Potential of Tryptamine Derivatives as Multi-Target Directed Ligands for Alzheimer’s Disease: AChE, MAO-B, and COX-2 as Molecular Targets
Abstract
:1. Introduction
2. Result and Discussion
2.1. In Vitro Enzyme Inhibition Investigation
2.2. Molecular Docking against Acetylcholinestrase Enzyme
2.3. Molecular Docking against Monoamine Oxidase-B Enzyme
2.4. Molecular Docking of Cyclooxygenase-2 Enzyme
3. Experimental
3.1. Biological Evaluation
3.1.1. Acetylcholinesterase Inhibition
3.1.2. Monoamine Oxidase Inhibition Assay
Extraction of MAO Enzyme from Synaptosomes of Rat Brain
In Vitro Monoamine Oxidase Inhibition Assay
3.1.3. In Vitro Fluorometric COX-2 Inhibition Assay
3.2. Molecular Docking
4. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mouchlis, V.D.; Melagraki, G.; Zacharia, L.C.; Afantitis, A. Computer-aided drug design of β-secretase, γ-secretase and anti-tau inhibitors for the discovery of novel Alzheimer’s therapeutics. Int. J. Mol. Sci. 2020, 21, 703. [Google Scholar] [CrossRef] [PubMed]
- Sang, Z.; Wang, K.; Han, X.; Cao, M.; Tan, Z.; Liu, W. Design, synthesis, and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. ACS Chem. Neurosci. 2018, 10, 1008–1024. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.-S.; Zeng, R.-F.; Jiang, X.-Y.; Hou, J.-W.; Liu, Y.; Hu, Z.-H.; Li, H.-X.; Li, Y.; Xie, S.-S.; Ding, Y. Design, synthesis and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Bioorganic Chem. 2020, 94, 103413. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Waiker, D.K.; Bhardwaj, B.; Saraf, P.; Shrivastava, S.K. The molecular mechanism, targets, and novel molecules in the treatment of Alzheimer’s disease. Bioorganic Chem. 2022, 119, 105562. [Google Scholar] [CrossRef] [PubMed]
- Alan, E.; Kerry, Z.; Sevin, G. Molecular mechanisms of Alzheimer’s disease: From therapeutic targets to promising drugs. Fundam. Clin. Pharmacol. 2023, 37, 397–427. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Zhang, D.; Zeng, Y.; Huang, T.Y.; Xu, H.; Zhao, Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 2020, 15, 1–37. [Google Scholar] [CrossRef]
- Savelieff, M.G.; Lee, S.; Liu, Y.; Lim, M.H. Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS Chem. Biol. 2013, 8, 856–865. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K. Alzheimer’s disease: Pathogenesis and prevention. Alzheimer’s Dement. 2012, 8, 227–233. [Google Scholar] [CrossRef]
- Wu, W.-Y.; Dai, Y.-C.; Li, N.-G.; Dong, Z.-X.; Gu, T.; Shi, Z.-H.; Xue, X.; Tang, Y.-P.; Duan, J.-A. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer’s disease. J. Enzym. Inhib. Med. Chem. 2017, 32, 572–587. [Google Scholar] [CrossRef]
- Chaudhary, A.; Maurya, P.K.; Yadav, B.S.; Singh, S.; Mani, A. Current therapeutic targets for Alzheimer’s disease. J. Biomed. 2018, 3, 74–84. [Google Scholar] [CrossRef]
