Visible Light Motivated the Photocatalytic Degradation of P-Nitrophenol by Ca2+-Doped AgInS2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure
2.2. Morphology and Structure
2.3. BET
2.4. Electronic Structure
2.5. Photoelectric Property and Photocatalytic Activity
2.6. Photocatalytic Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of AIS and Ca-AIS
3.3. Characterization
3.4. Photocatalytic Activity
3.5. Active Species Capture
3.6. Flat Band Potential Test
3.7. Photoelectric Chemical Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef] [PubMed]
- Cushing, S.K.; Li, J.; Meng, F.; Senty, T.R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A.D.; Wu, N. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.S.; Dorris, K.L.; Chikkaveeraiah, B.V. Photocatalytic degradation of 2,4-dinitrophenol. J. Hazard. Mater. 2009, 164, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.; Bahadur, K.; Briess, L.; Dussling, M.; Kohler, F.; Weinsheimer, S.; Wichern, F. Mitigating Negative Microbial Effects of p-Nitrophenol, Phenol, Copper and Cadmium in a Sandy Loam Soil Using Biochar. Water Air Soil Pollut. 2017, 228, 74. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Gaware, G.J.; Chinthala, M. Heterojunction photocatalysts for the removal of nitrophenol: A systematic review. Chemosphere 2023, 310, 136853. [Google Scholar] [CrossRef] [PubMed]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. Sci. Total Environ. 2021, 767, 144896. [Google Scholar] [CrossRef]
- Kulkarni, M.; Chaudhari, A. Biodegradation of p-nitrophenol by P. putida. Bioresour. Technol. 2006, 97, 982–988. [Google Scholar] [CrossRef]
- Chen, Q.; Ma, C.; Duan, W.; Lang, D.; Pan, B. Coupling adsorption and degradation in p-nitrophenol removal by biochars. J. Clean. Prod. 2020, 271, 122550. [Google Scholar] [CrossRef]
- Fatima, R.; Afridi, M.N.; Kumar, V.; Lee, J.; Ali, I.; Kim, K.H.; Kim, J.O. Photocatalytic degradation performance of various types of modified TiO2 against nitrophenols in aqueous systems. J. Clean. Prod. 2019, 231, 899–912. [Google Scholar] [CrossRef]
- Mohan, B.S.; Ravi, K.; Anjaneyulu, R.B.; Sree, G.S.; Basavaiah, K. Fe2O3/RGO nanocomposite photocatalyst: Effective degradation of 4-Nitrophenol. Phys. B 2019, 553, 190–194. [Google Scholar] [CrossRef]
- Kawase, Y.; Tokumura, M.; Salehi, Z.; Sugiyama, M. Photocatalytic degradation of p-nitrophenol by zinc oxide particles. Water Sci. Technol. 2012, 65, 1882–1886. [Google Scholar]
- Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 2020, 27, 2522–2565. [Google Scholar] [CrossRef]
- Zhang, J.J.; Gu, X.Y.; Zhao, Y.; Zhang, K.; Yan, Y.; Qi, K.Z. Photocatalytic Hydrogen Production and Tetracycline Degradation Using ZnIn2S4 Quantum Dots Modified g-C3N4 Composites. Nanomaterials 2023, 13, 305. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Z.; Zhang, J.H.; Liu, H.M.; Huang, J. Design, modification and application of semiconductor photocatalysts. J. Taiwan Inst. Chem. Eng. 2018, 93, 590–602. [Google Scholar] [CrossRef]
- Xia, Y.; Tian, Z.H.; Heil, T.; Meng, A.; Cheng, B.; Cao, S.W.; Yu, J.G.; Antonietti, M. Highly Selective CO2 Capture and Its Direct Photochemical Conversion on Ordered 2D/1D Heterojunctions. Joule 2019, 3, 2792–2805. [Google Scholar] [CrossRef]
- Song, J.H.; Zhang, J.J.; Qi, K.Z.; Imparato, C.; Liu, S.-Y. Exploration of the g-C3N4 Heterostructure with Ag–In Sulfide Quantum Dots for Enhanced Photocatalytic Activity. ACS Appl. Electron. Mater. 2023, 5, 4134–4144. [Google Scholar] [CrossRef]
