Isolation and Characterization of Antimicrobial Metabolites from the Sophora tonkinensis-Associated Fungus Penicillium sp. GDGJ-N37
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungal Material
3.3. Fermentation, Extraction and Isolation
- N-Isopenthysclerotiorinamine (1): red amorphous powder; +196.6 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 230 (2.40), 362 (2.52); CD (0.4 mM, MeOH) λmax (Δε) 246 (+3.7), 307 (−5.98), and 382 (+4.6) nm; 1H and 13C NMR data (Table 1); HRESIMS m/z 460.2256 [M + H]+ (calcd. for C26H35ClNO4+, 460.2255); 462.2249 (calcd. for C26H3537ClNO4+, 460.2220).
- 7-Methoxyl -N-isopenthysclerotiorinamine (2): red amorphous powder; +188.4 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 230 (2.40), 362 (2.52); CD (0.4 mM, MeOH) λmax (Δε) 247 (−3.5), 311 (−3.3), and 382 (+4.5) nm; 1H and 13C NMR data (Table 1); HRESIMS m/z 432.2314 [M + H]+ (calcd. for C25H35ClNO3+, 432.2305); 434.2294 (calcd. for C25H3537ClNO3+, 434.2271).
- Penithochromone X (7): light yellow oil; UV (MeOH) λmax (log ε) 246 (4.09), 292 (3.75) nm; 1H and 13C NMR data (Table 2); HRESIMS m/z 335.1514 [M + H]+ (calcd. for C18H23O6+, 335.1489); 373.1014 [M + K]+ (calcd. for C18H22O6K+, 373.1048).
- Penithochromone Y (8): light yellow oil; UV (MeOH) λmax (log ε) 250 (4.14), 290 (3.86) nm; 1H and 13C NMR data (Table 2); HRESIMS m/z 321.1341 [M + H]+ (calcd. for C17H21O6+, 321.1333); 343.1148 [M + Na]+ (calcd. for C17H20O6Na+, 343.1152).
3.4. General Procedure for the Semi-Synthesis of 1–3, and 10–12
- Experimental details for 1 and 11
- Experimental details for 2
- Experimental details for 3 and 10
- Experimental details for 12
3.5. Antimicrobial Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Zhang, W.; Tang, S.; Wei, S.; Lu, X. Collaborative biosynthesis of a class of bioactive azaphilones by two separate gene clusters containing four PKS/NRPSs with transcriptional crosstalk in fungi. Angew. Chem. Int. Ed. 2020, 132, 4379–4383. [Google Scholar] [CrossRef]
- Gao, J.M.; Yang, S.X.; Qin, J.C. Azaphilones: Chemistry and biology. Chem. Rev. 2013, 113, 4755–4811. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.; Greco, C.; Bailey, A.M.; Willis, C.L. Core steps to the azaphilone family of fungal natural products. ChemBioChem 2021, 22, 3027–3036. [Google Scholar] [CrossRef] [PubMed]
- El-Kashef, D.H.; Youssef, F.S.; Hartmann, R.; Knedel, T.; Janiak, C.; Lin, W.; Reimche, I.; Teusch, N.; Liu, Z.; Proksch, P. Azaphilones from the red sea fungus Aspergillus falconensis. Mar. Drugs 2020, 18, 204. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Feng, X.; Xiao, Z.; Liu, L.; Li, H.; Ma, L.; Lu, Y.; Ju, J.; She, Z.; Lin, Y. Azaphilones and p-terphenyls from the mangrove endophytic fungus Penicillium chermesinum (ZH4-E2) isolated from the South China Sea. J. Nat. Prod. 2011, 74, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.X.; Li, X.; Shi, L.Y.; Feng, L.; Wang, J.W.; Tan, N.H.; Wang, Z. Azaphilones with anti-colon cancer activities from the plant endophytic fungus Talaromyces primulinus WZ-883. Phytochem. Lett. 2023, 57, 115–125. [Google Scholar] [CrossRef]
- Wang, W.X.; Kusari, S.; Laatsch, H.; Golz, C.; Kusari, P.; Strohmann, C.; Kayser, O.; Spiteller, M. Antibacterial azaphilones from an endophytic fungus, Colletotrichum sp. BS4. J. Nat. Prod. 2016, 79, 704–710. [Google Scholar] [CrossRef]