- Makhaeva, G.F.; Lushchekina, S.V.; Kovaleva, N.V.; Astakhova, T.Y.; Boltneva, N.P.; Rudakova, E.V.; Serebryakova, O.G.; Proshin, A.N.; Serkov, I.V.; Trofimova, T.P. Amiridine-piperazine hybrids as cholinesterase inhibitors and potential multitarget agents for Alzheimer’s disease treatment. Bioorganic Chem. 2021, 112, 104974. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Silva, R.; MM Pinto, M.; Sousa, E. Marine natural products, multitarget therapy and repurposed agents in Alzheimer’s disease. Pharmaceuticals 2020, 13, 242. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-K.; Kuan, Y.-C.; Lin, H.-W.; Hu, C.-J. Clinical trials of new drugs for Alzheimer disease: A 2020–2023 update. J. Biomed. Sci. 2023, 30, 83. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Chu, F.; Zhu, F.; Zhu, J. Impact of anti-amyloid-β monoclonal antibodies on the pathology and clinical profile of Alzheimer’s disease: A focus on aducanumab and lecanemab. Front. Aging Neurosci. 2022, 14, 870517. [Google Scholar] [CrossRef]
- Pan, H.; Qiu, H.; Zhang, K.; Zhang, P.; Liang, W.; Yang, M.; Mou, C.; Lin, M.; He, M.; Xiao, X. Fascaplysin derivatives are potent multitarget agents against Alzheimer’s disease: In vitro and in vivo evidence. ACS Chem. Neurosci. 2019, 10, 4741–4756. [Google Scholar] [CrossRef]
- Coman, H.; Nemeş, B. New therapeutic targets in Alzheimer’s disease. Int. J. Gerontol. 2017, 11, 2–6. [Google Scholar] [CrossRef]
- Iqbal, K.; Grundke-Iqbal, I. Alzheimer’s Disease, a Multifactorial Disorder Seeking Multitherapies; Elsevier: Amsterdam, The Netherlands, 2010; Volume 6, pp. 420–424. [Google Scholar]
- Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.-g.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2014, 1842, 1240–1247. [Google Scholar] [CrossRef]
- Gidaro, M.C.; Astorino, C.; Petzer, A.l.; Carradori, S.; Alcaro, F.; Costa, G.; Artese, A.; Rafele, G.; Russo, F.M.; Petzer, J.P. Kaempferol as selective human MAO-A inhibitor: Analytical detection in calabrian red wines, biological and molecular modeling studies. J. Agric. Food Chem. 2016, 64, 1394–1400. [Google Scholar] [CrossRef]
- Simunkova, M.; Alwasel, S.H.; Alhazza, I.M.; Jomova, K.; Kollar, V.; Rusko, M.; Valko, M. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch. Toxicol. 2019, 93, 2491–2513. [Google Scholar] [CrossRef]
- Papagiouvannis, G.; Theodosis-Nobelos, P.; Kourounakis, P.N.; Rekka, E.A. Multi-target directed compounds with antioxidant and/or anti-inflammatory properties as potent agents for alzheimer’s disease. Med. Chem. 2021, 17, 1086–1103. [Google Scholar] [CrossRef]
- Cai, Z. Monoamine oxidase inhibitors: Promising therapeutic agents for Alzheimer’s disease. Mol. Med. Rep. 2014, 9, 1533–1541. [Google Scholar] [CrossRef] [PubMed]
- Zagórska, A.; Jaromin, A. Perspectives for new and more efficient multifunctional ligands for Alzheimer′ s disease therapy. Molecules 2020, 25, 3337. [Google Scholar] [CrossRef] [PubMed]
- Mishra, C.B.; Kumari, S.; Manral, A.; Prakash, A.; Saini, V.; Lynn, A.M.; Tiwari, M. Design, synthesis, in-silico and biological evaluation of novel donepezil derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2017, 125, 736–750. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.; Cagide, F.; Valencia, M.E.; Teixeira, J.; Bagetta, D.; Perez, C.; Uriarte, E.; Oliveira, P.J.; Ortuso, F.; Alcaro, S. Multi-target-directed ligands for Alzheimer’s disease: Discovery of chromone-based monoamine oxidase/cholinesterase inhibitors. Eur. J. Med. Chem. 2018, 158, 781–800. [Google Scholar] [CrossRef] [PubMed]
- Dixit, G.; Prabhu, A. Design, synthesis, metal chelation potential and biological evaluation of pyridine chalcones as multi-target-directed ligands against Alzheimer’s disease. J. Mol. Struct. 2023, 1294, 136498. [Google Scholar] [CrossRef]
