Anti-PD-L1-Based Bispecific Antibodies Targeting Co-Inhibitory and Co-Stimulatory Molecules for Cancer Immunotherapy
Abstract
:1. Introduction
2. Anti-PD-L1-Based bsAbs Targeting Co-Inhibitory Molecules
2.1. CTLA-4 × PD-L1
2.2. LAG-3 × PD-L1
2.3. PD-1 × PD-L1
2.4. PD-L2 × PD-L1
2.5. TIM-3 × PD-L1
2.6. TIGIT × PD-L1
3. Anti-PD-L1-Based bsAbs Targeting Co-Stimulatory Molecules
3.1. CD28 × PD-L1
3.2. CD27 × PD-L1
3.3. OX40 × PD-L1
3.4. CD137 × PD-L1
3.5. ICOS × PD-L1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hoos, A. Development of immuno-oncology drugs—From CTLA4 to PD1 to the next generations. Nat. Rev. Drug Discov. 2016, 15, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Andrews, L.P.; Yano, H.; Vignali, D.A.A. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: Breakthroughs or backups. Nat. Immunol. 2019, 20, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Hong, Z.; Zhang, C.; Wang, L.; Han, Z.; Ma, D. Immune checkpoint therapy for solid tumours: Clinical dilemmas and future trends. Signal Transduct. Tar. 2023, 8, 320. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Flies, D.B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 2013, 13, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, K.M.; Rennert, P.D.; Freeman, G.J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 2015, 14, 561–584. [Google Scholar] [CrossRef]
- Khalil, D.N.; Smith, E.L.; Brentjens, R.J.; Wolchok, J.D. The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 2016, 13, 273–290. [Google Scholar] [CrossRef]
- Geng, Q.; Jiao, P.; Jin, P.; Su, G.; Dong, J.; Yan, B. PD-1/PD-L1 inhibitors for immuno-oncology: From antibodies to small molecules. Curr. Pharm. Design 2017, 23, 6033–6041. [Google Scholar] [CrossRef]
- Geng, Q.; Rohondia, S.O.; Khan, H.J.; Jiao, P.; Dou, Q.P. Small molecules as antagonists of co-inhibitory pathways for cancer immunotherapy: A patent review (2018–2019). Expert Opin. Ther. Pat. 2020, 30, 677–694. [Google Scholar] [CrossRef]
- Peri, A.; Salomon, N.; Wolf, Y.; Kreiter, S.; Diken, M.; Samuels, Y. The landscape of T cell antigens for cancer immunotherapy. Nat. Cancer 2023, 4, 937–954. [Google Scholar] [CrossRef]
- Galluzzi, L.; Aryankalayil, M.J.; Coleman, C.N.; Formenti, S.C. Emerging evidence for adapting radiotherapy to immunotherapy. Nat. Rev. Clin. Oncol. 2023, 20, 543–557. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020, 30, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Eskander, R.N.; Sill, M.W.; Beffa, L.; Moore, R.G.; Hope, J.M.; Musa, F.B.; Mannel, R.; Shahin, M.S.; Cantuaria, G.H.; Girda, E.; et al. Pembrolizumab plus chemotherapy in advanced endometrial cancer. N. Engl. J. Med. 2023, 388, 2159–2170. [Google Scholar] [CrossRef] [PubMed]
- Mirza, M.R.; Chase, D.M.; Slomovitz, B.M.; dePont Christensen, R.; Novák, Z.; Black, D.; Gilbert, L.; Sharma, S.; Valabrega, G.; Landrum, L.M.; et al. Dostarlimab for primary advanced or recurrent endometrial cancer. N. Engl. J. Med. 2023, 388, 2145–2158. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef]
- Dong, H.; Zhu, G.; Tamada, K.; Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 1999, 5, 1365–1369. [Google Scholar] [CrossRef]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef] [PubMed]
- Jiao, P.F.; Geng, Q.H.; Jin, P.; Su, G.X.; Teng, H.Y.; Dong, J.L.; Yan, B. Small molecules as PD-1/PD-L1 pathway modulators for cancer immunotherapy. Curr. Pharm. Design 2018, 24, 4911–4920. [Google Scholar] [CrossRef]
- Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; Tamada, K.; et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat. Med. 2002, 8, 793–800. [Google Scholar] [CrossRef]
- Gao, Y.; Nihira, N.T.; Bu, X.; Chu, C.; Zhang, J.; Kolodziejczyk, A.; Fan, Y.; Chan, N.T.; Ma, L.; Liu, J.; et al. Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat. Cell Biol. 2020, 22, 1064–1075. [Google Scholar] [CrossRef]
- Hou, J.; Zhao, R.; Xia, W.; Chang, C.-W.; You, Y.; Hsu, J.-M.; Nie, L.; Chen, Y.; Wang, Y.-C.; Liu, C.; et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol. 2020, 22, 1264–1275. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Xiang, Y.; Zhang, S.; Chao, Y.; Guo, J.; Aurich, T.; Ho, J.W.; Huang, Y.; Liu, P.; Sugimura, R. PD-L1 regulates inflammatory programs of macrophages from human pluripotent stem cells. Life Sci. Alliance 2024, 7, e202302461. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Qin, B.; Moyer, A.M.; Nowsheen, S.; Tu, X.; Dong, H.; Boughey, J.C.; Goetz, M.P.; Weinshilboum, R.; Lou, Z.; et al. Regulation of sister chromatid cohesion by nuclear PD-L1. Cell Res. 2020, 30, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jin, J.; Wang, Y.; Fang, L.; Min, L.; Wang, X.; Ding, L.; Weng, L.; Xiao, T.; Zhou, T.; et al. PD-L1 regulates genomic stability via interaction with cohesin-SA1 in the nucleus. Signal Transduct Target Ther. 2021, 6, 81. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.A.; Gupta, H.B.; Sareddy, G.; Pandeswara, S.; Lao, S.; Yuan, B.; Drerup, J.M.; Padron, A.; Conejo-Garcia, J.; Murthy, K.; et al. Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma. Cancer Res. 2016, 76, 6964–6974. [Google Scholar] [CrossRef] [PubMed]
- Kwak, G.; Kim, D.; Nam, G.-H.; Wang, S.Y.; Kim, I.-S.; Kim, S.H.; Kwon, I.-C.; Yeo, Y. Programmed cell death protein ligand-1 silencing with polyethylenimine-dermatan sulfate complex for dual inhibition of melanoma growth. ACS Nano. 2017, 11, 10135–10146. [Google Scholar] [CrossRef]
- Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 2000, 192, 1027–1034. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Q.; Cassady, K.; Lee, M.; Tang, H.; Zheng, M.; Wang, B.; Schones, D.E.; Fu, Y.-X.; Riggs, A.D.; et al. Blockade of trans PD-L1 interaction with CD80 augments antitumor immunity. Proc. Natl. Acad. Sci. USA 2023, 120, e2205085120. [Google Scholar] [CrossRef]