- Kanokmedhakul, S.; Kanokmedhakul, K.; Nasomjai, P.; Louangsysouphanh, S.; Soytong, K.; Isobe, M.; Kongsaeree, P.; Prabpai, S.; Suksamrarn, A. Antifungal azaphilones from the fungus Chaetomium cupreum CC3003. J. Nat. Prod. 2006, 69, 891–895. [Google Scholar] [CrossRef]
- Yang, Z.J.; Zhang, Y.F.; Wu, K.; Xu, Y.X.; Meng, X.G.; Jiang, Z.T.; Ge, M.; Shao, L. New azaphilones, phomopsones A–C with biological activities from an endophytic fungus Phomopsis sp. CGMCC No. 5416. Fitoterapia 2020, 145, 104573. [Google Scholar] [CrossRef]
- Wang, W.; Yang, J.; Liao, Y.Y.; Cheng, G.; Chen, J.; Cheng, X.D.; Qin, J.J.; Shao, Z. Cytotoxic nitrogenated azaphilones from the deep-sea-derived fungus Chaetomium globosum MP4-S01-7. J. Nat. Prod. 2020, 83, 1157–1166. [Google Scholar] [CrossRef]
- Wang, H.C.; Ke, T.Y.; Ko, Y.C.; Lin, J.J.; Chang, J.S.; Cheng, Y.B. Anti-inflammatory azaphilones from the edible alga-derived fungus Penicillium sclerotiorum. Mar. Drugs 2021, 19, 529. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liao, Y.; Chen, R.; Hou, Y.; Ke, W.; Zhang, B.; Gao, M.; Shao, Z.; Chen, J.; Li, F. Chlorinated azaphilone pigments with antimicrobial and cytotoxic activities isolated from the deep sea derived fungus Chaetomium sp. NA-S01-R1. Mar. Drugs 2018, 16, 61. [Google Scholar] [CrossRef]
- Chen, C.; Tao, H.; Chen, W.; Yang, B.; Zhou, X.; Luo, X.; Liu, Y. Recent advances in the chemistry and biology of azaphilones. RSC Adv. 2020, 10, 10197–10220. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhang, Z.; Zhu, T.; Gu, Q.; Li, D. Penicyclones A–E, antibacterial polyketides from the deep-sea-derived fungus Penicillium sp. f23-2. J. Nat. Prod. 2015, 78, 2699–2703. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Inagaki, M.; Chai, H.B.; Wieboldt, T.; Rapplye, C.; Rakotondraibe, L.H. Halogenated compounds from directed fermentation of Penicillium concentricum, an endophytic fungus of the liverwort Trichocolea tomentella. J. Nat. Prod. 2017, 80, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Orfali, R.; Perveen, S.; Al-Taweel, A.; Ahmed, A.F.; Majrashi, N.; Alluhay, K.; Khan, A.; Luciano, P.; Taglialatela-Scafati, O. Penipyranicins A–C: Antibacterial methylpyran polyketides from a hydrothermal spring sediment Penicillium sp. J. Nat. Prod. 2020, 83, 3591–3597. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.F.; Hou, X.M.; Yao, F.H.; Zheng, N.; Li, J.; Wang, C.Y.; Yang, R.Y.; Shao, C.L. Xylapeptide A, an antibacterial cyclopentapeptide with an uncommon L-pipecolinic acid moiety from the associated fungus Xylaria sp. (GDG-102). Sci. Rep. 2017, 7, 6937. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Huang, X.S.; Liu, X.B.; Mo, T.X.; Xu, Z.L.; Li, B.C.; Qin, X.Y.; Li, J.; Schäberle, T.F.; Yang, R.Y. Three new andrastin derivatives from the endophytic fungus Penicillium vulpinum. Nat. Prod. Res. 2022, 36, 3262–3270. [Google Scholar] [CrossRef]
- Mo, T.X.; Huang, X.S.; Zhang, W.X.; Scháberle, T.F.; Qin, J.K.; Zhou, D.X.; Qin, X.Y.; Xu, Z.L.; Li, J.; Yang, R.Y. A series of meroterpenoids with rearranged skeletons from an endophytic fungus Penicillium sp. GDGJ-285. Org. Chem. Front. 2021, 8, 2232–2241. [Google Scholar] [CrossRef]
- Wang, X.R.; Sena Filho, J.G.; Hoover, A.R.; King, J.B.; Ellis, T.K.; Powell, D.R.; Cichewicz, R.H. Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an atlantic-forest-soil-derived Penicillium citreonigrum. J. Nat. Prod. 2010, 73, 942–948. [Google Scholar] [CrossRef]
