Natural Silkworm Cocoon-Derived Separator with Na-Ion De-Solvated Function for Sodium Metal Batteries
Abstract
:1. Introduction
2. Results
2.1. Electrochemical Performance
2.2. Mechanical Properties and Functional Group Characterization
3. Discussion
4. Materials and Methods
4.1. Fabricating SCS
4.2. Material Characterization
4.3. Electrochemical Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, X.Z.; He, R.; Li, M.; Chee, M.O.L.; Dong, P.; Lu, J. Functionalized separator for next-generation batteries. Mater. Today 2020, 41, 143–155. [Google Scholar] [CrossRef]
- Lizundia, E.; Kundu, D. Advances in natural biopolymer-based electrolytes and separators for battery applications. Adv. Funct. Mater. 2021, 31, 2005646. [Google Scholar] [CrossRef]
- Sullivan, M.; Tang, P.; Meng, X.B. Atomic and molecular layer deposition as surface engineering techniques for emerging alkali metal rechargeable batteries. Molecules 2022, 27, 6170. [Google Scholar] [CrossRef]
- Lie, C. Sustainable battery materials from biomass. ChemSusChem 2020, 13, 2110–2141. [Google Scholar]
- Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013. [Google Scholar] [CrossRef]
- Lee, B.; Paek, E.; Mitlin, D.; Lee, S.W. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev. 2019, 119, 5416–5460. [Google Scholar] [CrossRef]
- Li, Y.C.; Fu, X.W.; Wang, Y.; Zhong, W.H.; Li, R.F. “See” the invisibles: Inspecting battery separator defects via pressure drop. Energy Storage Mater. 2019, 16, 589–596. [Google Scholar] [CrossRef]
- Lagadec, M.F.; Zahn, R.; Wood, V. Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 2018, 4, 16–25. [Google Scholar] [CrossRef]
- Wang, J.M.; Gao, Y.; Liu, D.; Zou, G.D.; Li, L.J.; Fernandez, C.; Zhang, Q.R.; Peng, Q.M. A sodiophilic amyloid fibril modified separator for dendrite-free sodium-metal batteries. Adv. Mater. 2024, 36, 2304942. [Google Scholar] [CrossRef]
- Zhang, L.P.; Li, X.L.; Yang, M.R.; Chen, W.H. High-safety separators for lithium-ion batteries and sodium-ion batteries: Advances and perspective. Energy Storage Mater. 2021, 41, 522–545. [Google Scholar] [CrossRef]
- Zhu, J.D.; Yanilmaz, M.; Fu, K.; Chen, C.; Lu, Y.; Ge, Y.Q.; Kim, D.; Zhang, X.W. Understanding glass fiber membrane used as a novel separator for lithium–sulfur batteries. J. Membr. Sci. 2016, 504, 89–96. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Cheng, S.A.; Huang, X.; Logan, B.E. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells. Energy Environ. Sci. 2010, 3, 659–664. [Google Scholar] [CrossRef]
- Liu, Z.F.; Jiang, Y.J.; Hu, Q.M.; Guo, S.T.; Yu, L.; Li, Q.; Liu, Q.; Hu, X.L. Safer lithium-ion batteries from the separator aspect: Development and future perspectives. Energy Environ. Mater. 2021, 4, 336–362. [Google Scholar] [CrossRef]
- Jin, C.B.; Nai, J.W.; Sheng, O.W.; Yuan, H.D.; Zhang, W.K.; Tao, X.Y.; Lou, X.W. Biomass-based materials for green lithium secondary batteries. Energy Environ. Sci. 2021, 14, 1326. [Google Scholar] [CrossRef]