- Gettinger, S.; Horn, L.; Jackman, D.; Spigel, D.; Antonia, S.; Hellmann, M.; Powderly, J.; Heist, R.; Sequist, L.V.; Smith, D.C.; et al. Five-year follow-up of nivolumab in previously treated advanced non-small-cell lung cancer: Results from the CA209-003 study. J. Clin. Oncol. 2018, 36, 1675–1684. [Google Scholar] [CrossRef]
- Udhwani, T.; Mukherjee, S.; Sharma, K.; Sweta, J.; Khandekar, N.; Nayarisseri, A.; Singh, S.K. Design of PD-L1 inhibitors for lung cancer. Bioinformation 2019, 15, 139–149. [Google Scholar] [CrossRef]
- Dai, X.; Wang, K.; Chen, H.; Huang, X.; Feng, Z. Design, synthesis, and biological evaluation of 1-methyl-1H-pyrazolo[4,3-b]pyridine derivatives as novel small-molecule inhibitors targeting the PD-1/PD-L1 interaction. Bioorg. Chem. 2021, 114, 105034. [Google Scholar] [CrossRef] [PubMed]
- OuYang, Y.; Gao, J.; Zhao, L.; Lu, J.; Zhong, H.; Tang, H.; Jin, S.; Yue, L.; Li, Y.; Guo, W.; et al. Design, synthesis, and evaluation of o-(biphenyl-3-ylmethoxy)nitrophenyl derivatives as PD-1/PD-L1 inhibitors with potent anticancer efficacy in vivo. J. Med. Chem. 2021, 64, 7646–7666. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Liu, B.; Peng, X.; Gu, W.; Sun, Y.; Xing, L.; Xu, Y.; Geng, M.; Ai, J.; Zhang, A. Design, synthesis, and pharmacological evaluation of biaryl-containing PD-1/PD-L1 interaction inhibitors bearing a unique difluoromethyleneoxy linkage. J. Med. Chem. 2021, 64, 16687–16702. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, K.; Chen, H.; Feng, Z. Design, synthesis, evaluation, and SAR of 4-phenylindoline derivatives, a novel class of small-molecule inhibitors of the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) interaction. Eur. J. Med. Chem. 2020, 211, 113001. [Google Scholar] [CrossRef] [PubMed]
- Geng, Q.; Dong, Y.; Jin, P.; Xu, J.; Chen, L.; Du, X.; Li, M.; Gong, Y.; Su, G.; Jiao, P.; et al. Synthesis and preliminary evaluation of aminophenol derivatives as molecular glues blocking PD-1/PD-L1 interaction. J. Mol. Struct. 2023, 1289, 135900. [Google Scholar] [CrossRef]
- Geng, Q.; Dong, Y.; Jin, P.; Mu, X.; Zhao, N.; Cui, H.; Yang, Q.; Xiao, B.; Zhao, F.; Lv, Y.; et al. Synthesis and evaluation of indole-containing derivatives as C-linked PD-L1 inhibitors for cancer immunotherapy. J. Mol. Struct. 2023, 1294, 136487. [Google Scholar] [CrossRef]
- Pulanco, M.C.; Madsen, A.T.; Tanwar, A.; Corrigan, D.T.; Zang, X. Recent advancements in the B7/CD28 immune checkpoint families: New biology and clinical therapeutic strategies. Cell Mol. Immunol. 2023, 20, 694–713. [Google Scholar] [CrossRef]
- Mountzios, G.; Remon, J.; Hendriks, L.E.L.; García-Campelo, R.; Rolfo, C.; Van Schil, P.; Forde, P.M.; Besse, B.; Subbiah, V.; Reck, M.; et al. Immune-checkpoint inhibition for resectable non-small-cell lung cancer—Opportunities and challenges. Nat. Rev. Clin. Oncol. 2023, 20, 664–677. [Google Scholar] [CrossRef]
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for first-line treatment of PD-L1–selected patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Overall survival with durvalumab after chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef]
- Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulović, S.; Demey, W.; Ullén, A.; et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 2020, 383, 1218–1230. [Google Scholar] [CrossRef]
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017, 168, 707–723. [Google Scholar] [CrossRef]
- O’Donnell, J.S.; Long, G.V.; Scolyer, R.A.; Teng, M.W.L.; Smyth, M.J. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat. Rev. 2017, 52, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Nisonoff, A.; Wissler, F.C.; Lipman, L.N. Properties of the major component of a peptic digest of rabbit antibody. Science 1960, 132, 1770–1771. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yu, X.; Wang, X.; Yuan, K.; Wang, G.; Hu, L.; Zhang, G.; Pei, W.; Wang, L.; Sun, C.; et al. Bispecific antibodies in cancer therapy: Target selection and regulatory requirements. Acta Pharm. Sin. B 2023, 13, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P.W.H.I. Bispecific antibodies: A mechanistic review of the pipeline. Nat. Rev. Drug Discov. 2019, 18, 585–608. [Google Scholar] [CrossRef]
- Brunet, J.-F.; Denizot, F.; Luciani, M.-F.; Roux-Dosseto, M.; Suzan, M.; Mattei, M.-G.; Golstein, P. A new member of the immunoglobulin superfamily—CTLA-4. Nature 1987, 328, 267–270. [Google Scholar] [CrossRef]
- Rowshanravan, B.; Halliday, N. CTLA-4: A moving target in immunotherapy. Blood 2018, 131, 58–67. [Google Scholar] [CrossRef]
- Greenwald, R.J.; Freeman, G.J.; Sharpe, A.H. The B7 family revisited. Annu. Rev. Immunol. 2005, 23, 515–548. [Google Scholar] [CrossRef]
- Oosterwegel, M.A.; Greenwald, R.J.; Mandelbrot, D.A.; Lorsbach, R.B.; Sharpe, A.H. CTLA-4 and T cell activation. Curr. Opin. Immunol. 1999, 11, 294–300. [Google Scholar] [CrossRef]
- Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996, 271, 1734–1736. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.-C.; Zhang, Y.; Wu, S.; Liu, Z.; Li, Z.; Zhang, F. Multispecific Antigen Binding Proteins and Methods of Use Thereof. WO2018014855A1, 25 January 2018. [Google Scholar]
- Xue, T.; Xiao, L.; Liu, D.; Long, H.; Hu, J.; Cui, Y.; Yuan, X.; Wang, L.; Wang, J. Recombinant Bispecific Antibody. WO2019042153A1, 7 March 2019. [Google Scholar]
- Xu, T.; Guo, K.; Yang, D.; Wang, P.; Jin, Y.; Wang, X. Dimer and Use Thereof. WO2019233413A1, 19 December 2019. [Google Scholar]
