Dual Enzymolysis Assisted by Acrylate or Phosphate Grafting: Influences on the Structural and Functional Properties of Jujube Residue Dietary Fiber
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Component of JRDF
2.2. Particle Sizes and Colors of JRDFs
2.3. Structural Characteristics
2.3.1. Surface Microstructure
2.3.2. Fourier-Transformed Infrared Spectroscopy
2.3.3. X-ray Diffraction Profiles
2.4. Hydration Properties
2.5. Functional Properties
2.5.1. Adsorption Capacity of Oil on JRDFs
2.5.2. Sorption Ability of Sodium Cholate
2.5.3. Sorption Ability of Glucose
2.5.4. NISA
2.5.5. Copper Ion (II) Sorption Ability
2.5.6. Lead Ion (II) Sorption Capacity
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of JRDF
3.3. Dual Enzymatic Hydrolysis of JRDF
3.4. Acrylate Grafting of JRDF-E
3.5. Phosphate Grafting of JRDF-E
3.6. Chemical Composition Measurement
3.7. Particle Size Analysis
3.8. Color Analysis
3.9. Structural Characteristics
3.9.1. Surface Microstructure Analysis
3.9.2. Fourier-Transformed Infrared Spectroscopy (FT-IR)
3.9.3. X-ray Diffraction Investigation
3.10. Hydration Properties Analysis
3.11. Viscosity
3.12. Functional Properties
3.12.1. Oil Sorption Ability
3.12.2. Sodium Cholate Sorption Ability
3.12.3. Glucose Sorption Ability
3.12.4. Nitrite Ions’ Sorption Ability
3.12.5. Copper Ion (II) Sorption Capacity
3.12.6. Lead Ion (II) Sorption Ability
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Sun, L.; Miao, M.; Zhang, G. Plant-sourced intrinsic dietary fiber: Physical structure and health function. Trends Food Sci. Technol. 2021, 118, 341–355. [Google Scholar] [CrossRef]
- Siddiqui, H.; Sultan, Z.; Yousuf, O.; Malik, M.; Younis, K. A review of the health benefits, functional properties, and ultrasound-assisted dietary fiber extraction. Bioact. Carbohydr. Diet. Fibre 2023, 30, 100356. [Google Scholar] [CrossRef]
- Torbica, A.; Radosavljević, M.; Belović, M.; Djukić, N.; Marković, S. Overview of nature, frequency and technological role of dietary fibre from cereals and pseudocereals from grain to bread. Carbohyd. Polym. 2022, 290, 119470. [Google Scholar] [CrossRef] [PubMed]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Harahap, M.; Perangin-Angin, Y.A.; Purwandari, V.; Goei, R.; Tok, A.L.Y.; Gea, S. Acetylated lignin from oil palm empty fruit bunches and its electrospun nanofibres with PVA: Potential carbon fibre precursor. Heliyon 2023, 9, 14556. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.L.; Ma, Y.S.; Tsai, Y.H.; Chang, S.K.C. In vitro hypoglycemic, cholesterol-lowering and fermentation capacities of fiber-rich orange pomace as affected by extrusion. Int. J. Biol. Macromol. 2019, 124, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.Y.; Gan, J.P.; Dong, R.H.; Chen, Y.; Xie, J.H.; Huang, Z.Y.; Gu, Y.; Huang, D.; Yu, Q. Combined microwave and enzymatic treatment improve the release of insoluble bound phenolic compounds from the grapefruit peel insoluble dietary fiber. LWT—Food Sci. Technol. 2021, 149, 111905. [Google Scholar] [CrossRef]
- Dong, R.; Liao, W.; Xie, J.; Chen, Y.; Peng, G.; Xie, J.; Sun, N.; Liu, S.; Yu, C.; Yu, Q. Enrichment of yogurt with carrot soluble dietary fiber prepared by three physical modified treatments: Microstructure, rheology and storage stability. Innov. Food Sci. Emerg. Technol. 2022, 75, 102901. [Google Scholar] [CrossRef]