- Parbin, A.R. Bifunctional WO3-AgInS2 nanocomposite material: Enhanced electrical property and photocatalytic activity for degradation of methylene blue dye under visible-light irradiation. Mater. Today Commun. 2023, 35, 106447. [Google Scholar] [CrossRef]
- Lei, Y.Q.; Xing, Y.; Fan, W.Q.; Song, S.Y.; Zhang, H.J. Synthesis, characterization and optical property of flower-like indium tin sulfide nanostructures. Dalton Trans. 2009, 1620–1623. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.Q.; Wang, G.H.; Zhou, L.; Hu, W.; Song, S.Y.; Fan, W.Q.; Zhang, H.J. Cubic spinel In4SnS8: Electrical transport properties and electrochemical hydrogen storage properties. Dalton Trans. 2010, 39, 7021–7024. [Google Scholar] [CrossRef]
- Rengaraj, S.; Venkataraj, S.; Tai, C.-W.; Kim, Y.; Repo, E.; Sillanpaa, M. Self-Assembled Mesoporous Hierarchical-like In2S3 Hollow Microspheres Composed of Nanofibers and Nanosheets and Their Photocatalytic Activity. Langmuir 2011, 27, 5534–5541. [Google Scholar] [CrossRef]
- Liu, B.J.; Li, X.Y.; Zhao, Q.D.; Ke, J.; Tadé, M.; Liu, S.M. Preparation of AgInS2/TiO2 Composites for Enhanced Photocatalytic Degradation of Gaseous o-dichlorobenzene under Visible Light. Appl. Catal. B 2016, 185, 1–10. [Google Scholar] [CrossRef]
- Sun, L.J.; Wang, Y.; He, L.X.; Guo, J.; Deng, Q.W.; Zhao, X.; Yan, Y.; Qi, K.Z. Effect of cobalt doping on the photocatalytic performance of AgInS2 for organic pollutant degradation and hydrogen production. J. Alloys Compd. 2022, 926, 166859. [Google Scholar] [CrossRef]
- Yang, F.J.; Yang, B.Y.; Gu, X.Y.; Li, M.H.; Qi, K.Z.; Yan, Y. Detection of enrofloxacin residues in dairy products based on their fluorescence quenching effect on AgInS2 QDs. Spectrochim. Acta Part A 2023, 301, 122985. [Google Scholar] [CrossRef]
- Wu, F.F.; Liu, G.; Xu, X.X. Efficient photocatalytic oxygen production over Ca-modified LaTiO2N. J. Catal. 2017, 346, 10–20. [Google Scholar] [CrossRef]
- Ahmad, I.; Ahmed, E.; Ahmad, M.; Akhtar, M.S.; Basharat, M.A.; Khan, W.Q.; Ghauri, M.I.; Ali, A.; Manzoor, M.F. The investigation of hydrogen evolution using Ca doped ZnO catalysts under visible light illumination. Mater. Sci. Semicond. Process. 2020, 105, 104748. [Google Scholar] [CrossRef]
- Chen, Y.F.; Duan, X.; Li, J.L.; Liu, W.Z.; Ren, S.; Yang, J.; Liu, Q.C. Hydrothermal synthesis of Ca doped β-In2S3 for effective dyes degradation. Adv. Powder Technol. 2021, 32, 1881–1890. [Google Scholar] [CrossRef]
- Yao, L.; Wu, X.H.; Yang, S.H.; Zhang, Y.L. Structural and optical properties of Ca doped BiFeO3 thin films prepared by a sol-gel method. Ceram. Int. 2017, 43, S470–S473. [Google Scholar] [CrossRef]
- Yao, W.; Chen, Y.F.; Li, J.L.; Yang, J.; Ren, S.; Liu, W.Z.; Liu, Q.C. Photocatalytic degradation of methyl orange by Ca doped β-In2S3 with varying Ca concentration. Res. Chem. Intermed. 2022, 48, 1813–1829. [Google Scholar] [CrossRef]
- Gu, X.Y.; Tan, C.; He, L.X.; Guo, J.; Zhao, X.; Qi, K.Z.; Yan, Y. Mn2+ doped AgInS2 photocatalyst for formaldehyde degradation and hydrogen production from water splitting by carbon tube enhancement. Chemosphere 2022, 304, 135292. [Google Scholar] [CrossRef] [PubMed]
- Kowalik, P.; Mucha, S.G.; Matczyszyn, K.; Bujak, P.; Mazur, L.M.; Ostrowski, A.; Kmita, A.; Gajewska, M.; Pron, A. Heterogeneity induced dual luminescence properties of AgInS2 and AgInS2–ZnS alloyed nanocrystals. Inorg. Chem. Front. 2021, 8, 3450–3462. [Google Scholar] [CrossRef]