- Xiong, A.; Li, W.; Li, X.; Fan, Y.; Ma, Z.; Fang, J.; Xie, Q.; Zhuang, W.; Kang, M.; Wang, J.; et al. Efficacy and safety of KN046, a novel bispecific antibody against PD-L1 and CTLA-4, in patients with non-small cell lung cancer who failed platinum-based chemotherapy: A phase II study. Eur. J. Cancer 2023, 190, 112936. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xue, J.; Zhao, Y.; Zhang, Y.; Huang, Y.; Yang, Y.; Fang, W.; Guo, Y.; Li, Q.; Ge, X.; et al. Phase I trial of KN046, a novel bispecific antibody targeting PD-L1 and CTLA-4 in patients with advanced solid tumors. J. Immunother. Cancer 2023, 11, e006654. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Shi, L.; Luo, H.; Lv, Q.; He, J. Binding Protein Having H2L2 and HCAB Structures. WO2022002033A1, 6 January 2022. [Google Scholar]
- Triebel, F.; Jitsukawa, S.; Baixeras, E.; Roman-Roman, S.; Genevee, C.; Viegas-Pequignot, E.; Hercend, T. LAG-3, a novel lymphocyte activation gene closely related to CD4. J. Exp. Med. 1990, 171, 1393–1405. [Google Scholar] [CrossRef] [PubMed]
- Workman, C.J.; Vignali, D.A. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur. J. Immunol. 2003, 33, 970–979. [Google Scholar] [CrossRef]
- Huang, C.T.; Workman, C.J.; Flies, D.; Pan, X.; Marson, A.L.; Zhou, G.; Hipkiss, E.L.; Ravi, S.; Kowalski, J.; Levitsky, H.I.; et al. Role of LAG-3 in regulatory T cells. Immunity 2004, 21, 503–513. [Google Scholar] [CrossRef]
- Anderson, A.C.; Joller, N.; Kuchroo, V.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity 2016, 44, 989–1004. [Google Scholar] [CrossRef]
- Maruhashi, T.; Sugiura, D. LAG-3: From molecular functions to clinical applications. J. Immunother. Cancer 2020, 8, e001014. [Google Scholar] [CrossRef]
- Campbell, J.; Sandy, N.; Tuna, M.; Wollerton Van Horck, F. Binding Molecules Binding PD-L1 and LAG-3. WO2017220569A1, 18 December 2017. [Google Scholar]
- Park, E.; Lee, Y.; Jung, U.; Kim, Y.; Kim, Y.J. Anti-PD-L1/Anti-LAG-3 Bispecific Antibodies and Uses Thereof. WO2020038397A1, 7 February 2020. [Google Scholar]
- Ni, H.; Chen, B.; Liu, J. Novel Bispecific Antibody Molecule and Bispecific Antibody Simultaneously Combining PD-L1 and LAG-3. WO2020151762A1, 30 July 2020. [Google Scholar]
- Li, Z.; Yin, L.; Zhou, T.; Fang, Z. Anti-PD-L1/Anti-LAG-3 Multiple Antigen Binding Proteins and Methods of Use Thereof. WO2020249071A1, 17 December 2020. [Google Scholar]
- Chen, Y.; Qin, Y.; Wang, Z.; Li, J. A Novel Anti-PD-L1/Anti-LAG-3 Bispecific Antibody and Uses Thereof. WO2021057930A1, 1 April 2021. [Google Scholar]
- Zhang, C.; Wang, R.; Jiao, S.; Zeng, D. New Type Bispecific Antibody Targeting LAG-3 and PD-L1 and Use Thereof. WO2022268168A1, 29 December 2022. [Google Scholar]
- Plyte, S.E.; De Kruif, C.A. Novel Multispecific Antibodies. WO2022211625A1, 6 October 2022. [Google Scholar]
- Ishida, Y.; Agata, Y.; Shibahara, K.; Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992, 11, 3887–3895. [Google Scholar] [CrossRef]
- Gordon, S.R.; Maute, R.L.; Dulken, B.W.; Hutter, G.; George, B.M.; McCracken, M.N.; Gupta, R.; Tsai, J.M.; Sinha, R.; Corey, D.; et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 2017, 545, 495–499. [Google Scholar] [CrossRef]
- Kamphorst, A.O.; Ahmed, R. Manipulating the PD-1 pathway to improve immunity. Curr. Opin. Immunol. 2013, 25, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, T.; Taniwaki, M.; Ishida, Y.; Kawaichi, M.; Honjo, T. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics 1994, 23, 704–706. [Google Scholar] [CrossRef] [PubMed]
- Marasco, M.; Berteotti, A.; Weyershaeuser, J.; Thorausch, N.; Sikorska, J.; Krausze, J.; Brandt, H.J.; Kirkpatrick, J.; Rios, P.; Schamel, W.W.; et al. Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci. Adv. 2020, 6, eaay4458. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, T.; Maeda, A.; Nishimura, H.; Kurosaki, T.; Honjo, T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl. Acad. Sci. USA 2001, 98, 13866–13871. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Song, N.; Yang, Y.; Jin, M. Anti-PD-L1/Anti-PD-1 Natural Antibody Structure-Like Heterodimeric Bispecific Antibody and Preparation Thereof. WO2018177324A1, 4 October 2018. [Google Scholar]
- Kalos, M.; Li, Y.; Ludwig, D.; Plowman, G. Checkpoint Inhibitor Bispecific Antibodies. WO2019014091A1, 7 January 2019. [Google Scholar]
- Kotanides, H.; Li, Y.; Malabunga, M.; Carpenito, C.; Eastman, S.W.; Shen, Y.; Wang, G.; Inigo, I.; Surguladze, D.; Pennello, A.L.; et al. Bispecific targeting of PD-1 and PD-L1 enhances T-cell activation and antitumor immunity. Cancer Immunol. Res. 2020, 8, 1300–1310. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, J.; Huang, H.; Xia, M. Anti-PD-1 and PD-L1 Tetravalent Bispecific Antibody. WO2021227782A1, 18 November 2021. [Google Scholar]
- Zhu, Z.; Zhao, J.; Huang, H.; Xia, M. Tetravalent Bispecific Antibody against PD-1 and PD-L1. WO2021226984A1, 18 November 2021. [Google Scholar]
- Zhu, Z.; Huang, H.; Gu, C.; Zhu, H. Anti-PD-1×PD-L1 Bispecific Antibody. WO2021244392A1, 9 December 2021. [Google Scholar]
- Latchman, Y.; Wood, C.R.; Chernova, T.; Chaudhary, D.; Borde, M.; Chernova, I.; Iwai, Y.; Long, A.J.; Brown, J.A.; Nunes, R.; et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2001, 2, 261–268. [Google Scholar] [CrossRef]
- Wang, Y.; Du, J.; Gao, Z.; Sun, H.; Mei, M.; Wang, Y.; Ren, Y.; Zhou, X. Evolving landscape of PD-L2: Bring new light to checkpoint immunotherapy. Brit. J. Cancer 2023, 128, 1196–1207. [Google Scholar] [CrossRef]
- Chen, R.; Zhu, Y.; Shen, Y.; Xu, Q.; Tang, H.; Cui, N.; Jiang, L.; Dai, X.; Chen, W.; Lin, Q.; et al. The role of PD-1 signaling in health and immune-related diseases. Front. Immunol. 2023, 14, 1163633. [Google Scholar] [CrossRef]