- Casas, X.; Niederberger, M.; Lizundia, E. A sodium-ion battery separator with reversible voltage response based on water-soluble cellulose derivatives. ACS Appl. Mater. Interfaces 2020, 12, 29264–29274. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Z.; Zhang, Q.C.; Song, X.; Lu, X.K.; Zhang, Z.Y.; Onyianta, A.J.; Wang, M.N.; Titirici, M.M.; Eichhorn, S.J. Stable sodium-metal batteries in carbonate electrolytes achieved by bifunctional, sustainable separators with tailored alignment. Adv. Mater. 2022, 34, 2206367. [Google Scholar] [CrossRef]
- Reizabal, A.; Fidalgo-Marijuan, A.; Gonçalves, R.; Gutiérrez-Pardo, A.; Aguesse, F.; Pérez-Álvarez, L.; Vilas-Vilela, J.L.; Costa, C.M.; Lanceros-Mendez, S. Silk-fibroin and sericin polymer blends for sustainable battery separators. J. Colloid Interface Sci. 2022, 611, 366–376. [Google Scholar] [CrossRef]
- Guo, X.S.; Li, J.Y.; Xing, J.X.; Zhang, K.; Zhou, Y.G.; Pan, C.; Wei, Z.Z.; Zhao, Y. Silkworm cocoon layer with gradient structure as separator for lithium-ion battery. Energy Technol. 2022, 10, 2100996. [Google Scholar] [CrossRef]
- Reizabal, A.; Gonçalves, R.; Fidalgo-Marijuan, A.; Costa, C.M.; Pérez, L.; Vilas, J.-L.; Lanceros-Mendez, S. Tailoring silk fibroin separator membranes pore size for improving performance of lithium ion batteries. J. Membr. Sci. 2020, 598, 117678. [Google Scholar] [CrossRef]
- Pereira, R.F.P.; Brito-Pereira, R.; Gonçalves, R.; Silva, M.P.; Costa, C.M.; Silva, M.M.; Bermudez, V.D.Z.; Lanceros-Méndez, S. Silk fibroin separators: A step towards lithium ion batteries with enhanced sustainability. ACS Appl. Mater. Interfaces 2018, 10, 5385–5394. [Google Scholar] [CrossRef]
- Pereira, R.F.P.; Gonçalves, R.; Gonçalves, H.M.R.; Correia, D.M.; Costa, C.M.; Silva, M.M.; Lanceros-Méndez, S.; Bermudez, V.D.Z. Plasma-treated Bombyx mori cocoon separators for high-performance and sustainable lithium-ion batteries. Mater. Today Sustain. 2020, 9, 100041. [Google Scholar] [CrossRef]
- Biswal, B.; Dan, A.K.; Sengupta, A.; Das, M.; Bindhani, B.K.; Das, D.; Parhi, P.K. Extraction of silk fibroin with several sericin removal processes and its importance in tissue engineering: A review. J. Polym. Environ. 2022, 30, 2222–2253. [Google Scholar] [CrossRef]
- Chen, X.D.; Wang, Y.F.; Wang, Y.J.; Li, Q.Y.; Liang, X.Y.; Wang, G.; Li, J.L.; Peng, R.J.; Sima, Y.H.; Xu, S.Q. Ectopic expression of sericin enables efficient production of ancient silk with structural changes in silkworm. Nat. Commun. 2023, 13, 6295. [Google Scholar] [CrossRef]
- Drummy, L.F.; Farmer, B.L.; Naik, R.R. Correlation of the β-sheet crystal size in silk fibers with the protein amino acid sequence. Soft Matter 2007, 3, 877–882. [Google Scholar] [CrossRef]
- Cho, S.Y.; Yun, Y.S.; Lee, S.; Jang, D.; Park, K.Y.; Kim, J.K.; Kim, B.H.; Kang, K.; Kaplan, D.L.; Jin, H.J. Carbonization of a stableβ-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun. 2015, 6, 7145. [Google Scholar] [CrossRef] [PubMed]
- Dash, P.; Yang, J.M.; Lin, H.; Lin, A.S. Preparation and characterization of zinc gallate phosphor for electrochemical luminescence. J. Lumin. 2020, 228, 117593. [Google Scholar] [CrossRef]
- Ding, Z.; Li, H.; Shaw, L. New insights into the solid-state hydrogen storage of nanostructured LiBH4-MgH2 system. Chem. Eng. J. 2020, 385, 123856. [Google Scholar] [CrossRef]
- Liu, Y.J.; Tai, Z.X.; Rozen, I.; Yu, Z.P.; Lu, Z.Y.; LaGrow, A.P.; Bondarchuk, O.; Chen, Q.Q.; Goobes, G.; Li, Y.; et al. Ion flux regulation through PTFE nanospheres impregnated in glass fiber separators for long-lived lithium and sodium metal batteries. Adv. Energy Mater. 2023, 13, 2204420. [Google Scholar] [CrossRef]