- Aazam, E.S. Photocatalytic oxidation of cyanide under visible light by Pt doped AgInS2 nanoparticles. J. Ind. Eng. Chem. 2014, 20, 4008–4013. [Google Scholar] [CrossRef]
- Yin, D.W.; Pei, L.; Liu, Z.; Yang, X.Y.; Xiang, W.D.; Zhang, X.Y. Synthesis, Characterization, and Photoluminescence on the Glass Doped with AgInS2 Nanocrystals. Adv. Condens. Matter Phys. 2015, 2015, 141056. [Google Scholar]
- Wang, H.J.; Li, J.Z.; Wan, Y.; Nazir, A.; Song, X.H.; Huo, P.W.; Wang, H.Q. Synthesis of AgInS2 QDs-MoS2/GO composite with enhanced interfacial charge separation for efficient photocatalytic degradation of tetracycline and CO2 reduction. J. Alloys Compd. 2023, 954, 170159. [Google Scholar] [CrossRef]
- Anand, P.; Jaihindh, D.P.; Chang, W.K.; Fu, Y.P. Tailoring the Ca-doped bismuth ferrite for electrochemical oxygen evolution reaction and photocatalytic activity. Appl. Surf. Sci. 2021, 540, 148387. [Google Scholar] [CrossRef]
- E, T.; Ma, Z.; Cai, D.; Yang, S.; Li, Y. Enhancement of Interfacial Charge Transfer of TiO2/Graphene with Doped Ca2+ for Improving Electrical Conductivity. ACS Appl. Mater. Interfaces 2021, 13, 41875–41885. [Google Scholar] [CrossRef] [PubMed]
- Saumya; Dasauni, K.; Nailwal, T.K.; Voddumalla, S.; Nenavathu, B.P. Facile synthesis of Ca doped CuO nanoparticles and their investigation in antibacterial efficacy. Biologia 2023, 78, 903–911. [Google Scholar] [CrossRef]
- Pham, X.N.; Vu, V.T.; Nguyen, H.V.T.; Nguyen, T.T.; Doan, H.V. Designing a novel heterostructure AgInS2@MIL-101(Cr) photocatalyst from PET plastic waste for tetracycline degradation. Nanoscale Adv. 2022, 4, 3600–3608. [Google Scholar] [CrossRef]
- Deng, F.; Zhong, F.; Hu, P.; Pei, X.L.; Luo, X.B.; Luo, S.L. Fabrication of In-rich AgInS2 nanoplates and nanotubes by a facile low-temperature co-precipitation strategy and their excellent visible-light photocatalytic mineralization performance. J. Nanopart. Res. 2017, 19, 14. [Google Scholar] [CrossRef]
- Chen, J.; Liu, W.X.; Gao, W.W. Tuning photocatalytic activity of In2S3 broadband spectrum photocatalyst based on morphology. Appl. Surf. Sci. 2016, 368, 288–297. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Xiao, A.; Yan, K.; Liu, Y.H.; Yan, Z.Y.; Chen, J.Q. CuInS2/ZnS/TGA Nanocomposite Photocatalysts: Synthesis, Characterization and Photocatalytic Activity. Catal. Lett. 2017, 147, 1631–1639. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, B.; Zhang, L.; Yu, J. In situ Irradiated XPS Investigation on S-Scheme TiO2@ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction. Small 2021, 17, 2103447. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Thommes, M. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Du, J.G.; Ma, S.L.; Liu, H.P.; Fu, H.C.; Li, L.; Li, Z.Q.; Li, Y.; Zhou, J.G. Uncovering the mechanism of novel AgInS2 nanosheets/TiO2 nanobelts composites for photocatalytic remediation of combined pollution. Appl. Catal. B 2019, 259, 118062. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Fan, X.; Zheng, H.X.; Liu, E.Z.; Fan, J.; Wang, X.J. Bi2WO6/AgInS2 S-scheme heterojunction: Efficient photodegradation of organic pollutant and toxicity evaluation. J. Mater. Sci. Technol. 2024, 170, 200–211. [Google Scholar] [CrossRef]