- Xiao, Y.; Yu, S.; Zhu, B.; Bedoret, D.; Bu, X.; Francisco, L.M.; Hua, P.; Duke-Cohan, J.S.; Umetsu, D.T.; Sharpe, A.H.; et al. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J. Exp. Med. 2014, 211, 943–959. [Google Scholar] [CrossRef]
- Park, J.S.; Gazzaniga, F.S.; Wu, M.; Luthens, A.K.; Gillis, J.; Zheng, W.; LaFleur, M.W.; Johnson, S.B.; Morad, G.; Park, E.M.; et al. Targeting PD-L2–RGMb overcomes microbiome-related immunotherapy resistance. Nature 2023, 617, 377–385. [Google Scholar] [CrossRef]
- Lv, J.; Jiang, Z.; Yuan, J.; Zhuang, M.; Guan, X.; Liu, H.; Yin, Y.; Ma, Y.; Liu, Z.; Wang, H.; et al. Pan-cancer analysis identifies PD-L2 as a tumor promotor in the tumor microenvironment. Front. Immunol. 2023, 14, 1093716. [Google Scholar] [CrossRef] [PubMed]
- Rotman, J.; den Otter, L.A.S.; Bleeker, M.C.G.; Samuels, S.S.; Heeren, A.M.; Roemer, M.G.M.; Kenter, G.G.; Zijlmans, H.; van Trommel, N.E.; de Gruijl, T.D.; et al. PD-L1 and PD-L2 expression in cervical cancer: Regulation and biomarker potential. Front. Immunol. 2020, 11, 596825. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.V.; Hussmann, D.; Nielsen, A.L. PD-L1 and PD-L2 expression correlated genes in non-small-cell lung cancer. Cancer Commun. 2019, 39, 30. [Google Scholar] [CrossRef] [PubMed]
- Curran, M.; Jaiswal, A.; Zha, D.; Toniatti, C. Dual Specificity Antibodies to Human PD-L1 and PD-L2 and Methods of Use Therefor. WO2019182867A1, 26 September 2019. [Google Scholar]
- Miao, X.; Wu, F.; Chen, C. Anti-PD-L1 and PD-L2 Antibody and Derivatives and Use Thereof. WO2021197358A1, 7 October 2021. [Google Scholar]
- Monney, L.; Sabatos, C.A.; Gaglia, J.L.; Ryu, A.; Waldner, H.; Chernova, T.; Manning, S.; Greenfield, E.A.; Coyle, A.J.; Sobel, R.A.; et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002, 415, 536–541. [Google Scholar] [CrossRef]
- Cao, E.; Zang, X.; Ramagopal, U.A.; Mukhopadhaya, A.; Fedorov, A.; Fedorov, E.; Zencheck, W.D.; Lary, J.W.; Cole, J.L.; Deng, H.; et al. T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface. Immunity 2007, 26, 311–321. [Google Scholar] [CrossRef]
- Anderson, A.C.; Xiao, S.; Kuchroo, V.K. Tim protein structures reveal a unique face for ligand binding. Immunity 2007, 26, 273–275. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Cheng, S.; Fan, L.; Zhang, B.; Xu, S. TIM-3: An update on immunotherapy. Int. Immunopharmacol. 2021, 99, 107933. [Google Scholar] [CrossRef]
- Zeidan, A.M.; Komrokji, R.S.; Brunner, A.M. TIM-3 pathway dysregulation and targeting in cancer. Expert Rev. Anticancer Ther. 2021, 21, 523–534. [Google Scholar] [CrossRef]
- Yang, R.; Sun, L.; Li, C.-F.; Wang, Y.-H.; Yao, J.; Li, H.; Yan, M.; Chang, W.-C.; Hsu, J.-M.; Cha, J.-H.; et al. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat. Commun. 2021, 12, 832. [Google Scholar] [CrossRef]
- He, Y.; Cao, J.; Zhao, C.; Li, X.; Zhou, C.; Hirsch, F.R. TIM-3, a promising target for cancer immunotherapy. Onco. Targets Ther. 2018, 11, 7005–7009. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Bivi, N.; Calderon, B.; Shimizu, T.; Delafontaine, B.; Liu, Z.T.; Szpurka, A.M.; Copeland, V.; Hodi, F.S.; Rottey, S.; et al. Safety and immunogenicity of LY3415244, a bispecific antibody against TIM-3 and PD-L1, in patients with advanced solid tumors. Clin. Cancer Res. 2021, 27, 2773–2781. [Google Scholar] [CrossRef]
- D’angelo, I.E.P.; Li, Y.; Ludwig, D.L.; Shen, Y.; Zhang, Y. Anti-PD-L1-anti-TIM-3 Bispecific Antibodies. WO2018191074A1, 18 October 2018. [Google Scholar]
- Yu, X.; Harden, K.; Gonzalez, L.C.; Francesco, M.; Chiang, E.; Irving, B.; Tom, I.; Ivelja, S.; Refino, C.J.; Clark, H.; et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 2009, 10, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Harjunpää, H.; Guillerey, C. TIGIT as an emerging immune checkpoint. Clin. Exp. Immunol. 2020, 200, 108–119. [Google Scholar] [CrossRef]
- Solomon, B.L.; Garrido-Laguna, I. TIGIT: A novel immunotherapy target moving from bench to bedside. Cancer Immunol. Immunother. 2018, 67, 1659–1667. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, H.; Li, M.; Hu, D.; Li, C.; Ge, B.; Jin, B.; Fan, Z. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ. 2013, 20, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, S.; Yang, S.; Pan, Q.; Chou, C.-C. Single-Domain Antibodies and Variants Thereof against TIGIT. WO2019129221A1, 4 July 2019. [Google Scholar]
- Yang, M.; Xu, W.; Jiang, W.-D.; Xue, J. Anti-TIGIT Antibodies, Multispecific Antibodies Comprising the Same and Methods of Using the Same. WO2021139776A1, 5 July 2021. [Google Scholar]
- Zhu, X.; Cui, X.; Xu, J.; Yu, H. Bispecific Antibody and Use Thereof. WO2022111559A1, 2 June 2022. [Google Scholar]
- Jiang, W.; Liu, Y.; Gu, H.; Cui, F.; Wang, Z.; Guo, B. Single Domain PD-L1 Antibodies. WO2022228445A1, 3 November 2022. [Google Scholar]
- Ying, H.; Hu, Q.; Jin, X.; Shi, J.; Zhang, L.; Mao, L.; Ye, X.; Tao, W. Antigen-Binding Molecule. WO2022237882A1, 17 November 2022. [Google Scholar]
- Jin, L.; Xiao, Y.; Zhao, L.; Luo, C.; Gao, F. Anti-TIGIT Antibody and Double Antibody and Their Application. WO2022063100A1, 31 March 2022. [Google Scholar]
- Dai, S.; Zhai, T.; Huang, W.; Peng, S.; Sun, T.J. Bispecific Antibody against TIGIT and PD-L1, and Pharmaceutical Composition Thereof and Use Thereof. WO2023088337A1, 25 May 2023. [Google Scholar]
- Weiss, A.; Manger, B.; Imboden, J. Synergy between the T3/antigen receptor complex and Tp44 in the activation of human T cells. J. Immunol. 1986, 137, 819–825. [Google Scholar] [CrossRef]