- Ding, Z.; Li, Y.T.; Yang, H.; Lu, Y.F.; Tan, J.; Li, J.B.; Li, Q.; Chen, Y.A.; Shaw, L.L.; Pan, F.S. Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis. J. Magnes. Alloys 2022, 10, 2946–2967. [Google Scholar] [CrossRef]
- Li, Y.T.; Guo, Q.F.; Ding, Z.; Jiang, H.; Yang, H.; Du, W.J.; Zheng, Y.; Huo, K.F.; Shaw, L.L. MOFs-based materials for solid-state hydrogen storage: Strategies and perspectives. Chem. Eng. J. 2024, 485, 149665. [Google Scholar] [CrossRef]
- Yang, H.; Ding, Z.; Li, Y.-T.; Li, S.-Y.; Wu, P.-K.; Hou, Q.-H.; Zheng, Y.; Gao, B.; Huo, K.-F.; Du, W.-J.; et al. Recent advances in kinetic and thermodynamic regulation of magnesium hydride for hydrogen storage. Rare Met. 2023, 42, 2906–2927. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Fatimah Athiyah, S.; Shazleen, S.S.; Rafiqah, S.A.; Harussani, M.M.; Kamarudin, S.H.; Razman, M.R.; Rahmah, M.; Zainudin, E.S.; et al. A review on mechanical performance of hybrid natural fiber polymer composites for structural applications. Polymers 2021, 13, 2170. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.H.; Cheng, Z.Y.; Zhang, T.W.; Zhang, X.Q.; Ma, Y.; Guo, Y.Q.; Wang, X.Y.; Zheng, Z.H.; Hou, Z.G.; Zi, Z.F. High efficient recycling of glass fiber separator for sodium-ion batteries. Ceram. Int. 2023, 49, 23598–23604. [Google Scholar] [CrossRef]
- Li, M.H.; Lu, G.J.; Zheng, W.K.; Zhao, Q.N.; Li, Z.P.; Jiang, X.P.; Yang, Z.G.; Li, Z.Y.; Qu, B.H.; Xu, C.H. Multifunctionalized safe separator toward practical sodium-metal batteries with high-performance under high mass loading. Adv. Funct. Mater. 2023, 33, 2214759. [Google Scholar] [CrossRef]
- Hou, J.R.; Xu, T.T.; Wang, B.Y.; Yang, H.Y.; Wang, H.; Kong, D.Z.; Lyu, L.L.; Li, X.J.; Wang, Y.; Xu, Z.L. Self-confinement of Na metal deposition in hollow carbon tube arrays for ultrastable and high-power sodium metal batteries. Adv. Funct. Mater. 2024, 34, 2312750. [Google Scholar] [CrossRef]
- Gannon, W.J.F.; Dunnil, C.W. Apparent disagreement between cyclic voltammetry and electrochemical impedance spectroscopy explained by time-domain simulation of constant phase elements. Int. J. Hydrogen Energy 2020, 45, 22383–22393. [Google Scholar] [CrossRef]
- Xiong, F.Y.; Li, J.T.; Zuo, C.L.; Zhang, X.L.; Tan, S.S.; Jiang, Y.L.; An, Q.Y.; Chu, P.K.; Mai, L.Q. Mg-doped Na4Fe3(PO4)2(P2O7)/C composite with enhanced intercalation pseudocapacitance for ultra-stable and high-rate sodium-ion storage. Adv. Funct. Mater. 2023, 33, 2211257. [Google Scholar] [CrossRef]
- Bruce, P.G.; Vincent, C.A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. 1987, 225, 1–17. [Google Scholar] [CrossRef]
- Evans, J.; Vincent, C.A.; Bruce, P.G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28, 2324–2328. [Google Scholar] [CrossRef]
- Wei, Q.L.; Chang, X.Q.; Wang, J.; Huang, T.Y.; Huang, X.J.; Yu, J.Y.; Zheng, H.F.; Chen, J.H.; Peng, D.L. An ultrahigh-power mesocarbon microbeads|Na+-diglyme|Na3V2(PO4)3 sodium-ion battery. Adv. Mater. 2022, 34, 2108304. [Google Scholar] [CrossRef]