- Li, Y.H.; Liu, Y.; Gao, G.; Zhu, Y.; Wang, D.; Ding, M.; Yao, T.T.; Liu, M.Y.; You, W.S. L-cysteine and urea synergistically-mediated one-pot one-step self-transformed hydrothermal synthesis of p-Ag2S/n-AgInS2 core-shell heteronanoflowers for photocatalytic MO degradation. Appl. Surf. Sci. 2021, 548, 149279. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhao, Y.; Qi, K.Z.; Liu, S.-Y. CuInS2 quantum-dot-modified g-C3N4 S-scheme heterojunction photocatalyst for hydrogen production and tetracycline degradation. J. Mater. Sci. Technol. 2024, 172, 145–155. [Google Scholar] [CrossRef]
- Ran, X.Q.; Duan, L.; Chen, X.Y.; Yang, X. Photocatalytic degradation of organic dyes by the conjugated polymer poly(1,3,4-oxadiazole)s and its photocatalytic mechanism. J. Mater. Sci. 2018, 53, 7048–7059. [Google Scholar] [CrossRef]
- Khairy, M.; Naguib, E.M.; Mohamed, M.M. Enhancement of Photocatalytic and Sonophotocatalytic Degradation of 4-nitrophenol by ZnO/Graphene Oxide and ZnO/Carbon Nanotube Nanocomposites. J. Photochem. Photobiol. A 2020, 396, 112507. [Google Scholar] [CrossRef]
- Ryu, J.; Choi, W. Substrate-Specific Photocatalytic Activities of TiO2 and Multiactivity Test for Water Treatment Application. Environ. Sci. Technol. 2008, 42, 294–300. [Google Scholar] [CrossRef]
- Feng, C.; Chen, Z.Y.; Jing, J.P.; Hou, J. The photocatalytic phenol degradation mechanism of Ag-modified ZnO nanorods. J. Mater. Chem. C 2020, 8, 3000–3009. [Google Scholar] [CrossRef]
- Luo, T.; Li, L.; Chen, Y.; An, J.; Liu, C.; Yan, Z.; Carter, J.H.; Han, X.; Sheveleva, A.M.; Tuna, F.; et al. Construction of C-C bonds via photoreductive coupling of ketones and aldehydes in the metal-organic-framework MFM-300(Cr). Nat. Commun. 2021, 12, 3583. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.W.; Bie, C.B.; Zhang, Y.; Wang, L.X.; Li, Y.J.; Yu, J.G. Hierarchically Porous ZnO/g-C3N4 S-Scheme Heterojunction Photocatalyst for Efficient H2O2 Production. Langmuir 2021, 37, 14114–14124. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.F.; Gu, X.Y.; Zhao, Y.; Qi, K.Z.; Yan, Y. S-scheme CuInS2/ZnS heterojunctions for the visible light-driven photocatalytic degradation of tetracycline antibiotic drugs. J. Taiwan Inst. Chem. Eng. 2023, 142, 104679. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.F.; Jimmy, C. Photocatalytic degradation of ibuprofen on S-doped BiOBr. Chemosphere 2021, 278, 130376. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.H.; Lan, H.; Guo, J.; Guo, M.X.; Yan, Y. Synthesis of Au-loaded AgInS2 nanoparticles with highly enhanced visible light photocatalytic performances. J. Mater. Sci. Mater. Electron. 2020, 31, 22284–22296. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, S.; Lin, S.; Qi, K.; Yan, Y.; Ma, Y. Visible Light Motivated the Photocatalytic Degradation of P-Nitrophenol by Ca2+-Doped AgInS2. Molecules 2024, 29, 361. https://doi.org/10.3390/molecules29020361
Wang X, Liu S, Lin S, Qi K, Yan Y, Ma Y. Visible Light Motivated the Photocatalytic Degradation of P-Nitrophenol by Ca2+-Doped AgInS2. Molecules. 2024; 29(2):361. https://doi.org/10.3390/molecules29020361
Chicago/Turabian StyleWang, Xuejiao, Shuyuan Liu, Shu Lin, Kezhen Qi, Ya Yan, and Yuhua Ma. 2024. "Visible Light Motivated the Photocatalytic Degradation of P-Nitrophenol by Ca2+-Doped AgInS2" Molecules 29, no. 2: 361. https://doi.org/10.3390/molecules29020361
APA StyleWang, X., Liu, S., Lin, S., Qi, K., Yan, Y., & Ma, Y. (2024). Visible Light Motivated the Photocatalytic Degradation of P-Nitrophenol by Ca2+-Doped AgInS2. Molecules, 29(2), 361. https://doi.org/10.3390/molecules29020361