- Martin, P.J.; Ledbetter, J.A.; Morishita, Y.; June, C.H.; Beatty, P.G.; Hansen, J.A. A 44 kilodalton cell surface homodimer regulates interleukin 2 production by activated human T lymphocytes. J. Immunol. 1986, 136, 3282–3287. [Google Scholar] [CrossRef]
- Esensten, J.H.; Helou, Y.A.; Chopra, G.; Weiss, A.; Bluestone, J.A. CD28 Costimulation: From mechanism to therapy. Immunity 2016, 44, 973–988. [Google Scholar] [CrossRef]
- Timmer, J.C.; Jackson, R.H.; Willis, K.M.; Crago, W.S.; Kaplan, M.D.; Eckelman, B.P. CD28 Single Domain Antibodies and Multivalent and Multispecific Constructs Thereof. WO2021155071A1, 5 August 2021. [Google Scholar]
- Campbell, D.; Diraimondo, T.R. Multispecific Antibodies for Targeting CD28 and PD-L1 and Methods of Use Thereof. WO2022094299A2, 29 September 2022. [Google Scholar]
- Desjarlais, J.; Moore, G.; Hedvat, M.; Diaz, J.; Gusti Zeng, V.; Muchhal, U. Bispecific Antibodies That Bind PD-L1 and CD28. WO2022081886A1, 21 April 2022. [Google Scholar]
- van Lier, R.A.; Borst, J.; Vroom, T.M.; Klein, H.; Van Mourik, P.; Zeijlemaker, W.P.; Melief, C.J. Tissue distribution and biochemical and functional properties of Tp55 (CD27), a novel T cell differentiation antigen. J. Immunol. 1987, 139, 1589–1596. [Google Scholar] [CrossRef]
- Camerini, D.; Walz, G.; Loenen, W.A.; Borst, J.; Seed, B. The T cell activation antigen CD27 is a member of the nerve growth factor/tumor necrosis factor receptor gene family. J. Immunol. 1991, 147, 3165–3169. [Google Scholar] [CrossRef]
- Kobata, T.; Jacquot, S.; Kozlowski, S.; Agematsu, K.; Schlossman, S.F.; Morimoto, C. CD27-CD70 interactions regulate B-cell activation by T cells. Proc. Natl. Acad. Sci. USA 1995, 92, 11249–11253. [Google Scholar] [CrossRef] [PubMed]
- Ranheim, E.A.; Cantwell, M.J.; Kipps, T.J. Expression of CD27 and its ligand, CD70, on chronic lymphocytic leukemia B cells. Blood 1995, 85, 3556–3565. [Google Scholar] [CrossRef] [PubMed]
- Loenen, W.A.M.; de Vries, E.; Gravestein, L.A.; Hintzen, R.Q.; Van Lier, R.A.W.; Borst, J. The CD27 membrane receptor, a lymphocyte-specific member of the nerve growth factor receptor family, gives rise to a soluble form by protein processing that does not involve receptor endocytosis. Eur. J. Immunol. 1992, 22, 447–455. [Google Scholar] [CrossRef] [PubMed]
- van Oers, M.H.; Pals, S.T.; Evers, L.M.; van der Schoot, C.E.; Koopman, G.; Bonfrer, J.M.; Hintzen, R.Q.; von dem Borne, A.E.; van Lier, R.A. Expression and release of CD27 in human B-cell malignancies. Blood 1993, 82, 3430–3436. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, R.G.; Alderson, M.R.; Smith, C.A.; Armitage, R.J.; VandenBos, T.; Jerzy, R.; Tough, T.W.; Schoenborn, M.A.; Davis-Smith, T.; Hennen, K.; et al. Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor. Cell 1993, 73, 447–456. [Google Scholar] [CrossRef]
- Rowley, T.F.; Al-Shamkhani, A. Stimulation by soluble CD70 promotes strong primary and secondary CD8+ cytotoxic T Cell responses in vivo. J. Immunol. 2004, 172, 6039–6046. [Google Scholar] [CrossRef]
- Arens, R.; Tesselaar, K.; Baars, P.A.; van Schijndel, G.M.W.; Hendriks, J.; Pals, S.T.; Krimpenfort, P.; Borst, J.; van Oers, M.H.J.; van Lier, R.A.W. Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNγ-mediated B cell depletion. Immunity 2001, 15, 801–812. [Google Scholar] [CrossRef]
- Tesselaar, K.; Arens, R.; van Schijndel, G.M.W.; Baars, P.A.; van der Valk, M.A.; Borst, J.; van Oers, M.H.J.; van Lier, R.A.W. Lethal T cell immunodeficiency induced by chronic costimulation via CD27-CD70 interactions. Nat. Immunol. 2003, 4, 49–54. [Google Scholar] [CrossRef]
- French, R.R.; Taraban, V.Y.; Crowther, G.R.; Rowley, T.F.; Gray, J.C.; Johnson, P.W.; Tutt, A.L.; Al-Shamkhani, A.; Glennie, M.J. Eradication of lymphoma by CD8 T cells following anti-CD40 monoclonal antibody therapy is critically dependent on CD27 costimulation. Blood 2007, 109, 4810–4815. [Google Scholar] [CrossRef]
- Vogel, I.; Acolty, V.; Keler, T.; Goriely, S.; Leo, O.; Moser, M. Agonistic anti-CD27 antibody ameliorates EAE by suppressing IL-17 production. Eur. J. Immunol. 2022, 52, 1620–1629. [Google Scholar] [CrossRef]
- Keler, T.; Goldstein, J.; Vitale, L.A.; He, L. Anti-CD27 and Anti-PD-L1 Antibodies and Bispecific Constructs. WO2019204462A2, 26 December 2019. [Google Scholar]
- Paterson, D.J.; Jefferies, W.A.; Green, J.R.; Brandon, M.R.; Corthesy, P.; Puklavec, M.; Williams, A.F. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol. Immunol. 1987, 24, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Mallett, S.; Fossum, S.; Barclay, A.N. Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes--a molecule related to nerve growth factor receptor. EMBO J. 1990, 9, 1063–1068. [Google Scholar] [CrossRef]
- Gough, M.J.; Weinberg, A.D. OX40 (CD134) and OX40L. Adv. Exp. Med. Biol. 2009, 647, 94–107. [Google Scholar] [CrossRef] [PubMed]
- Lu, X. OX40 and OX40L interaction in cancer. Curr. Med. Chem. 2021, 28, 5659–5673. [Google Scholar] [CrossRef] [PubMed]
- Cebada, J.; Perez-Santos, M.; Bandala, C.; Lara-Padilla, E.; Herrera-Camacho, I.; Rosas-Murrieta, N.H.; Millán-Pérez Peña, L.; Monjaraz, E.; Flores, A.; Anaya-Ruiz, M. OX40 agonists for cancer treatment: A patent review. Expert Opin. Ther. Pat. 2021, 31, 81–90. [Google Scholar] [CrossRef]
- Eckelman, B.P.; Timmer, J.C.; Hata, C.; Jones, K.S.; Hussain, A.; Razai, A.S.; Becklund, B.; Pandit, R.; Kaplan, M.; Rason, L.; et al. Multivalent and Multispecific OX40-Binding Fusion Proteins. WO2017123673A2, 24 August 2017. [Google Scholar]
- Kuang, Z.; Liu, X.; Chen, B.; Liu, J. Bispecific Antibody Binding to PD-L1 and OX40. WO2020151761A1, 30 July 2020. [Google Scholar]
- Hammond, S.; Chiou, V.; Streicher, K.; Le, N.; Townsley, D. Anti-OX40, anti-PD-L1 and Anti-CTLA-4 Antibodies for Treating Tumors. WO2020081783A2, 30 July 2020. [Google Scholar]