- Kim, S.M.; Son, S.; Kim, J.W.; Jeon, E.S.; Ko, S.K.; Ryoo, I.J.; Shin, K.S.; Hirota, H.; Takahashi, S.; Osada, H. Penidioxolanes A and B, 1, 3-dioxolane containing azaphilone derivatives from marine-derived Penicillium sp. KCB12C078. Nat. Prod. Sci. 2015, 21, 231–236. [Google Scholar] [CrossRef]
- Gu, B.B.; Tang, J.; Jiao, W.; Jiao, W.H.; Li, L.; Sun, F.; Wang, S.P.; Yang, F.; Lin, H.W. Azaphilone and isocoumarin derivatives from the sponge-derived fungus Eupenicillium sp. 6A-9. Tetrahedron Lett. 2018, 59, 3345–3348. [Google Scholar] [CrossRef]
- Li, Q.; Xu, W.; Fan, R.; Zhang, J.; Li, Y.; Wang, X.; Han, S.; Liu, W.; Pan, M.; Cheng, Z. Penithoketone and penithochromones A–L, polyketides from the deep-Sea-derived fungus Penicillium thomii YPGA3. J. Nat. Prod. 2020, 83, 2679–2685. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.L.; Zhou, Z.Y.; Yang, T.; Yao, C.; Wu, L.W.; Li, G.Y. Azaphilone alkaloids with anti-inflammatory activity from fungus Penicillium sclerotiorum cib-411. J. Agric. Food. Chem. 2019, 67, 2175–2182. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Du, Y.; Wang, C.; Wang, Y.; Zhu, T.; Zhu, W. Azaphilones from the marine sponge-derived fungus Penicillium sclerotiorum OUCMDZ-3839. Mar. Drugs 2019, 17, 260. [Google Scholar] [CrossRef]
- Chen, T.; Huang, Y.; Hong, J.; Wei, X.; Zeng, F.; Li, J.; Ye, G.; Yuan, J.; Long, Y. Preparation, COX-2 inhibition and anticancer activity of sclerotiorin derivatives. Mar. Drugs 2020, 19, 12. [Google Scholar] [CrossRef] [PubMed]
- Casillo, A.; Di Guida, R.; Carillo, S.; Chen, C.; Kamasaka, K.; Kawamoto, J.; Kurihara, T.; Corsaro, M.M. Structural elucidation of a novel lipooligosaccharide from the cold-adapted bacterium OMVs producer Shewanella sp. HM13. Mar. Drugs 2019, 17, 34. [Google Scholar] [CrossRef]
- Guo, Q.; Dong, L.; Zang, X.; Gu, Z.; He, X.; Yao, L.; Cao, L.; Qiu, J. A new azaphilone from the entomopathogenic fungus Hypocrella sp. Nat. Prod. Res. 2015, 29, 2000–2006. [Google Scholar] [CrossRef]
- Zhang, L.; Long, Y.; Lei, X.; Xu, J.; Huang, Z.; She, Z.; Lin, Y.; Li, J.; Liu, L. Azaphilones isolated from an alga-derived fungus Penicillium sp. ZJ-27. Phytochem. Lett. 2016, 18, 180–186. [Google Scholar] [CrossRef]
- Wang, C.F.; Ma, J.; Jing, Q.Q.; Cao, X.Z.; Chen, L.; Chao, R.; Zheng, J.Y.; Shao, C.L.; He, X.Y.; Wei, M.Y. Integrating activity-guided strategy and fingerprint analysis to target potent cytotoxic brefeldin a from a fungal library of the medicinal mangrove Acanthus ilicifolius. Mar. Drugs 2022, 20, 432. [Google Scholar] [CrossRef]
- Pierce, C.G.; Uppuluri, P.; Tristan, A.R.; Wormley, F.L.; Mowat, E.; Ramage, G.; Lopez-Ribot, J.L. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc. 2008, 3, 1494–1500. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Shafi, J.; Ji, M.S.; Bi, Y.H.; Yu, Z.G. Antimicrobial metabolites from Streptomyces sp. SN0280. J. Nat. Prod. 2017, 80, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Fromtling, R.A.; Galgiani, J.N.; Pfaller, M.A.; Espinel-Ingroff, A.; Bartizal, K.F.; Bartlett, M.S.; Body, B.A.; Frey, C.; Hall, G.; Roberts, G.D. Multicenter evaluation of a broth macrodilution antifungal susceptibility test for yeasts. Antimicrob. Agents Chemother. 1993, 37, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.Y.; Li, C.Y.; Lin, Y.C.; Peng, G.T.; She, Z.G.; Zhou, S.N. Lactones from a brown alga endophytic fungus (No. ZZF36) from the South China Sea and their antimicrobial activities. Bioorg. Med. Chem. Lett. 2006, 16, 4205–4208. [Google Scholar] [CrossRef]