- Maramai, S.; Benchekroun, M.; Gabr, M.T.; Yahiaoui, S. Multitarget therapeutic strategies for Alzheimer’s disease: Review on emerging target combinations. BioMed Res. Int. 2020, 2020, 5120230. [Google Scholar] [CrossRef]
- González, J.F.; Alcántara, A.R.; Doadrio, A.L.; Sánchez-Montero, J.M. Developments with multi-target drugs for Alzheimer’s disease: An overview of the current discovery approaches. Expert Opin. Drug Discov. 2019, 14, 879–891. [Google Scholar] [CrossRef]
- Mesiti, F.; Chavarria, D.; Gaspar, A.; Alcaro, S.; Borges, F. The chemistry toolbox of multitarget-directed ligands for Alzheimer’s disease. Eur. J. Med. Chem. 2019, 181, 111572. [Google Scholar] [CrossRef]
- Cardinali, D.P. Melatonin: Clinical perspectives in neurodegeneration. Front. Endocrinol. 2019, 10, 480. [Google Scholar] [CrossRef]
- Kousara, S.; Anjuma, S.N.; Jaleela, F.; Khana, J.; Naseema, S. Biomedical significance of tryptamine: A review. J. Pharmacovigil 2017, 5. [Google Scholar] [CrossRef]
- Araújo, A.M.; Carvalho, F.; Bastos, M.d.L.; Guedes de Pinho, P.; Carvalho, M. The hallucinogenic world of tryptamines: An updated review. Arch. Toxicol. 2015, 89, 1151–1173. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Li, J.; Deng, X.; Lu, Y.; Feng, Y.; Ma, S.; Wen, H.; Zhao, Q.; Tan, W.; Shi, T. Design, synthesis and bioactivity study of N-salicyloyl tryptamine derivatives as multifunctional agents for the treatment of neuroinflammation. Eur. J. Med. Chem. 2020, 193, 112217. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bachiller, M.I.; Pérez, C.; Campillo, N.E.; Páez, J.A.; González-Muñoz, G.C.; Usán, P.; García-Palomero, E.; López, M.G.; Villarroya, M.; García, A.G. Tacrine–melatonin hybrids as multifunctional agents for Alzheimer’s disease, with cholinergic, antioxidant, and neuroprotective properties. ChemMedChem Chem. Enabling Drug Discov. 2009, 4, 828–841. [Google Scholar] [CrossRef] [PubMed]
- Asghar, S.; Mushtaq, N.; Ahmad, A.; Munawwar, R.; Ansari, S.; Rizvi, S.A. Design, Synthesis and Therapeutic investigation of Tryptamine derivatives as Potential Antioxidant and Amyloid inhibitor/disaggregator. Res. J. Pharm. Technol. 2023, 16, 3622–3632. [Google Scholar] [CrossRef]
- Nepali, K.; Lee, H.-Y.; Liou, J.-P. Nitro-group-containing drugs. J. Med. Chem. 2018, 62, 2851–2893. [Google Scholar] [CrossRef] [PubMed]
- Noriega, S.; Cardoso-Ortiz, J.; López-Luna, A.; Cuevas-Flores, M.D.R.; Flores De La Torre, J.A. The Diverse Biological Activity of Recently Synthesized Nitro Compounds. Pharmaceuticals 2022, 15, 717. [Google Scholar] [CrossRef] [PubMed]
- Bastrakov, M.; Starosotnikov, A. Recent Progress in the Synthesis of Drugs and Bioactive Molecules Incorporating Nitro (het) arene Core. Pharmaceuticals 2022, 15, 705. [Google Scholar] [CrossRef] [PubMed]
- Goksen, U.S.; Sarigul, S.; Bultinck, P.; Herrebout, W.; Dogan, I.; Yelekci, K.; Ucar, G.; Gokhan Kelekci, N. Absolute configuration and biological profile of pyrazoline enantiomers as MAO inhibitory activity. Chirality 2019, 31, 21–33. [Google Scholar] [CrossRef]
