StructNet-DDI: Molecular Structure Characterization-Based ResNet for Prediction of Drug–Drug Interactions
Abstract
:1. Introduction
2. Related Work
3. Results and Analysis
3.1. Ablation Experiment
- 3_Descriptors: This experiment used only three basic molecular descriptors (molecular weight, logP value, and relative molecular mass) to assess the contribution of fundamental descriptors to DDI prediction.
- 6_Descriptors: Building on the basic descriptors, the set was expanded to six descriptors (adding the number of rotatable bonds, the number of hydrogen bond donors, and the number of hydrogen bond acceptors) to evaluate the impact of a more enriched descriptor set on model performance.
- 12_Descriptors: Further expanding to 12 molecular descriptors (adding the number of aromatic rings, the proportion of sp3-hybridized carbons, the number of nitrogen atoms, the number of oxygen atoms, the Fereyberling index, the topological polar surface area, and the number of free radicals), this experiment investigated the effect of the most comprehensive descriptor set on DDI prediction.
- Morgan: This experiment independently used Morgan fingerprints to analyze its performance as a standalone feature, assessing the contribution of fingerprint features to DDI prediction.
- Morgan + 12_Descriptors: Morgan fingerprints were systematically combined with the 12 molecular descriptors to examine whether this combined feature strategy could further improve model prediction performance.
3.2. Model Comparison
4. Method
4.1. Molecular Structure Characteristics
4.2. ResNet18 Architecture
5. Experiments
5.1. Datasets
5.2. Acquisition of Molecular Structure Features
5.3. Evaluation Metrics
5.4. Comparisons
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, D.Y.; Lu, T.R.; Yarla, N.S.; Wu, H.Y.; Xu, B.; Ding, J.; Zhu, H. Drug combination in clinical cancer treatments. Rev. Recent Clin. Trials 2017, 12, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Fisusi, F.A.; Akala, E.O. Drug combinations in breast cancer therapy. Pharm. Nanotechnol. 2019, 7, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Chee, B.W.; Berlin, R.; Schatz, B. Predicting adverse drug events from personal health messages. In Proceedings of the AMIA Annual Symposium Proceedings, Washington, DC, USA, 22–26 October 2011; Volume 2011, p. 217. [Google Scholar]
- Budnitz, D.S.; Pollock, D.A.; Weidenbach, K.N.; Mendelsohn, A.B.; Schroeder, T.J.; Annest, J.L. National surveillance of emergency department visits for outpatient adverse drug events. JAMA 2006, 296, 1858–1866. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhang, G.; Wei, D.Q.; Xiong, Y. DeepPSE: Prediction of polypharmacy side effects by fusing deep representation of drug pairs and attention mechanism. Comput. Biol. Med. 2022, 149, 105984. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Liu, F.; Luo, F.; Tian, G.; Li, X. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinform. 2017, 18, 18. [Google Scholar] [CrossRef]
- Cheng, F.; Zhao, Z. Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J. Am. Med. Inform. Assoc. 2014, 21, e278–e286. [Google Scholar] [CrossRef]
- Hunta, S.; Yooyativong, T.; Aunsri, N. A novel integrated action crossing method for drug-drug interaction prediction in non-communicable diseases. Comput. Methods Programs Biomed. 2018, 163, 183–193. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, T.; Yang, X.; Wang, J.; Song, B.; Zeng, X. MUFFIN: Multi-scale feature fusion for drug–drug interaction prediction. Bioinformatics 2021, 37, 2651–2658. [Google Scholar] [CrossRef]
- Huang, K.; Xiao, C.; Hoang, T.; Glass, L.; Sun, J. Caster: Predicting drug interactions with chemical substructure representation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 702–709. [Google Scholar]
- Deng, Y.; Xu, X.; Qiu, Y.; Xia, J.; Zhang, W.; Liu, S. A multimodal deep learning framework for predicting drug–drug interaction events. Bioinformatics 2020, 36, 4316–4322. [Google Scholar] [CrossRef]