No. | 1 a | 2 b | ||
---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | |
1 | 143.7 | 8.18, s | 143.2 | 8.19, s |
3 | 148.2 | 148.9 | ||
4 | 112.6 | 7.16, s | 112.5 | 7.18, s |
4a | 151.2 | 151.7 | ||
5 | 101.1 | 102.2 | ||
6 | 185.4 | 186.5 | ||
7 | 86.2 | 90.4 | ||
8 | 194.9 | 199.0 | ||
8a | 116.7 | 117.7 | ||
9 | 116.8 | 6.46, d (15.6) | 116.7 | 6.48, d (15.6) |
10 | 146.5 | 7.12, d (15.6) | 146.7 | 7.14, d (15.6) |
11 | 133.7 | 133.7 | ||
12 | 149.0 | 5.80, d (9.6) | 149.2 | 5.81, d (9.6) |
13 | 36.2 | 2.55, m | 36.3 | 2.55, m |
14 | 31.2 | 1.46, m | 31.2 | 1.49, m |
1.36, m | 1.36, m | |||
15 | 12.4 | 0.90, t (7.6) | 12.4 | 0.90, t (7.2) |
16 | 20.6 | 1.04, d (6.4) | 20.6 | 1.04, d (6.8) |
17 | 12.8 | 1.92, d (1.2) | 12.7 | 1.93, d (1.2) |
18 | 23.8 | 1.50, s | 27.5 | 1.46, s |
19 | 171.6 | 54.9 | 3.15, s | |
20 | 20.2 | 2.12, s | ||
1’ | 54.3 | 4.14, t (8.4) | 54.4 | 4.17, t (8.0) |
2’ | 40.0 | 1.67, overlapped | 40.0 | 1.69, overlapped |
3’ | 27.3 | 1.67, overlapped | 27.1 | 1.69, overlapped |
4’/5’ | 22.7 | 0.99, d (6.0) | 22.7 | 1.01, d (5.6) |
No. | 7 | 8 | ||
---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | |
2 | 166.2 | 166.1 | ||
3 | 111.3 | 5.98, s | 110.6 | 5.93, s |
4 | 177.7 | 175.5 | ||
4a | 109.1 | 108.1 | ||
5 | 161.0 | 160.3 | ||
6 | 96.0 | 6.32, d (2.3) | 96.1 | 6.46, d (2.3) |
7 | 163.9 | 163.5 | ||
8 | 92.8 | 6.40, d (2.3) | 93.0 | 6.62, d (2.3) |
8a | 160.3 | 160.0 | ||
9 | 33.4 | 2.50, t (7.4) | 32.4 | 2.52, t (7.4) |
10 | 26.3 | 1.72, m | 25.8 | 1.63, m |
11 | 28.5 | 1.40, m | 27.9 | 1.33, m |
12 | 24.6 | 1.68, m | 24.2 | 1.53, m |
13 | 33.9 | 2.31, t (7.4) | 33.7 | 2.20, t (7.4) |
14 | 174.1 | 174.7 | ||
5-OCH3 | 56.5 | 3.91, s | 56.1 | 3.79, s |
7-OCH3 | 55.8 | 3.86, s | 55.9 | 3.85, s |
14-OCH3 | 51.6 | 3.65, s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Li, Y.; Pang, J.; Lv, L.; Zhou, J.; Liang, L.; He, X.; Li, J.; Xu, W.; Yang, R. Isolation and Characterization of Antimicrobial Metabolites from the Sophora tonkinensis-Associated Fungus Penicillium sp. GDGJ-N37. Molecules 2024, 29, 348. https://doi.org/10.3390/molecules29020348
Huang L, Li Y, Pang J, Lv L, Zhou J, Liang L, He X, Li J, Xu W, Yang R. Isolation and Characterization of Antimicrobial Metabolites from the Sophora tonkinensis-Associated Fungus Penicillium sp. GDGJ-N37. Molecules. 2024; 29(2):348. https://doi.org/10.3390/molecules29020348
Chicago/Turabian StyleHuang, Lili, Yongxia Li, Jing Pang, Liuxia Lv, Jiatong Zhou, Liqi Liang, Xianhua He, Jun Li, Weifeng Xu, and Ruiyun Yang. 2024. "Isolation and Characterization of Antimicrobial Metabolites from the Sophora tonkinensis-Associated Fungus Penicillium sp. GDGJ-N37" Molecules 29, no. 2: 348. https://doi.org/10.3390/molecules29020348
APA StyleHuang, L., Li, Y., Pang, J., Lv, L., Zhou, J., Liang, L., He, X., Li, J., Xu, W., & Yang, R. (2024). Isolation and Characterization of Antimicrobial Metabolites from the Sophora tonkinensis-Associated Fungus Penicillium sp. GDGJ-N37. Molecules, 29(2), 348. https://doi.org/10.3390/molecules29020348