- Tsurushita, N.; Tso, J.Y. Bispecific Antibodies for Activation of Immune Cells. WO2020102233A1, 22 May 2020. [Google Scholar]
- Xu, T.; Wang, P.; Guo, K.; Jin, Y.; Chen, T.; Gao, L.; Zhang, Q. OX40/PD-L1 Bispecific Antibody. WO2021073611A1, 22 April 2021. [Google Scholar]
- Gong, S.; Li, B.; Liu, F.; Wu, C.; Wu, X.; Zhang, R. Antibodies and Bispecific Binding Proteins That Bind OX40 and/or PD-L1. WO2022258015A1, 15 December 2022. [Google Scholar]
- Liu, H.; Xu, W.; Xu, T.; Zhou, W.; Cui, Z.; Ye, H.; Bao, W.; Fan, Q.; Song, L. Anti-PD-L1 and OX40 Bispecific Antibody and Use Thereof. WO2023115718A1, 29 June 2023. [Google Scholar]
- Kwon, B.S.; Weissman, S.M. cDNA sequences of two inducible T-cell genes. Proc. Natl. Acad. Sci. USA 1989, 86, 1963–1967. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, R.G.; Din, W.S.; Davis-Smith, T.; Anderson, D.M.; Gimpel, S.D.; Sato, T.A.; Maliszewski, C.R.; Brannan, C.I.; Copeland, N.G.; Jenkins, N.A.; et al. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: A member of an emerging family of cytokines with homology to tumor necrosis factor. Eur. J. Immunol. 1993, 23, 2631–2641. [Google Scholar] [CrossRef] [PubMed]
- Alderson, M.R.; Smith, C.A.; Tough, T.W.; Davis-Smith, T.; Armitage, R.J.; Falk, B.; Roux, E.; Baker, E.; Sutherland, G.R.; Din, W.S. Molecular and biological characterization of human 4-1BB and its ligand. Eur. J. Immunol. 1994, 24, 2219–2227. [Google Scholar] [CrossRef]
- Cheuk, A.T.; Mufti, G.J.; Guinn, B.A. Role of 4-1BB:4-1BB ligand in cancer immunotherapy. Cancer Gene Ther. 2004, 11, 215–226. [Google Scholar] [CrossRef]
- Eckelman, B.P.; Timmer, J.C.; Hata, C.; Jones, K.S.; Hussain, A.; Razai, A.S.; Becklund, B.; Pandit, R.; Kaplan, M.; Rason, L.; et al. Multivalent and Multispecific 41BB-Binding Fusion Proteins. WO2017123650A2, 8 September 2017. [Google Scholar]
- Geuijen, C.A.W.; Throsby, M.; De Kruif, C.A.; Klooster, R.; Tacken, P.J.; Logtenberg, T. Binding Molecules that Modulate a Biological Activity Expressed by a Cell. WO2018056821A1, 29 March 2018. [Google Scholar]
- Li, B.; Wang, H.; He, X. Anti-PD-L1 Antibody and Use Thereof. WO2019196309A1, 17 October 2019. [Google Scholar]
- Park, E.; Lee, Y.; Chung, H.; Sung, E.; Yoo, J.; Park, M.; Son, Y.-G.; Choi, H.; Kim, E.; Jung, J.; et al. Anti-PD-L1/Anti-4-1BB Bispecific Antibodies and Uses Thereof. WO2020107715A1, 4 June 2020. [Google Scholar]
- Lakins, M.; Munoz-Olaya, J.; Wollerton, F.; Batey, S.; Tuna, M.; Koers, A. Antibody Molecules that Bind PD-L1 and CD137. WO2020011964A1, 6 January 2020. [Google Scholar]
- Pavlidou, M.; Pattarini, L.; Scholer-Dahirel, A.; Rothe, C.; Olwill, S.; Bel Aiba, R.; Hinner, M.; Peper, J. Novel Fusion Protein Specific for CD137 and PD-L1. WO2020025659A1, 26 February 2020. [Google Scholar]
- Her, J.-H.; You, J.-J.; Hsu, C.-H.; Huang, P.-L. Antibodies for T-Cell Activation. WO2020263879A1, 2 December 2020. [Google Scholar]
- Huang, P.-L.; Kan, H.-T.; Hsu, C.-H.; Hsieh, H.-T.; Cheng, W.-C.; Huang, R.-Y.; You, J.-J. A bispecific antibody AP203 targeting PD-L1 and CD137 exerts potent antitumor activity without toxicity. J. Transl. Med. 2023, 21, 346. [Google Scholar] [CrossRef]
- Claus, C.; Ferrara Koller, C.; Klein, C.; Moessner, E.; Umaña, P. Novel Bispecific Agonistic 4-1BB Antigen Binding Molecules. WO2020007817A1, 9 January 2020. [Google Scholar]
- Sahin, U.; Muik, A.; Altintas, I.; Forssmann, U.; Sasser, K.; Jure-Kunkel, M.; Gupta, M. Antibodies for Use in Therapy. WO2021156326A1, 12 August 2021. [Google Scholar]
- Kang, X.; Huang, X.; Sun, J. Antibodies Binding 4-1BB and Uses Thereof. WO2021068841A1, 12 August 2021. [Google Scholar]
- Zhang, W.; Chen, S.; Wang, L.; Jiang, F.; Wu, J.; Guo, X.; Yang, C.; Liao, C.; Lin, Y.; Hu, Q.; et al. Anti-4-1BB Antibody, Antigen-Binding Fragment Thereof, and Bispecific Antibody. WO2021013142A1, 28 January 2021. [Google Scholar]
- Zhai, T.; Miao, X.; Xu, Y.; Wang, T.; Tsun, A.; Huang, W. Anti-4-1BB-anti-PD-L1 Bispecific Antibody, and Pharmaceutical Composition and Use Thereof. WO2022057871A1, 24 March 2022. [Google Scholar]
- Tianhang, Z.; Chao, W.; Yifeng, X.; Weifeng, H.; Zhijun, Y.; Tao, W.; Shuang, D.; Shaogang, P.; Tuling, P.; Wenchao, J.; et al. Generation of a safe and efficacious llama single-domain antibody fragment (vHH) targeting the membrane-proximal region of 4-1BB for engineering therapeutic bispecific antibodies for cancer. J. Immunother. Cancer 2021, 9, e002131. [Google Scholar] [CrossRef]
- Gu, S.; Chen, S.; Schwimmer, L. Multispecific Binding Compounds That Bind to PD-L1. WO2022082005A1, 21 April 2022. [Google Scholar]
- Van Loo, P.F.; Wasserman, E.I.; Bol, C.J.J.G.; Laus, G. Multispecific Antibodies for the Treatment of Cancer. WO2022128546A1, 23 June 2022. [Google Scholar]
- Liu, J.; Yang, Y.; Zhao, S.; Liu, Y.; Song, N.; Fan, F.; Su, K.; Zhang, L.; Wang, J.; Xu, J.; et al. Anti-PD-L1/Anti-4-1BB Natural Antibody Structure-Like Heterodimeric form Bispecific Antibody and Preparation Thereof. WO2022148410A1, 14 July 2022. [Google Scholar]
- Kwon, B.; Im, S.; Han, S.; Lee, H.; Park, J.; Choi, J.; Lee, S.; Son, H. PD-1 Polypeptide Variants. WO2022053864A1, 17 March 2022. [Google Scholar]
- Shi, L.; Huang, B.; He, Y.; Gan, X.; Chen, F.; Zhao, J.; Xiang, B. 4-1BB Binding Protein and Application Thereof. WO2022002063A1, 6 January 2022. [Google Scholar]
- Cheng, L.; Liu, W.; Zhang, D.; Zeng, X.; Zhou, W.; Wang, M.; Wei, J.; Wu, L.; Dai, X. Bispecific Antibody Targeting PD-L1 and 4-1BB. WO2023000675A1, 26 January 2023. [Google Scholar]