- Al-Mustafa, A.; Al-Zereini, W.; Ashram, M.; Al-Sha’er, M.A. Evaluation of antibacterial, antioxidant, cytotoxic, and acetylcholinesterase inhibition activities of novel [1, 4] benzoxazepines fused to heterocyclic systems with a molecular modeling study. Med. Chem. Res. 2023, 32, 239–253. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, C.; Liu, M.; Jiao, S.; Zhao, J.; Liu, X.; Lin, H.; Chi-cheong Wan, D.; Hu, C. Synthesis, biological activity, molecular docking studies of a novel series of 3-Aryl-7 H-thiazolo [3, 2-b]-1, 2, 4-triazin-7-one derivatives as the acetylcholinesterase inhibitors. J. Biomol. Struct. Dyn. 2021, 39, 2478–2489. [Google Scholar] [CrossRef]
- Shuai, W.; Li, W.; Yin, Y.; Yang, L.; Xu, F.; Xu, S.; Yao, H.; Zhu, Z.; Xu, J. Design, synthesis and molecular modeling of isothiochromanone derivatives as acetylcholinesterase inhibitors. Future Med. Chem. 2019, 11, 2687–2699. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, F.; Pourshojaei, Y.; Moradi, A.; Sharifzadeh, M.; Khosravani, L.; Sabourian, R.; Rahmani-Nezhad, S.; Mohammadi-Khanaposhtani, M.; Mahdavi, M.; Asadipour, A. Design, synthesis, molecular modeling and anticholinesterase activity of benzylidene-benzofuran-3-ones containing cyclic amine side chain. Future Med. Chem. 2017, 9, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.-S.; Zhang, T.; Liu, Y.; Yang, J.; Xie, S.-S.; Liu, J.; Miao, Z.-Y.; Ding, Y. Design, synthesis and biological activity of novel donepezil derivatives bearing N-benzyl pyridinium moiety as potent and dual binding site acetylcholinesterase inhibitors. Eur. J. Med. Chem. 2017, 133, 184–196. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, N.F.; El-Hussieny, M.; Ewies, E.F.; Fouad, M.A.; Boulos, L.S. New phosphazine and phosphazide derivatives as multifunctional ligands targeting acetylcholinesterase and β-Amyloid aggregation for treatment of Alzheimer’s disease. Bioorganic Chem. 2020, 95, 103499. [Google Scholar] [CrossRef] [PubMed]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: From 3D structure to function. Chem. -Biol. Interact. 2010, 187, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Pappolla, M.A.; Smith, M.A.; Bryant-Thomas, T.; Bazan, N.; Petanceska, S.; Perry, G.; Thal, L.J.; Sano, M.; Refolo, L.M. Cholesterol, oxidative stress, and Alzheimer’s disease: Expanding the horizons of pathogenesis. Free Radic. Biol. Med. 2002, 33, 173–181. [Google Scholar] [CrossRef]
- Borroni, E.; Bohrmann, B.; Grueninger, F.; Prinssen, E.; Nave, S.; Loetscher, H.; Chinta, S.J.; Rajagopalan, S.; Rane, A.; Siddiqui, A. Sembragiline: A novel, selective monoamine oxidase type B inhibitor for the treatment of Alzheimer’s disease. J. Pharmacol. Exp. Ther. 2017, 362, 413–423. [Google Scholar] [CrossRef]
- De Colibus, L.; Li, M.; Binda, C.; Lustig, A.; Edmondson, D.E.; Mattevi, A. Three-dimensional structure of human monoamine oxidase A (MAO A): Relation to the structures of rat MAO A and human MAO B. Proc. Natl. Acad. Sci. USA 2005, 102, 12684–12689. [Google Scholar] [CrossRef]
- Reis, J.; Manzella, N.; Cagide, F.; Mialet-Perez, J.; Uriarte, E.; Parini, A.; Borges, F.; Binda, C. Tight-binding inhibition of human monoamine oxidase B by chromone analogs: A kinetic, crystallographic, and biological analysis. J. Med. Chem. 2018, 61, 4203–4212. [Google Scholar] [CrossRef]