- Gil-López, D.I.L.; Lois-Correa, J.A.; Sánchez-Pardo, M.E.; Domínguez-Crespo, M.A.; Torres-Huerta, A.M.; Rodríguez-Salazar, A.E.; Orta-Guzmán, V.N. Production of dietary fibers from sugarcane bagasse and sugarcane tops using microwave-assisted alkaline treatments. Ind. Crops Prod. 2019, 135, 159–169. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, B.; Chen, H.; Yu, J.; Yan, H.; Luo, Y.; He, J.; Huang, Z.; Zheng, P.; Mao, X.; et al. Comparisons of the micronization, steam explosion, and gamma irradiation treatment on chemical composition, structure, physicochemical properties, and in vitro digestibility of dietary fiber from soybean hulls. Food Chem. 2022, 366, 130618. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Karim, N.; Shishir, M.R.I.; Bao, T.; Lu, Y.; Chen, W. Jujube fruit: A potential nutritious fruit for the development of functional food products. J. Func. Food. 2020, 75, 104205. [Google Scholar] [CrossRef]
- Cai, W.; Tang, F.; Guo, Z.; Zhang, Q.; Zhao, X.; Ning, M.; Shan, C. Effects of pretreatment methods and leaching methods on jujube wine quality detected by electronic senses and HS-SPME–GC–MS. Food Chem. 2020, 330, 127330. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.M.; Ji, X.L.; Wang, M.; Yin, S.; Peng, Q. An alkali-extracted polysaccharide from Zizyphus Jujuba cv. Muzao: Structural characterizations and antioxidant activities. Int. J. Biol. Macromol. 2019, 136, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Hou, C.; Yan, Y.; Shi, M.; Liu, Y. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. Int. J. Biol. Macromol. 2020, 149, 1008–1018. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Zhang, J.; Liu, G.; Liu, Y.; Wang, K.; Yang, M.; Cheng, H.; Zhao, Z. Structural characterization and in vitro antitumor activity of polysaccharides from Zizyphus jujuba cv. Muzao. RSC Adv. 2015, 5, 7860–7867. [Google Scholar] [CrossRef]
- Bai, L.; Zhang, H.; Liu, Q.; Zhao, Y.; Cui, X.; Guo, S.; Zhang, L.; Ho, C.T.; Bai, N. Chemical characterization of the main bioactive constituents from fruits of Ziziphus jujube. Food Funct. 2016, 7, 2870–2877. [Google Scholar] [CrossRef]
- Zheng, Y.; Xu, B.; Shi, P.; Tian, H.; Li, Y.; Wang, X.; Wu, S.; Liang, P. The influences of acetylation, hydroxypropylation, enzymatic hydrolysis and crosslinking on improved adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Chem. 2022, 368, 130883. [Google Scholar] [CrossRef]
- Backes, E.; Kato, C.G.; Corrêa, R.C.G.; Moreira, R.F.P.M.; Peralta, R.A.; Barros, L.; Ferreira, I.G.F.R.; Zanin, G.M.; Bracht, A.; Peralta, R.M. Laccases in food processing: Current status, bottlenecks and perspectives. Trends Food Sci. Technol. 2021, 115, 445–460. [Google Scholar] [CrossRef]
- Kanwar, P.; Yadav, R.B.; Yadav, B.S. Influence of chemical modification approaches on physicochemical andstructural properties of dietary fiber from oat. J. Cereal Sci. 2023, 111, 103688. [Google Scholar] [CrossRef]