- Pei, Y.; Huang, H.; Loi, Y.; Chen, C.; Li, H.; Shen, D.; Lei, M. Bispecific and Trispecific Binding Proteins to PD-L1, CD137, and/or TGF-β and Uses Thereof. WO2023034923A2, 9 March 2023. [Google Scholar]
- Hutloff, A.; Dittrich, A.M.; Beier, K.C.; Eljaschewitsch, B.; Kraft, R.; Anagnostopoulos, I.; Kroczek, R.A. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 1999, 402, 21–24. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, G.; Chapoval, A.I.; Dong, H.; Tamada, K.; Ni, J.; Chen, L. Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS. Blood 2000, 96, 2808–2813. [Google Scholar] [CrossRef] [PubMed]
- Beier, K.C.; Hutloff, A.; Dittrich, A.M.; Heuck, C.; Rauch, A.; Büchner, K.; Ludewig, B.; Ochs, H.D.; Mages, H.W.; Kroczek, R.A. Induction, binding specificity and function of human ICOS. Eur J Immunol 2000, 30, 3707–3717. [Google Scholar] [CrossRef] [PubMed]
- Coyle, A.J.; Lehar, S.; Lloyd, C.; Tian, J.; Delaney, T.; Manning, S.; Nguyen, T.; Burwell, T.; Schneider, H.; Gonzalo, J.A.; et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 2000, 13, 95–105. [Google Scholar] [CrossRef]
- Dong, C.; Juedes, A.E.; Temann, U.A.; Shresta, S.; Allison, J.P.; Ruddle, N.H.; Flavell, R.A. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 2001, 409, 97–101. [Google Scholar] [CrossRef]
- Mak, T.W.; Shahinian, A.; Yoshinaga, S.K.; Wakeham, A.; Boucher, L.-M.; Pintilie, M.; Duncan, G.; Gajewska, B.U.; Gronski, M.; Eriksson, U.; et al. Costimulation through the inducible costimulator ligand is essential for both T helper and B cell functions in T cell-dependent B cell responses. Nat. Immunol. 2003, 4, 765–772. [Google Scholar] [CrossRef]
- Campbell, J.; Sandy, N.; Van Krinks, C.; Arkinstall, S.J.; Germaschewski, V.; Kirby, I.; Kosmac, M.; Gallagher, T.; Deantonio, C.; Gillies, S.D.; et al. Multispecific Antibodies for Immuno-Oncology. WO2017220988A1, 28 December 2017. [Google Scholar]
- Postow, M.A.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.; McDermott, D.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 2015, 372, 2006–2017. [Google Scholar] [CrossRef]
mAbs | Types | Approval | Investigators | Indications | Adverse Reactions |
---|---|---|---|---|---|
Atezolizumab | IgG1κ | 2016 (US) | Genentech Roche | UC, NSCLC, SCLC, HCC, TNBC, Melanoma, Sarcoma | Fatigue, decreased appetite, nausea, urinary tract infection, pyrexia, constipation, dyspnea, cough, and MP |
Durvalumab | IgG1κ | 2017 (US) | AstraZeneca | UC, NSCLC, SCLC, HCC, BTC | Nausea, cough, fatigue, pneumonitis, upper respiratory tract infections, dyspnea, alopecia, constipation, decreased appetite, abdominal pain, rash, pyrexia, diarrhea, pruritis, and MP |
Avelumab | IgG1λ | 2017 (US) | EMD Serono Merck KGaA | MCC, UC, RCC | Fatigue, MP, diarrhea, nausea, infusion-related reaction, rash, decreased appetite, and peripheral edema |
Envafolimab | Fc-fused | 2021 (CN) | Alphamab | CC | NA |
Sugemalimab | IgG4λ | 2021 (CN) | CStone | NSCLC | NA |
Adebrelimab | IgG4κ | 2023 (CN) | Jiangsu Hengrui | SCLC | NA |
mAbs | Mechanism | Approval | Investigators | Indications | Adverse Reactions |
---|---|---|---|---|---|
Blinatumomab | CD19 × CD3 | 2014 (US) | Amgen | ALL | Pyrexia, headache, peripheral edema, febrile neutropenia, nausea, hypokalemia, tremor, rash, and constipation |
Emicizumab | FIXa × FX | 2017 (US) | Genentech | HA | Injection site reactions, headache, and arthralgia |
Amivantamab | EGFR × MET | 2021 (US) | Janssen Biotech | NSCLC | Rash, IRR, paronychia, MP, dyspnea, nausea, fatigue, edema, stomatitis, cough, constipation, and vomiting; decreased lymphocytes, decreased albumin, decreased phosphate, decreased potassium, increased alkaline phosphatase, increased glucose, increased gamma-glutamyl transferase, and decreased sodium |
Ozoralizumab | TNFα × HSA | 2022 (JP) | Sanofi | RA | NA |
Tebentafusp | gp100 × CD3 | 2022 (US) | Immunocore | UM | CRS, rash, pyrexia, pruritus, fatigue, nausea, chills, abdominal pain, edema, hypotension, dry skin, headache and vomiting |
Faricimab | gp100 × CD3 | 2022 (US) | Immunocore | UM | CRS, rash, pyrexia, pruritus, fatigue, nausea, chills, abdominal pain, edema, hypotension, dry skin, headache and vomiting; decreased lymphocyte count, increased creatinine, increased glucose, increased aspartate aminotransferase, increased alanine aminotransferase, decreased hemoglobin, and decreased phosphate |
Mosunetuzumab | CD20 × CD3 | 2022 (US) | Genentech | FL | CRS, fatigue, rash, pyrexia, and headache; decreased lymphocyte count, decreased phosphate, increased glucose, decreased neutrophil count, increased uric acid, decreased white blood cell count, decreased hemoglobin, and decreased platelets |
Teclistamab | BCMA × CD3 | 2022 (US) | Janssen Biotech | MM | Pyrexia, CRS, MP, injection site reaction, fatigue, upper respiratory tract infection, nausea, headache, pneumonia, and diarrhea; decreased lymphocytes, decreased neutrophils, decreased white blood cells, decreased hemoglobin, and decreased platelets |
Cadonilimab | CTLA-4 × PD-1 | 2022 (CN) | Akeso | CC | NA |
Elranatamab | BCMA × CD3 | 2023 (US) | Pfizer | MM | CRS, fatigue, injection site reaction, diarrhea, upper respiratory tract infection, MP, pneumonia, decreased appetite, rash, cough, nausea, and pyrexia |
Glofitamab | CD20 × CD3 | 2023 (US) | Genentech | DLBCL, LBCL | CRS, MP, rash, and fatigue; lymphocyte count decreased, phosphate decreased, neutrophil count decreased, uric acid increased, and fibrinogen decreased |
Epcoritamab | CD20 × CD3 | 2023 (US) | Genmab | DLBCL | CRS, fatigue, MP, injection site reactions, pyrexia, abdominal pain, nausea, and diarrhea |
Talquetamab | GPRC5D × CD3 | 2023 (US) | Janssen Biotech | MM | Pyrexia, CRS, dysgeusia, nail disorder, MP, skin disorder, rash, fatigue, weight decreased, dry mouth, xerosis, dysphagia, upper respiratory tract infection, diarrhea, hypotension, and headache |