- Tzvetkov, N.T.; Stammler, H.-G.; Antonov, L. Tautomerism of N-(3, 4-dichlorophenyl)-1H-indazole-5-carboxamide–A new selective, highly potent and reversible MAO-B inhibitor. J. Mol. Struct. 2017, 1149, 273–281. [Google Scholar] [CrossRef]
- Mateev, E.; Kondeva-Burdina, M.; Georgieva, M.; Zlatkov, A. Repurposing of FDA-approved drugs as dual-acting MAO-B and AChE inhibitors against Alzheimer’s disease: An in silico and in vitro study. J. Mol. Graph. Model. 2023, 122, 108471. [Google Scholar] [CrossRef] [PubMed]
- Ganji, L.; Agrawal, P. Design, synthesis and antiinflammatory evaluation of 5 (6)-(un)-substituted-1H-benzimidazol-2-ylthioacetylpiperazine derivatives. Indian J. Pharm. Sci. 2020, 82, 21–31. [Google Scholar] [CrossRef]
- Zarghi, A.; Arfaei, S. Selective COX-2 inhibitors: A review of their structure-activity relationships. Iran. J. Pharm. Res. IJPR 2011, 10, 655. [Google Scholar] [PubMed]
- Llorens, O.; Perez, J.J.; Palomer, A.; Mauleon, D. Differential binding mode of diverse cyclooxygenase inhibitors. J. Mol. Graph. Model. 2002, 20, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Sirbaiya, A.K.; Kumar, V.; Rahman, M.A. Current perspective of synthesis of medicinally relevant benzothiazole based molecules: Potential for antimicrobial and anti-inflammatory activities. Mini Rev. Med. Chem. 2022, 22, 1895–1935. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.; de Almeida, M.; Silva, J.; Albino, S.; Espírito-Santo, R.; Lima, M.; Villarreal, C.; Moura, R.; Santos, V. (E)-2-Cyano-3-(1 H-Indol-3-yl)-N-Phenylacrylamide, a Hybrid Compound Derived from Indomethacin and Paracetamol: Design, Synthesis and Evaluation of the Anti-Inflammatory Potential. Int. J. Mol. Sci. 2020, 21, 2591. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres Jr, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Kitagawa, D.A.; Rodrigues, R.B.; Silva, T.N.; Dos Santos, W.V.; da Rocha, V.C.; de Almeida, J.S.; Bernardo, L.B.; Carvalho-Silva, T.; Ferreira, C.N.; da Silva, A.A. Design, synthesis, in silico studies and in vitro evaluation of isatin-pyridine oximes hybrids as novel acetylcholinesterase reactivators. J. Enzym. Inhib. Med. Chem. 2021, 36, 1370–1377. [Google Scholar] [CrossRef]
- Elumalai, K.; Ali, M.A.; Elumalai, M.; Eluri, K.; Srinivasan, S. Acetylcholinesterase enzyme inhibitor activity of some novel pyrazinamide condensed 1, 2, 3, 4-tetrahydropyrimidines. Biotechnol. Rep. 2015, 5, 1–6. [Google Scholar] [CrossRef]
- Kang, D.; Song, Y.n.; Zhan, P.; Zhang, Q.; Liu, X. Design, Synthesis, and Acetylcholinesterase Inhibition Assay of Novel 9-(1-(Substituted-benzyl) piperidin-4-yl)-2-chloro-9H-purin-6-amine Derivatives. J. Chem. 2013, 2013. [Google Scholar] [CrossRef]
- Lolak, N.; Boga, M.; Tuneg, M.; Karakoc, G.; Akocak, S.; Supuran, C.T. Sulphonamides incorporating 1, 3, 5-triazine structural motifs show antioxidant, acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibitory profile. J. Enzym. Inhib. Med. Chem. 2020, 35, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Hajos, F. An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 1975, 93, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Ilieva, V.; Kondeva-Burdina, M.; Georgieva, T. In vitro analysis of the activity of human monoamine oxidase type B (hMAOB), treated with the cyanotoxin anatoxin-a: Supposed factor of neurodegenerative diseases. Pharmacia 2020, 67, 111–114. [Google Scholar] [CrossRef]