- Nyamabo, A.K.; Yu, H.; Liu, Z.; Shi, J.Y. Drug–drug interaction prediction with learnable size-adaptive molecular substructures. Briefings Bioinform. 2022, 23, bbab441. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M.; Campillos, M.; Letunic, I.; Jensen, L.J.; Bork, P. A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol. 2010, 6, 343. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Huang, C.; Fu, Y.; Wang, J.; Wu, Z.; Ru, J.; Zheng, C.; Guo, Z.; Chen, X.; Zhou, W.; et al. Large-scale exploration and analysis of drug combinations. Bioinformatics 2015, 31, 2007–2016. [Google Scholar] [CrossRef] [PubMed]
- Dang, L.H.; Dung, N.T.; Quang, L.X.; Hung, L.Q.; Le, N.H.; Le, N.T.N.; Diem, N.T.; Nga, N.T.T.; Hung, S.H.; Le, N.Q.K. Machine learning-based prediction of drug-drug interactions for histamine antagonist using hybrid chemical features. Cells 2021, 10, 3092. [Google Scholar] [CrossRef]
- Takeda, T.; Hao, M.; Cheng, T.; Bryant, S.H.; Wang, Y. Predicting drug–drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge. J. Cheminform. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Q.; Yue, L.; Wu, X.; Zhang, Z.; Lin, Z.; Zheng, Y. Emerging drug interaction prediction enabled by a flow-based graph neural network with biomedical network. Nat. Comput. Sci. 2023, 3, 1023–1033. [Google Scholar] [CrossRef]
- Yu, H.; Li, K.; Dong, W.; Song, S.; Gao, C.; Shi, J. Attention-based cross domain graph neural network for prediction of drug–drug interactions. Briefings Bioinform. 2023, 24, bbad155. [Google Scholar] [CrossRef]
- Yin, Q.; Fan, R.; Cao, X.; Liu, Q.; Jiang, R.; Zeng, W. Deepdrug: A general graph-based deep learning framework for drug-drug interactions and drug-target interactions prediction. Quant. Biol. 2023, 11, 260–274. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Meng, X.; Wang, S.; Zhang, Y.; Rodriguez-Paton, A.; Wang, J.; Wang, X. Molormer: A lightweight self-attention-based method focused on spatial structure of molecular graph for drug–drug interactions prediction. Briefings Bioinform. 2022, 23, bbac296. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, G.; Zhao, B.; Su, Y.; Jin, W. Relation-aware graph structure embedding with co-contrastive learning for drug–drug interaction prediction. Neurocomputing 2024, 572, 127203. [Google Scholar] [CrossRef]
- Jin, B.; Yang, H.; Xiao, C.; Zhang, P.; Wei, X.; Wang, F. Multitask dyadic prediction and its application in prediction of adverse drug-drug interaction. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020, 6, 14. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y. DDI-SSL: Drug–drug interaction prediction based on substructure signature learning. Appl. Sci. 2023, 13, 10750. [Google Scholar] [CrossRef]
- Elton, D.C.; Boukouvalas, Z.; Fuge, M.D.; Chung, P.W. Deep learning for molecular design—A review of the state of the art. Mol. Syst. Des. Eng. 2019, 4, 828–849. [Google Scholar] [CrossRef]
- O’Boyle, N.; Dalke, A. DeepSMILES: An Adaptation of SMILES for Use in Machine-Learning of Chemical Structures. 2018. Available online: https://chemrxiv.org/engage/chemrxiv/article-details/60c73ed6567dfe7e5fec388d (accessed on 5 September 2023).
- Xue, D.; Zhang, H.; Xiao, D.; Gong, Y.; Chuai, G.; Sun, Y.; Tian, H.; Wu, H.; Li, Y.; Liu, Q. X-MOL: Large-scale pre-training for molecular understanding and diverse molecular analysis. bioRxiv 2020. [Google Scholar] [CrossRef]
- Zhong, Y.; Zheng, H.; Chen, X.; Zhao, Y.; Gao, T.; Dong, H.; Luo, H.; Weng, Z. DDI-GCN: Drug-drug interaction prediction via explainable graph convolutional networks. Artif. Intell. Med. 2023, 144, 102640. [Google Scholar] [CrossRef]
- Ma, J.; Sheridan, R.P.; Liaw, A.; Dahl, G.E.; Svetnik, V. Deep neural nets as a method for quantitative structure–activity relationships. J. Chem. Inf. Model. 2015, 55, 263–274. [Google Scholar] [CrossRef]
- Palleria, C.; Di Paolo, A.; Giofrè, C.; Caglioti, C.; Leuzzi, G.; Siniscalchi, A.; De Sarro, G.; Gallelli, L. Pharmacokinetic drug-drug interaction and their implication in clinical management. J. Res. Med Sci. Off. J. Isfahan Univ. Med Sci. 2013, 18, 601. [Google Scholar]
- Niu, J.; Straubinger, R.M.; Mager, D.E. Pharmacodynamic drug–drug interactions. Clin. Pharmacol. Ther. 2019, 105, 1395–1406. [Google Scholar] [CrossRef]