bsAbs | Indications | Investigators | Highest Phase | NCT Number |
---|---|---|---|---|
CTLA-4 × PD-L1 | ||||
BCP-84 | Advanced Cancer | Nanjing Legend Biotech | Biological Testing | |
BCP-85 | Advanced Cancer | Nanjing Legend Biotech | Biological Testing | |
AB-04 | Advanced Cancer | Sichuan Kelun-Biotech | Biological Testing | |
KN-046 | NSCLC, PDA | Jiangsu Alphamab | Phase III | NCT06020352 NCT05001724 (Terminated in 2023) |
PR-001573 | Advanced Cancer | Harbour BioMed | Biological Testing | |
LAG-3 × PD-L1 | ||||
FS-118 | Advanced Cancer, SCCHN | F-Star Delta invoX Pharma | Phase I/II | NCT03440437 |
ABL-501 | Advanced Cancer | ABL Bio | Phase I | NCT05101109 |
IBI-323 | ALK-Rearranged NSCLC | Innovent Biologics | Phase II | NCT05296278 NCT04916119 |
mPDL1HCv1-E-sLAG3 | Advanced Cancer | GenScript Biotech | Biological Testing | |
W-3669 | Advanced Cancer | WuXi Biologics | Biological Testing | |
hz7F10-hzB6 | Advanced Cancer | Mabwell Bioscience | Biological Testing | |
PB-68 | Advanced Cancer | Merus NV | Biological Testing | |
PD-1 × PD-L1 | ||||
Hanmi bsAb | Advanced Cancer | Hanmi Pharm | Biological Testing | |
LY-3434172 | Advanced Cancer | Eli Lilly | Phase 1 | NCT03936959 (Completed in 2021) |
anti-PD-1 × PD-L1 bsAb | Advanced Cancer | Sunshine Guojian | Biological Testing | |
609-Fab-PD-L1-IgG4 | Advanced Cancer | Sunshine Guojian | Biological Testing | |
PD-L2 × PD-L1 | ||||
IMGS-001 | Advanced Cancer | ImmunoGenesis | Pre-clinical | |
Bi-201 | Advanced Cancer | Biotheus Inc | Biological Testing | |
TIM-3 × PD-L1 | ||||
LY-3415244 | Advanced Cancer | Eli Lilly Zymeworks | Phase I | NCT03752177 (Terminated in 2021) |
TIGIT × PD-L1 | ||||
BTP-21 | Advanced Cancer | Legend Biotech | Biological Testing | |
HLX-301 | Advanced Cancer, Lymphoma, NSCLC | Henlius Biotech | Phase I/II | NCT05390528 NCT05102214 |
HB-0036 | NSCLC | Huaota Biopharm | Phase I/II | NCT05417321 |
TIGIT-Fc-93-VH6 | Advanced Cancer | I-Mab Biopharma | Biological Testing | |
P-O-T | Advanced Cancer | Jiangsu Hengrui | Biological Testing | |
HuPL721-T2353-scFab | Advanced Cancer | Nanjing Sanhome | Biological Testing | |
PM-1022 | Advanced Cancer | Biotheus Inc | Phase I/II | NCT05867771 |
CD28 × PD-L1 | ||||
CX694 | Advanced Cancer | Inhibrx | Biological Testing | |
Ab-1 | Advanced Cancer | Janux Therapeutics | Biological Testing | |
XENP-36764 | Advanced Cancer | Xencor | Biological Testing | |
CD27 × PD-L1 | ||||
CDX-527 | Advanced Cancer | Celldex Therapeutics | Phase I | NCT04440943 (Completed in 2023) |
OX40 × PD-L1 | ||||
28A10 × 2E4 | Advanced Cancer | Inhibrx | Biological Testing | |
IBI-327 | Advanced Cancer | Innovent Biologics | Pre-clinical | |
MEDI-1109 | Advanced Cancer | AstraZeneca MedImmune | Pre-clinical | |
BS-813 | Advanced Cancer | JN Biosciences | Biological Testing | |
KN-052 | Advanced Cancer | Jiangsu Alphamab | Phase I | NCT05309512 |
EMB-09 | Advanced Cancer | EpimAb Biotherapeutics | Pre-clinical | |
L52-2D7H232 | Advanced Cancer | Anhui Anke Biotechnology | Biological Testing | |
CD137 × PD-L1 | ||||
ES-101 | Thoracic Tumors, NSCLC, SCLC | Inhibrx Elpiscience | Phase I Phase I/II | NCT04009460 (Terminated in 2022) NCT04841538 (Withdrawn in 2022) |
MCLA-145 | Advanced Cancer | Merus | Phase I | NCT03922204 |
ATG-101 | Advanced Cancer, MBNHL | OriCell Antengene | Phase I | NCT05490043 NCT04986865 |
ABL-503 | Advanced Cancer | ABL Bio I-Mab Biopharma | Phase I | NCT04762641 |
FS-222 | Advanced Cancer | F-star Therapeutics invoX Pharma | Phase I | NCT04740424 |
S-095012 | Advanced Cancer | Pieris Servier | Phase I/II | NCT05159388 |
AP-203 | Advanced Cancer | AP Biosciences | Phase I/II | NCT05473156 |
4-1BB (20H4.9) × PD-L1 | Advanced Cancer | Roche | Biological Testing | |
GEN-1046 | NSCLC, UC, SCCHN, UC, EC, TNBC, CC | BioNTech Genmab | Phase II | NCT04937153 NCT03917381 NCT05117242 |
LBL-024 | Advanced Cancer | Nanjing Leads Biolabs | Phase I/II | NCT05170958 |
9EN-FM | Advanced Cancer | Jiangsu Hengrui | Biological Testing | |
PM-1003 | Advanced Cancer | Biotheus | Phase I/IIa | NCT05862831 |
QL-301 | Advanced Cancer | QLSF Biotherapeutics | Pre-clinical | |
MF6797 × MF7702 | Advanced Cancer | Merus | Biological Testing | |
BH-3120 | Advanced Cancer | Hanmi Pharmaceutical | Pre-clinical | |
EuPD-1 × 94 kvt LHC218 | Advanced Cancer | Eutilex | Biological Testing | |
PR-004270 | Advanced Cancer | Harbour BioMed | Biological Testing | |
HK-010 | Advanced Cancer | Anhui Anke Biotechnology | Pre-clinical | |
1923Ab18 | Advanced Cancer | Novarock Biotherapeutics | Biological Testing | |
ICOS × PD-L1 | ||||
KY-1055 | Advanced Cancer | Kymab | Pre-clinical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Q.; Jiao, P. Anti-PD-L1-Based Bispecific Antibodies Targeting Co-Inhibitory and Co-Stimulatory Molecules for Cancer Immunotherapy. Molecules 2024, 29, 454. https://doi.org/10.3390/molecules29020454
Geng Q, Jiao P. Anti-PD-L1-Based Bispecific Antibodies Targeting Co-Inhibitory and Co-Stimulatory Molecules for Cancer Immunotherapy. Molecules. 2024; 29(2):454. https://doi.org/10.3390/molecules29020454
Chicago/Turabian StyleGeng, Qiaohong, and Peifu Jiao. 2024. "Anti-PD-L1-Based Bispecific Antibodies Targeting Co-Inhibitory and Co-Stimulatory Molecules for Cancer Immunotherapy" Molecules 29, no. 2: 454. https://doi.org/10.3390/molecules29020454
APA StyleGeng, Q., & Jiao, P. (2024). Anti-PD-L1-Based Bispecific Antibodies Targeting Co-Inhibitory and Co-Stimulatory Molecules for Cancer Immunotherapy. Molecules, 29(2), 454. https://doi.org/10.3390/molecules29020454