- Van Dyk, A.S.; Petzer, J.P.; Petzer, A.; Legoabe, L.J. 3-Coumaranone derivatives as inhibitors of monoamine oxidase. Drug Des. Dev. Ther. 2015, 9, 5479. [Google Scholar]
- Osmaniye, D.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Design, Synthesis and Biological Evaluation of New N-Acyl Hydrazones with a Methyl Sulfonyl Moiety as Selective COX-2 Inhibitors. Chem. Biodivers. 2021, 18, e2100521. [Google Scholar] [CrossRef] [PubMed]
- Swiatek, P.; Strzelecka, M.; Urniaz, R.; Gebczak, K.; Gebarowski, T.; Gasiorowski, K.; Malinka, W. Synthesis, COX-1/2 inhibition activities and molecular docking study of isothiazolopyridine derivatives. Biorgan. Med. Chem. 2017, 25, 316–326. [Google Scholar] [CrossRef]
- Devi, V.R.; Sharmila, C.; Subramanian, S. Molecular docking studies involving the inhibitory effect of gymnemic acid, trigonelline and ferulic acid, the phytochemicals with antidiabetic properties, on glycogen synthase kinase 3 (α and β). J. Appl. Pharm. Sci. 2018, 8, 150–160. [Google Scholar]
- Yadav, S.; Pandey, S.K.; Singh, V.K.; Goel, Y.; Kumar, A.; Singh, S.M. Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies. PLoS ONE 2017, 12, e0176403. [Google Scholar] [CrossRef]
- Rajasekhar, K.; Nizamuddin, N.; Surur, A.S.; Mekonnen, Y.T. Synthesis, characterization, antitubercular and antibacterial activity, and molecular docking of 2, 3-disubstituted quinazolinone derivatives. Res. Rep. Med. Chem. 2016, 2016, 15–26. [Google Scholar]
- Abazari, D.; Moghtadaei, M.; Behvarmanesh, A.; Ghannadi, B.; Aghaei, M.; Behruznia, M.; Rigi, G. Molecular docking based screening of predicted potential inhibitors for VP40 from Ebola virus. Bioinformation 2015, 11, 243. [Google Scholar] [CrossRef] [PubMed]
- Asgharzadeh, M.R.; Pourseif, M.M.; Barar, J.; Eskandani, M.; Niya, M.J.; Mashayekhi, M.R.; Omidi, Y. Functional expression and impact of testis-specific gene antigen 10 in breast cancer: A combined in vitro and in silico analysis. BioImpacts BI 2019, 9, 145. [Google Scholar] [CrossRef] [PubMed]
- Shivakumar, R.; Venkatarangaiah, K.; Shastri, S.; Nagaraja, R.B.; Sheshagiri, A. Antibacterial Property and Molecular Docking Studies of Leaf Calli Phytochemicals of Bridelia scandens Wild. Pharmacogn. J. 2018, 10, 1221–1229. [Google Scholar] [CrossRef]
S.no. | Compound Code | AChE b (IC50 a ± SD (µM) | MAO-B c (IC50 a ± SD (µM) | COX-2 d (%Inhibition a ± SD) |
---|---|---|---|---|
1 | SR08 | 4.36 ± 0.12 | 244.20 ± 1.00 | 72.33 ± 1.67 |
2 | SR10 | 1.00 ± 0.08 | 216.10 ± 0.29 | 72.90 ± 2.42 |
3 | SR13 | 9.68 ± 0.16 | 50.64 ± 0.64 | 73.83 ± 2.37 |
4 | SR14 | 68.71 ± 0.24 | 112.20 ± 0.29 | 65.26 ± 2.65 |
5 | SR17 | 8.23 ± 0.12 | 150.10 ± 0.26 | 72.83 ± 2.54 |
6 | SR20 | 24.97 ± 0.05 | 222.13 ± 0.32 | 68.66 ± 3.86 |
7 | SR21 | 87.73 ± 0.16 | 142.13 ± 0.32 | 34.43 ± 3.34 |
8 | SR22 | 54.88 ± 0.19 | 56.46 ± 0.41 | 84.08 ± 4.53 |
9 | SR23 | 7.33 ± 0.12 | 95.10 ± 0.43 | 71.40 ± 3.11 |
10 | SR24 | 6.70 ± 0.08 | 133.20 ± 0.46 | 79.30 ± 2.02 |
11 | SR25 | 0.17 ± 0.02 | 85.10 ± 0.26 | 72.43 ± 2.36 |
12 | SR42 | 0.70 ± 0.21 | 43.21 ± 0.46 | 75.16 ± 2.30 |
13 | Tryptamine | 88.26 ± 0.24 | 288.13 ± 0.32 | 57.33 ± 4.96 |
14 | Donepezil | 1.96 ± 0.41 | -- | -- |