- Shaikh, M.; Haider, S.; Ali, T.M.; Hasnain, A. Physical, thermal, mechanical and barrier properties of pearl millet starch films as affected by levels of acetylation and hydroxypropylation. International J. Biol. Macromol. 2019, 124, 209–219. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, Z.; Shi, J.; Yang, C.; Fang, Y.; Chen, G.; Chen, H.; Tian, C. Enzymatic hydrolysis of corn stover lignin by laccase, lignin peroxidase, and manganese peroxidase. Bioresour. Technol. 2022, 361, 127699. [Google Scholar] [CrossRef] [PubMed]
- Rani, K.; Gomathi, T.; Vijayalakshmi, K.; Saranya, M.; Sudha, P.N. Banana fiber Cellulose Nano Crystals grafted with butyl acrylate for heavy metal lead (II) removal. Int. J. Biol. Macromol. 2019, 131, 461–472. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Yi, C.; Quan, K.; Lin, B. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment. Food Chem. 2021, 342, 128352. [Google Scholar] [CrossRef]
- Nasseri, R.; Ngunjiri, R.; Moresoli, C.; Yu, A.; Yuan, Z.; Xu, C. Poly(lactic acid)/acetylated starch blends: Effect of starch acetylation on the material properties. Carbohydr. Polym. 2020, 229, 115453. [Google Scholar] [CrossRef]
- Zadeike, D.; Vaitkeviciene, R.; Degutyte, R.; Bendoraitiene, J.; Rukuiziene, Z.; Cernauskas, D.; Svazas, M.; Juodeikiene, G. A comparative study on the structural and functional properties of water-soluble and alkali-soluble dietary fibers from rice bran after hot-water, ultrasound, hydrolysis by cellulase, and combined pre-treatments. Int. J. Food Sci. Technol. 2021, 57, 1137–1149. [Google Scholar] [CrossRef]
- Kim, S.R.; Park, J.Y.; Park, E.Y. Effect of ethanol, phytic acid and citric acid treatment on the physicochemical and heavy metal adsorption properties of corn starch. Food Chem. 2024, 431, 137167. [Google Scholar] [CrossRef]
- Hazarika, B.J.; Sit, N. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch. Carbohydr. Polym. 2016, 140, 269–278. [Google Scholar] [CrossRef]
- Hua, M.; Lu, J.; Qu, D.I.; Liu, C.; Zhang, L.; Li, S.; Chen, J.; Sun, Y. Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: A potential functional ingredient. Food Chem. 2019, 286, 522–529. [Google Scholar] [CrossRef]
- Akinterinwa, A.; Oladele, E.; Adebayo, A.; Gurgur, E.; Iyanu, O.O.; Ajayi, O. Cross-linked-substituted (esterified/etherified) starch derivatives as aqueous heavy metal ion adsorbent: A review. Water Sci. Technol. 2020, 82, 1–26. [Google Scholar] [CrossRef]
- Djordjević, M.; Śereś, Z.; Maravić, N.; Šćiban, M.; Šoronja-Simović, D.; Djordjević, M. Modified sugar beet pulp and cellulose-based adsorbents as molasses quality enhancers: Assessing the treatment conditions. LWT—Food Sci. Technol. 2021, 150, 111988. [Google Scholar] [CrossRef]
- Zohaib, H.; Muhammad, I.; Haseeb, A.M.; Kamran, K.M. Ultrasound-Assisted Modification of Insoluble Dietary Fiber from Chia (Salvia hispanica L.) Seeds. J. Food Qual. 2021, 2021, 5035299. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Li, Y. Physicochemical and functional properties of coconut (Cocos nucifera L.) cake dietary fibres: Effects of cellulase hydrolysis, acid treatment and particle size distribution. Food Chem. 2018, 257, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Miehle, E.; Hass, M.; Bader-Mittermaier, S.; Eisner, P. The role of hydration properties of soluble dietary fibers on glucose diffusion. Food Hydrocoll. 2022, 131, 107822. [Google Scholar] [CrossRef]
- Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. A review on the heavy metal adsorption capacity of dietary fibers derived from agro-based wastes: Opportunities and challenges for practical applications in the food industry. Trends Food Sci. Technol. 2023, 137, 74–91. [Google Scholar] [CrossRef]
- Haq, F.; Mehmood, S.; Haroon, M.; Kiran, M.; Waseem, K.; Aziz, T.; Farid, A. Role of starch based materials as a bio-sorbents for the removal of dyes and heavy metals from wastewater. J. Polym. Environ. 2022, 30, 1730–1748. [Google Scholar] [CrossRef]
- Asadpour, R.; Yavari, S.; Kamyab, H.; Ashokkumar, V.; Chelliapan, S.; Yuzir, A. Study of oil sorption behaviour of esterified oil palm empty fruit bunch (OPEFB) fibre and its kinetics and isotherm studies. Environ. Technol. Innov. 2021, 22, 101397. [Google Scholar] [CrossRef]
- Prabha, R.T.; Udayashankara, T.H. Adsorption of copper metal ions from aqueous solution using rice husk and groundnut shell. Int. J. Sci. Res. 2014, 8, 705–709. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, J.; Wang, X.; Guo, M.; Cheng, C.; Zhang, Y. Effects of three biological combined with chemical methods on the microstructure, physicochemical properties and antioxidant activity of millet bran dietary fibre. Food Chem. 2023, 411, 135503. [Google Scholar] [CrossRef]
- Souza, N.F.; Pinheiro, J.A.; Brígida, A.I.S.; Morais, J.P.S.; Filho, M.M.S.; Rosa, M.F.R. Fibrous residues of palm oil as a source of green chemical buildingblocks. Ind. Crops Prod. 2016, 94, 480–489. [Google Scholar] [CrossRef]
- Peerajit, P.; Chiewchan, N.; Devahastin, S. Effects of pretreatment methods on health-related functional properties of high dietary fiber powder from lime residues. Food Chem. 2022, 132, 1891–1898. [Google Scholar] [CrossRef]
- Daou, C.; Zhang, H. Functional and physiological properties of total, soluble, and insoluble dietary fibers derived from defatted rice bran. J. Food Sci. Technol. 2014, 51, 3878–3885. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; Ofomaja, A.E. Kinetic studies of copper ion adsorption on palm kernel fibre. J. Hazard. Mater. 2006, 137, 1796–1802. [Google Scholar] [CrossRef] [PubMed]
Constituent | Jujube Residue | JRDF | JRDF-E | JRDF-EAG | JRDF-EPG |
---|---|---|---|---|---|
Moisture (g∙100 g−1) | 6.34 ± 0.36 a | 7.47 ± 0.20 a | 5.38 ± 0.19 a | 5.99 ± 0.24 a | 6.46 ± 0.17 a |
Fat (g∙100 g−1) | 2.07 ± 0.09 a | 1.28 ± 0.09 b | 1.54 ± 0.02 b | 1.12 ± 0.09 b | 2.08 ± 0.09 a |
Ash (g∙100 g−1) | 1.72 ± 0.07 a | 2.19 ± 0.21 a | 1.86 ± 0.08 a | 2.42 ± 0.09 a | 2.05 ± 0.22 a |
Protein (g∙100 g−1) | 1.94 ± 0.09 a | 1.38 ± 0.08 a | 1.39 ± 0.07 a | 1.74 ± 0.08 a | 1.89 ± 0.09 a |
Total dietary fiber (g∙100 g−1) | 18.23 ± 1.37 b | 75.38 ± 2.28 a | 81.37 ± 2.84 a | 80.93 ± 4.82 a | 80.09 ± 3.58 a |
Insoluble dietary fiber (g∙100 g−1) | 14.92 ± 0.32 d | 69.72 ± 4.52 a | 66.43 ± 3.34 a | 62.95 ± 1.79 b | 56.56 ± 4.95 c |
Soluble dietary fiber (g∙100 g−1) | 3.31 ± 0.08 e | 5.66 ± 0.11 d | 14.94 ± 1.18 c | 17.98 ± 2.56 b | 23.53 ± 2.32 a |
Extractable phenols (g∙100 g−1) | 0.76 ± 0.05 d | 0.83 ± 0.01 c | 1.14 ± 0.08 b | 1.56 ± 0.11 a | 1.23 ± 0.02 b |
