google Scholar] [CrossRef]
- Clements, T.; Rautenbach, M.; Ndlovu, T.; Khan, S.; Khan, W. A metabolomics and molecular networking approach to elucidate the structures of secondary metabolites produced by Serratia marcescens strains. Front. Chem. 2021, 9, 633870. [Google Scholar] [CrossRef]
- Dinda, B.; Debnath, S.; Harigaya, Y. Naturally occurring iridoids. A review, part 1. Chem. Pharm. Bull. 2007, 2, 159–222. [Google Scholar] [CrossRef]
- Li, C.M.; Luo, Y.W.; Tian, B.Y. Research progress on mass spectral fragmentation of iridoids. J. Hebei Norm. Univ. (Nat. Sci.) 2015, 39, 522–526. [Google Scholar] [CrossRef]
- Guo, J.; Tian, C.; Liu, X.; Zhang, T. Advances in research of iridoids occurring in Chinese material medica. Drug Eval. Res. 2011, 34, 293–297. [Google Scholar]
- Wang, J.; Xu, F.; Liu, Z.; Ma, L.; Shang, M.; Liu, G.; Cai, S. Identification of chemical constituents in Scrophulariae Radix by HPLC-IT-TOF-MS. China J. Chin. Mater. Medica 2016, 07, 1257–1268. [Google Scholar]
- Tu, P.; Song, Z.; Shi, H.; Jiang, Y.; Zhao, Y. Arylethyl (=phenylethanoid) glycosides and oligosaccharide from the stem of Cistanche tubulosa. Helv. Chim. Acta 2007, 5, 927–935. [Google Scholar] [CrossRef]
- Han, L.; Boakye Yiadom, M.; Liu, E.; Zhang, Y.; Li, W.; Song, X.; Fu, F.; Gao, X. Structural characterisation and identification of phenylethanoid glycosides from Cistanches deserticola Y.C. Ma by UHPLC/ESI-QTOF-MS/MS. Phytochem. Anal. 2012, 23, 668–676. [Google Scholar] [CrossRef]
- Jiang, Y.; Tu, P. Analysis of chemical constituents in Cistanche species. J. Chromatogr. A 2009, 1216, 1970–1979. [Google Scholar] [CrossRef]
- Ma, A.; Lj, M. Natural cyclic peptides as an attractive modality for therapeutics: A mini review. Molecules 2018, 8, 2080. [Google Scholar] [CrossRef]
- Horton, D.A.; Bourne, G.T.; Smythe, M.L. Exploring privileged structures: The combinatorial synthesis of cyclic peptides. J. Comput. Aid. Mol. Des. 2002, 5–6, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Silpa, S.; Rupachandra, S. Cyclic peptide production from lactic acid bacteria (LAB) and their diverse applications. Crit. Rev. Food Sci. 2022, 11, 2909–2927. [Google Scholar] [CrossRef]
- Wang, S.; Chen, P.; Xu, Y.; Li, X.; Fan, X. Characterization of the chemical constituents in Da-Huang-Gan-Cao-Tang by liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and liquid chromatography coupled with ion trap mass spectrometry (article). J. Sep. Sci. 2014, 14, 1748–1761. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Victoria, I.; Morales, J.C. Complementary regioselective esterification of non-reducing oligosaccharides catalyzed by different hydrolases. Tetrahedron 2006, 62, 878–886. [Google Scholar] [CrossRef]
- Shakoor, A.; Zhang, C.; Xie, J.; Yang, X. Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chem. 2022, 393, 133416. [Google Scholar] [CrossRef] [PubMed]
- Herraiz, T. Tetrahydro-β-carboline-3-carboxylic acid compounds in fish and meat: Possible precursors of co-mutagenic β-carbolines norharman and harman in cooked foods. Food Addi. Contam. 2000, 17, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Diem, S.; Bergmann, J.; Herderich, M. Tryptophan-n-glucoside in fruits and fruit juices. J. Agric. Food Chem. 2000, 48, 4913–4917. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, J. The analysis of Yin and Yang differentiation by six-channel based on distribution and ratio of cAMP and cGMP. Clin. J. Chin. Med. 2017, 9, 4–6. [Google Scholar]
- Wang, X.; Du, Y.; Wu, C.; Xu, M.; Liu, Y.; Di, X. UHPLC-MS/MS analysis of cAMP and cGMP in rat plasma as potential biomarkers of Yin-Yang disharmony in traditional Chinese medicine. J. Pharm. Anal. 2021, 11, 458–464. [Google Scholar] [CrossRef]
- Pérez-Victoria, I.; Morales, J.C. Regioselectivity in acylation of oligosaccharides catalyzed by the metalloprotease thermolysin. Tetrahedron 2006, 62, 2361–2369. [Google Scholar] [CrossRef]
- Riva, S.; Nonini, M.; Ottolina, G.; Danieli, B. Subtilisin-catalyzed esterification of di- and oligosaccharides containing a D-fructose moiety. Carbohydr. Res. 1998, 314, 259–266. [Google Scholar] [CrossRef]
- Surh, Y.J.; Tannenbaum, S.R. Activation of the maillard reaction product 5-(hydroxymethyl)furfural to strong mutagens via allylic sulfonation and chlorination. Chem. Res. Toxicol. 1994, 7, 313–318. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Chen, K.; Feng, C.; Zhang, F.; Zhang, L.; Li, Y. The Comprehensive Profiling of the Chemical Components in the Raw and Processed Roots of Scrophularia ningpoensis by Combining UPLC-Q-TOF-MS Coupled with MS/MS-Based Molecular Networking. Molecules 2024, 29, 4866. https://doi.org/10.3390/molecules29204866
Zhang M, Chen K, Feng C, Zhang F, Zhang L, Li Y. The Comprehensive Profiling of the Chemical Components in the Raw and Processed Roots of Scrophularia ningpoensis by Combining UPLC-Q-TOF-MS Coupled with MS/MS-Based Molecular Networking. Molecules. 2024; 29(20):4866. https://doi.org/10.3390/molecules29204866
Chicago/Turabian StyleZhang, Mina, Kaixian Chen, Chenguo Feng, Fang Zhang, Liuqiang Zhang, and Yiming Li. 2024. "The Comprehensive Profiling of the Chemical Components in the Raw and Processed Roots of Scrophularia ningpoensis by Combining UPLC-Q-TOF-MS Coupled with MS/MS-Based Molecular Networking" Molecules 29, no. 20: 4866. https://doi.org/10.3390/molecules29204866
APA StyleZhang, M., Chen, K., Feng, C., Zhang, F., Zhang, L., & Li, Y. (2024). The Comprehensive Profiling of the Chemical Components in the Raw and Processed Roots of Scrophularia ningpoensis by Combining UPLC-Q-TOF-MS Coupled with MS/MS-Based Molecular Networking. Molecules, 29(20), 4866. https://doi.org/10.3390/molecules29204866