- Cao, J.L.; Wang, Y.; Wang, L.; Yu, F.; Ma, J. Na3V2(PO4)3@C as faradaic electrodes in capacitive deionization for high performance desalination. Nano Lett. 2019, 19, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Panda, P.K.; Cho, T.S.; Hsieh, C.T.; Yang, P.C. Cobalt- and copper-doped NASICON-type LATP polymer composite electrolytes enabling lithium titania electrode for solid-state lithium batteries with high-rate capability and excellent cyclic performance. J. Energy Storage 2024, 95, 112559. [Google Scholar] [CrossRef]
- Huang, R.; Yan, D.; Zhang, Q.Y.; Zhang, G.W.; Chen, B.B.; Yang, H.Y.; Yu, C.Y.; Bai, Y. Unlocking charge transfer limitation in NASICON structured Na3V2(PO4)3 cathode via trace carbon incorporation. Adv. Energy Mater. 2024, 14, 2400595. [Google Scholar] [CrossRef]
- Huang, X.S. A lithium-ion battery separator prepared using a phase inversion process. J. Power Sources 2012, 216, 216–221. [Google Scholar] [CrossRef]
- Berger, E.; Niemelä, J.; Lampela, O.; Juffer, A.H.; Komsa, H.P. Raman spectra of amino acids and peptides from machine learning polarizabilities. J. Chem. Inf. Model. 2024, 64, 4601–4612. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.L.; Ji, X.; Wang, X.; He, Q.F.; Dong, J.C.; Le, J.B.; Li, J.F. Visualization of electrooxidation on palladium single crystal surfaces via situ Raman spectroscopy. Angew. Chem. Int. Ed. 2024, e202408736. [Google Scholar] [CrossRef]
- Yu, J.M.; Guo, T.L.; Wang, C.; Shen, Z.H.; Dong, X.Y.; Li, S.H.; Zhang, H.G.; Lu, Z.D. Engineering two-dimensional metal–organic framework on molecular basis for fast Li+ conduction. Nano Lett. 2021, 21, 5805–5812. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Bin Wu, H.; Liu, F.; Brosmer, J.L.; Shen, G.; Wang, X.; Zink, J.I.; Xiao, Q.; Cai, M.; Wang, G.; et al. Creating lithium-ion electrolytes with biomimetic ionic channels in metal–organic frameworks. Adv. Mater. 2018, 30, 1707476. [Google Scholar] [CrossRef]
- Harizanova, R.; Tashava, T.; Gaydarov, V.; Avramova, I.; Lilova, V.; Nedev, S.; Zamfirova, G.; Nedkova-Shtipska, M.; Rüssel, C. Structure and physicochemical characteristics of the glasses in the system Na2O/BaO/ZrO2/TiO2/SiO2/B2O3/Al2O3-Influence of the ZrO2 addition on the physico-chemical and mechanical properties. Solid State Sci. 2024, 151, 107515. [Google Scholar] [CrossRef]
- Hurisso, B.B.; Lovelock, K.R.J.; Licence, P. Amino acid-based ionic liquids: Using XPS to probe the electronic environment via binding energies. Phys. Chem. Chem. Phys. 2011, 13, 17737–17748. [Google Scholar] [CrossRef]
- Martin-Vosshage, D.; Chowdari, B.V.R. XPS studies on (PEO)nLiClO4 and (PEO)nCu(ClO4)2 polymer electrolytes. J. Electrochem. Soc. 1995, 142, 1442. [Google Scholar] [CrossRef]
- Zhou, X.Z.; Chen, X.M.; Yang, Z.; Liu, X.H.; Hao, Z.Q.; Jin, S.; Zhang, L.H.; Wang, R.; Zhang, C.F.; Li, L.; et al. Anion receptor weakens ClO4- solvation for high-temperature sodium-ion batteries. Adv. Funct. Mater. 2024, 34, 2302281. [Google Scholar] [CrossRef]
- Amin, M.A. Metastable and stable pitting events on Al induced by chlorate and perchlorate anions-Polarization, XPS and SEM studies. Electrochim. Acta 2009, 54, 1857–1863. [Google Scholar] [CrossRef]
- Sreedhar, B.; Sairam, M.; Chattopadhyay, D.K.; Mitra, P.P.; Rao, D.V.M. Thermal and XPS studies on polyaniline salts prepared by inverted emulsion polymerization. J. Appl. Polym. Sci. 2006, 101, 499–508. [Google Scholar] [CrossRef]