Cellulose (g∙100 g−1) | 51.13 ± 3.64 a | 53.56 ± 3.47 a | 42.19 ± 3.25 b | 39.38 ± 2.77 b | 40.99 ± 3.67 b |
Lignin (g∙100 g−1) | 12.52 ± 1.33 a | 12.53 ± 0.55 a | 9.85 ± 0.08 a | 10.79 ± 0.34 a | 10.73 ± 1.05 a |
Hemicellulose (g∙100 g−1) | 33.54 ± 0.45 a | 37.45 ± 4.39 a | 26.48 ± 2.73 b | 28.79 ± 2.66 b | 20.97 ± 0.39 c |
Properties | JRDF | JRDF-E | JRDF-EAG | JRDF-EPG | |
---|---|---|---|---|---|
D3,2 (μm) | 116.47 ± 4.71 b | 76.71 ± 2.07 d | 59.38 ± 3.35 e | 95.23 ± 4.05 c | |
Surface area (m2∙kg−1) | 64.53 ± 3.74 d | 105.15 ± 4.74 b | 167.35 ± 4.42 a | 86.44 ± 2.95 c | |
L* | 53.8 ± 1.02 a | 40.75 ± 3.13 b | 36.95 ± 2.44 b | 38.56 ± 3.34 b | |
a* | 7.95 ± 0.23 b | 10.57 ± 0.32 a | 11.75 ± 0.37 a | 9.36 ± 0.27 a | |
b* | 11.32 ± 0.26 c | 14.26± 0.26 b | 19.54 ± 0.37 a | 15.08 ± 1.42 b | |
ΔE | Control | 13.63 b | 19.13 a | 15.76 a b | |
Water-retention ability (g∙g−1) | 6.68 ± 0.24 c | 7.17 ± 0.36 b c | 10.96 ± 0.49 b | 12.84 ± 0.37 a | |
Water-swelling volume (mL∙g−1) | 6.05 ± 0.04 c | 8.42 ± 0.16 b | 8.80 ± 0.34 b | 10.80 ± 0.26 a | |
Viscosity (cP) | 2.01 ± 0.27 c | 5.56 ± 0.08 b | 7.00 ± 0.44 b | 9.37 ± 0.24 a | |
Oil sorption ability (g∙g−1) | 0.78 ± 0.09 c | 1.24 ± 0.11 b c | 3.73 ± 0.23 a | 1.89 ± 0.03 b | |
Sodium cholate sorption ability (g∙g−1) | 10.78 ± 0.46 c | 10.27 ± 2.21 c | 30.86 ± 1.24 a | 20.46 ± 1.85 b | |
Glucose sorption ability (μmol∙g−1) | pH 2.0 | 6.49 ± 0.26 c | 14.43 ± 0.36 a | 9.26 ± 1.02 b | 13.75 ± 0.45 a |
pH 7.0 | 10.17 ± 0.38 c | 24.94 ± 2.02 a | 14.52 ± 0.52 b | 21.69 ± 1.17 a | |
NO− sorption ability (μg∙g−1) | pH 2.0 | 7.36 ± 0.38 d | 11.43 ± 0.23 c | 21.64 ± 1.95 a | 16.54 ± 1.25 b |
pH 7.0 | 2.48 ± 0.08 c | 6.32 ± 0.05 b | 16.85 ± 0.41 a | 9.69 ± 0.32 b | |
Equilibrium sorption amount of Cu2+ (mg∙g−1) | 9.58 ± 0.25 c | 14.54 ± 0.43 b | 19.62 ± 1.37 a | 21.41 ± 0.27 a | |
Equilibrium sorption amount of Pb2+ (mg∙g−1) | 13.42 ± 0.35 c | 20.45 ± 0.75 b | 18.32 ± 0.85 b | 25.64 ± 1.22 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Xu, J.; Zheng, Y.; Li, Q.; Huang, Y.; Zong, M.; Guo, W. Dual Enzymolysis Assisted by Acrylate or Phosphate Grafting: Influences on the Structural and Functional Properties of Jujube Residue Dietary Fiber. Molecules 2024, 29, 478. https://doi.org/10.3390/molecules29020478
Zhao Y, Xu J, Zheng Y, Li Q, Huang Y, Zong M, Guo W. Dual Enzymolysis Assisted by Acrylate or Phosphate Grafting: Influences on the Structural and Functional Properties of Jujube Residue Dietary Fiber. Molecules. 2024; 29(2):478. https://doi.org/10.3390/molecules29020478
Chicago/Turabian StyleZhao, Yitao, Jianguo Xu, Yajun Zheng, Qi Li, Yihao Huang, Meichen Zong, and Wangjin Guo. 2024. "Dual Enzymolysis Assisted by Acrylate or Phosphate Grafting: Influences on the Structural and Functional Properties of Jujube Residue Dietary Fiber" Molecules 29, no. 2: 478. https://doi.org/10.3390/molecules29020478
APA StyleZhao, Y., Xu, J., Zheng, Y., Li, Q., Huang, Y., Zong, M., & Guo, W. (2024). Dual Enzymolysis Assisted by Acrylate or Phosphate Grafting: Influences on the Structural and Functional Properties of Jujube Residue Dietary Fiber. Molecules, 29(2), 478. https://doi.org/10.3390/molecules29020478