15 | Galantamine | 23.37 ± 0.26 | -- | -- |
16 | Pargyline | -- | 23.37 ± 0.32 | -- |
17 | Celecoxib | -- | -- | 87.86 ± 0.63 |
18 | Indomethacin | -- | -- | 87.03 ± 0.57 |
PDB ID: 4EY7 (AChE) | ||||
---|---|---|---|---|
S. No. | Ligand Code | Docking Score (kcal/mol) | Hydrogen Bond Interaction (3Å) | Hydrophobic Interacting Amino Acids (5Å) |
1. | SR42 | −10.4 | Gly121, Tyr124, His447 | Tyr72, Trp86, Gly120, Gly121, Tyr124, Trp286, Phe295, Phe297, Tyr337, Phe338, Tyr341, His447, Gly448 |
2. | SR10 | −8.7 | Tyr337 | Trp86, Gly120, Gly121, Tyr124, Phe295, Phe297, Tyr337, Phe338, Tyr341, His447, Gly448 |
3. | SR25 | −9.7 | Tyr124 | Tyr72, Trp86, Gly120, Gly121, Tyr124, Tyr133, Trp286, Phe295, Phe297, Tyr337, Phe338, Tyr341, His447, Gly448 |
4. | Donepezil | −11.2 | Tyr124, Phe295 | Tyr72, Trp86, Gly120, Gly121, Tyr124, Trp286, Phe295, Phe297, Tyr337, Phe338, Tyr341, His447, Gly448 |
PDB ID:2V5Z (MAO-B) | ||||
S. No. | Ligand code | Docking score (kcal/mol) | Hydrogen bond interaction (3Å) | Hydrophobic interacting amino acids (5Å) |
1. | SR42 | −9 | Tyr435 | Tyr60, Phe103, Leu167, Phe168, Leu171, Cys172, Ile198, Ile199, Thr201, Ile316, Tyr326, Tyr398, Tyr435, FAD |
2. | Pargyline | −7.4 | --- | Tyr60, Phe168, Leu171, Cys172, Ile198, Ile199, Thr201, Tyr326, Phe343, Tyr398, Tyr435, FAD |
PDB ID: 4COX (COX-2) | ||||
S. No. | Ligand code | Docking score (kcal/mol) | Hydrogen bond interaction (3Å) | Hydrophobic interacting amino acids (5Å) |
1. | SR22 | −8.3 | Leu352, Ser530 | His90, Val116, Tyr348, Val349, Leu352, Leu359, Leu384, Tyr355, Met522, Val523, Gly526, Ala527, Leu531 |
2. | SR24 | −9.6 | --- | His90, Val116, Tyr348, Val349, Leu352, Leu359, Leu384, Tyr355, Met522, Val523, Gly526, Ala527, Leu531 |
3. | SR42 | −9.1 | Ser530 | His90, Val116, Tyr348, Val349, Leu352, Tyr355, Leu359, Tyr385, Trp387, Phe518, Met522, Val523, Gly526, Ala527, Leu531 |
4. | Celecoxib | −7.3 | His90, Gln192, Ser353 | His90, Val116, Tyr348, Val349, Leu352, Tyr355, Leu359, Phe518, Met522, Val523, Gly526, Ala527, Leu531 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asghar, S.; Mushtaq, N.; Ahmed, A.; Anwar, L.; Munawar, R.; Akhtar, S. Potential of Tryptamine Derivatives as Multi-Target Directed Ligands for Alzheimer’s Disease: AChE, MAO-B, and COX-2 as Molecular Targets. Molecules 2024, 29, 490. https://doi.org/10.3390/molecules29020490
Asghar S, Mushtaq N, Ahmed A, Anwar L, Munawar R, Akhtar S. Potential of Tryptamine Derivatives as Multi-Target Directed Ligands for Alzheimer’s Disease: AChE, MAO-B, and COX-2 as Molecular Targets. Molecules. 2024; 29(2):490. https://doi.org/10.3390/molecules29020490
Chicago/Turabian StyleAsghar, Saira, Nousheen Mushtaq, Ahsaan Ahmed, Laila Anwar, Rabya Munawar, and Shamim Akhtar. 2024. "Potential of Tryptamine Derivatives as Multi-Target Directed Ligands for Alzheimer’s Disease: AChE, MAO-B, and COX-2 as Molecular Targets" Molecules 29, no. 2: 490. https://doi.org/10.3390/molecules29020490
APA StyleAsghar, S., Mushtaq, N., Ahmed, A., Anwar, L., Munawar, R., & Akhtar, S. (2024). Potential of Tryptamine Derivatives as Multi-Target Directed Ligands for Alzheimer’s Disease: AChE, MAO-B, and COX-2 as Molecular Targets. Molecules, 29(2), 490. https://doi.org/10.3390/molecules29020490