- Stevens, J.S.; Luca, A.C.D.; Pelendritis, M.; Terenghi, G.; Downes, S.; Schroeder, S.L.M. Quantitative analysis of complex amino acids and RGD peptides by X-ray photoelectron spectroscopy (XPS). Surf. Interface Anal. 2013, 45, 1238–1246. [Google Scholar] [CrossRef]
- Tan, S.S.; Jiang, Y.L.; Ni, S.Y.; Wang, H.; Xiong, F.Y.; Cui, L.M.; Pan, X.L.; Tang, C.; Rong, Y.G.; An, Q.Y.; et al. Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries. Natl. Sci. Rev. 2022, 9, nwac183. [Google Scholar] [CrossRef]
- Sun, B.; Li, P.; Zhang, J.Q.; Wang, D.; Munroe, P.; Wang, C.Y.; Notten, P.H.L.; Wang, G.X. Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries. Adv. Mater. 2018, 30, 1801334. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Du, Z.J.; Li, Z.; Zhang, X.H.; Liu, J.T.; Dai, Y.H.; Zhang, W.; Wang, D.; Wang, Y.Y.; Li, H.X.; et al. Super-lattices enabled performances of vanadate-phosphate glass-ceramic composite cathode in lithium-ion batteries. Ceram. Int. 2024, 50, 15407–15416. [Google Scholar] [CrossRef]
- Fu, X.W.; Hurlock, M.J.; Ding, C.F.; Li, X.Y.; Zhang, Q.; Zhong, W.H. MOF-enabled ion-regulating gel electrolyte for long-cycling lithium metal batteries under high voltage. Small 2022, 18, 2106225. [Google Scholar] [CrossRef]
- Zhu, F.L.; Bao, H.F.; Wu, X.S.; Tao, Y.L.; Qin, C.; Su, Z.M.; Kang, Z.H. High-performance metal–organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries. ACS Appl. Mater. Interfaces 2019, 11, 43206–43213. [Google Scholar] [CrossRef]
- Sheng, L.; Wang, Q.Q.; Liu, X.; Cui, H.; Wang, X.L.; Xu, Y.L.; Li, Z.L.; Wang, L.; Chen, Z.H.; Xu, G.L.; et al. Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nat. Commun. 2022, 13, 172. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.J.; He, P.; Zhou, H.S. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule 2020, 4, 1776–1789. [Google Scholar] [CrossRef]
- Ma, W.H.; Wang, S.; Wu, X.W.; Liu, W.W.; Yang, F.; Liu, S.D.; Jun, S.C.; Dai, L.; He, Z.X.; Zhang, Q.B. Tailoring desolvation strategies for aqueous zinc-ion batteries. Energy Environ. Sci. 2024, 17, 4819–4846. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhou, Z.; Gao, X.; Liu, Q.; Man, J.; Du, F.; Xiong, F. Natural Silkworm Cocoon-Derived Separator with Na-Ion De-Solvated Function for Sodium Metal Batteries. Molecules 2024, 29, 4813. https://doi.org/10.3390/molecules29204813
Wang Z, Zhou Z, Gao X, Liu Q, Man J, Du F, Xiong F. Natural Silkworm Cocoon-Derived Separator with Na-Ion De-Solvated Function for Sodium Metal Batteries. Molecules. 2024; 29(20):4813. https://doi.org/10.3390/molecules29204813
Chicago/Turabian StyleWang, Zhaoyang, Zihan Zhou, Xing Gao, Qian Liu, Jianzong Man, Fanghui Du, and Fangyu Xiong. 2024. "Natural Silkworm Cocoon-Derived Separator with Na-Ion De-Solvated Function for Sodium Metal Batteries" Molecules 29, no. 20: 4813. https://doi.org/10.3390/molecules29204813
APA StyleWang, Z., Zhou, Z., Gao, X., Liu, Q., Man, J., Du, F., & Xiong, F. (2024). Natural Silkworm Cocoon-Derived Separator with Na-Ion De-Solvated Function for Sodium Metal Batteries. Molecules, 29(20), 4813. https://doi.org/10.3390/molecules29204813