- Scaldaferri, F.; Pizzoferrato, M.; Ponziani, F.R.; Gasbarrini, G.; Gasbarrini, A. Use and indications of cholestyramine and bile acid sequestrants. Intern. Emerg. Med. 2013, 8, 205–210. [Google Scholar] [CrossRef]
- Phillips, W.A.; Ratchford, J.M.; Schultz, J.R. Effects of colestipol hydrochloride on drug absorption in the rat II. J. Pharm. Sci. 1976, 65, 1285–1291. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.; Ghafoor, M.; Grañana-Castillo, S.; Marzolini, C.; Gibbons, S.; Khoo, S.; Chiong, J.; Wang, D.; Siccardi, M. DeepARV: Ensemble deep learning to predict drug-drug interaction of clinical relevance with antiretroviral therapy. NPJ Syst. Biol. Appl. 2024, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Shtar, G.; Solomon, A.; Mazuz, E.; Rokach, L.; Shapira, B. A simplified similarity-based approach for drug-drug interaction prediction. PLoS ONE 2023, 18, e0293629. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Feng, H.; Cao, C. BiRNN-DDI: A Drug-Drug Interaction Event Type Prediction Model Based on Bidirectional Recurrent Neural Network and Graph2Seq Representation. J. Comput. Biol. 2024; ahead of print. [Google Scholar]
- An, X.; Chen, X.; Yi, D.; Li, H.; Guan, Y. Representation of molecules for drug response prediction. Briefings Bioinform. 2022, 23, bbab393. [Google Scholar] [CrossRef]
- Targ, S.; Almeida, D.; Lyman, K. Resnet in resnet: Generalizing residual architectures. arXiv 2016, arXiv:1603.08029. [Google Scholar]
- Wang, Y.; Min, Y.; Chen, X.; Wu, J. Multi-view graph contrastive representation learning for drug-drug interaction prediction. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 2921–2933. [Google Scholar]
- Zitnik, M.; Rok Sosič, S.M.; Leskovec, J. BioSNAP Datasets: Stanford Biomedical Network Dataset Collection. 2018. Available online: http://snap.stanford.edu/biodata (accessed on 10 October 2023).
- Ryu, J.Y.; Kim, H.U.; Lee, S.Y. Deep learning improves prediction of drug–drug and drug–food interactions. Proc. Natl. Acad. Sci. USA 2018, 115, E4304–E4311. [Google Scholar] [CrossRef]
- Landrum, G. RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling. Greg Landrum 2013, 8, 5281. [Google Scholar]
- Lenselink, E.B.; Ten Dijke, N.; Bongers, B.; Papadatos, G.; Van Vlijmen, H.W.; Kowalczyk, W.; IJzerman, A.P.; Van Westen, G.J. Beyond the hype: Deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. J. Cheminform. 2017, 9, 45. [Google Scholar] [CrossRef]
Pre | Rec | F1 | AUPR | AUC | Acc | |
---|---|---|---|---|---|---|
3_Descriptors | 0.944 | 0.778 | 0.853 | 0.952 | 0.761 | 0.763 |
6_Descriptors | 0.956 | 0.859 | 0.905 | 0.969 | 0.835 | 0.841 |
12_Descriptors | 0.991 | 0.918 | 0.953 | 0.997 | 0.979 | 0.920 |
Morgan | 0.999 | 0.928 | 0.962 | 0.999 | 0.995 | 0.936 |
Morgan + 12_Descriptors | 0.999 | 0.927 | 0.962 | 0.999 | 0.996 | 0.935 |
Model | Pre | Rec | F1 | AUPR | AUC | Acc |
---|---|---|---|---|---|---|
StructNet-DDI | 0.999 | 0.937 | 0.967 | 0.999 | 0.997 | 0.944 |
Attention CNN | 0.969 | 0.773 | 0.861 | 0.979 | 0.877 | 0.778 |
VGG16 | 0.978 | 0.841 | 0.904 | 0.989 | 0.926 | 0.842 |
Logistic Regression | 0.998 | 0.885 | 0.938 | 0.992 | 0.934 | 0.896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Wang, X.; Pang, Y. StructNet-DDI: Molecular Structure Characterization-Based ResNet for Prediction of Drug–Drug Interactions. Molecules 2024, 29, 4829. https://doi.org/10.3390/molecules29204829
Wang J, Wang X, Pang Y. StructNet-DDI: Molecular Structure Characterization-Based ResNet for Prediction of Drug–Drug Interactions. Molecules. 2024; 29(20):4829. https://doi.org/10.3390/molecules29204829
Chicago/Turabian StyleWang, Jihong, Xiaodan Wang, and Yuyao Pang. 2024. "StructNet-DDI: Molecular Structure Characterization-Based ResNet for Prediction of Drug–Drug Interactions" Molecules 29, no. 20: 4829. https://doi.org/10.3390/molecules29204829
APA StyleWang, J., Wang, X., & Pang, Y. (2024). StructNet-DDI: Molecular Structure Characterization-Based ResNet for Prediction of Drug–Drug Interactions. Molecules, 29(20), 4829. https://doi.org/10.3390/molecules29204829