A Rare Benzothiazole Glucoside as a Derivative of ‘Albedo Bluing’ Substance in Citrus Fruit and Its Antioxidant Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction and Purification of ABS from ‘Gonggan’
2.2. Comparative Analysis of ABS among Different Citrus Varieties
2.3. Preparation of ABS-D
2.4. Structural Identification of ABS-D
2.5. Structure Prediction of ABS
2.6. Antioxidant Activities of ABS and ABS-D
3. Materials and Methods
3.1. Materials and Reagents
3.2. Extraction and Purification of ABS
3.3. HPLC Analysis of ABS
3.4. UPLC-QTOF-MS/MS Analysis of ABS
3.5. Comparative Analysis of ABS among Different Citrus Varieties
3.6. Preparation of ‘Albedo Bluing’ Substance Derivative (ABS-D)
3.7. UV-Vis and NMR Analysis of ABS-D
3.8. Calculation of the Chemical Shifts of ABS-D
3.9. Antioxidant Activity Assays
3.9.1. DPPH Radical-Scavenging Activity
3.9.2. ABTS Radical-Scavenging Activity
3.9.3. Ferric-Reducing Antioxidant Power (FRAP) Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 20 March 2023).
- Liu, Y.Q.; Heying, E.; Tanumihardjo, S.A. History, global distribution, and nutritional importance of citrus fruits. Compr. Rev. Food Sci. Food Saf. 2012, 11, 530–545. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Available online: https://data.stats.gov.cn/english/easyquery.htm?cn=C01 (accessed on 20 March 2023).
- Browing, H.W.; Mcgovern, R.J.; Jackson, L.K.; Calvert, V.; Wardowski, W.F. Florida Citrus Diagnostic Guide; Florida Science Source: Florida, FL, USA, 1995; pp. 225–235. ISBN 978-0944961018. [Google Scholar]
- Yu, Q.M.; Li, G.G.; Xu, R.W.; Peng, Z.X.; Yuan, Z.Y.; Li, W.Y.; Tian, J.; Zeng, J.W.; Peng, S.A.; Xu, J. Physiological mechanisms for the phenomenon of ‘blue albedo’ fruits of Citrus reticulate in Guangxi. Acta Hortic. Sin. 2020, 47, 1172–1182. [Google Scholar] [CrossRef]
- Pina, F. Chemical applications of anthocyanins and related compounds. A Source of Bioinspiration. J. Agric. Food Chem. 2014, 62, 6885–6897. [Google Scholar] [CrossRef] [PubMed]
- Nomura, R.; Ohata, J.; Otsugu, M.; Okawa, R.; Naka, S.; Matsumoto-Nakano, M.; Nakano, K. Inhibitory effects of flavedo, albedo, fruits, and leaves of Citrus unshiu extracts on Streptococcus mutans. Arch. Oral Biol. 2021, 124, 105056. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xue, J.; Xu, S.X.; Zhang, R.Q. Chemical constituents of the leaves of Diospyros Kaki and their cytotoxic effects. J. Asian Nat. Prod. Res. 2007, 9, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.X.; Wang, S.; Zeng, K.W.; Tu, P.F.; Jiang, Y. Inhibitory constituents from the aerial parts of Polygala tenuifolia on LPS-induced NO production in BV2 microglia cells. Bioorg. Med. Chem. Lett. 2013, 23, 5904–5908. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Xie, H.H.; Jiang, Y.M.; Wei, X.Y. Phenolics and sesquiterpenes from litchi pericarp. J. Funct. Foods. 2014, 9, 156–161. [Google Scholar] [CrossRef]
- Abdallah, H.M.; El-Bassossy, H.M.; Mohamed, G.A.; El-halawany, A.M.; Alshali, K.Z.; Banjar, Z.M. Phenolics from Garcinia mangostana alleviate exaggerated vasoconstriction in metabolic syndrome through direct vasodilatation and nitric oxide generation. BMC Complement. Altern. Med. 2016, 16, 1–10. [Google Scholar] [CrossRef]
- Beelders, T.; Brand, D.J.; de Beer, D.; Malherbe, C.J.; Mazibuko, S.E.; Muller, C.J.F.; Joubert, E. Benzophenone C- and O-glucosides from Cyclopia genistoides (Honeybush) inhibit mammalian alpha-glucosidase. J. Nat. Prod. 2014, 77, 2694–2699. [Google Scholar] [CrossRef]
- Pandey, R.P.; Li, T.F.; Kim, E.H.; Yamaguchi, T.; Park, Y.I.; Kim, J.S.; Sohng, J.K. Enzymatic synthesis of novel phloretin glucosides. Appl. Environ. Microbiol. 2013, 79, 3516–3521. [Google Scholar] [CrossRef]
- Sun, J.; Wang, S.; Xia, F.; Wang, K.Y.; Chen, J.M.; Tu, P.F. Five new benzophenone glycosides from the leaves of Aquilaria sinensis (Lour.) Gilg. Chin. Chem. Lett. 2014, 25, 1573–1576. [Google Scholar] [CrossRef]
- Spadaro, A.; Frotscher, M.; Hartmann, R.W. Optimization of hydroxybenzothiazoles as novel potent and selective inhibitors of 17 beta-HSD1. J. Med. Chem. 2012, 55, 2469–2473. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.Q.; Danger, D.P.; Dock, S.T.; Hawley, L.; Roller, S.G.; Smith, C.D.; Handlon, A.L. Synthesis and SAR of benzisothiazole and indolizine-beta-D-glucopyranoside inhibitors of SGLT2. ACS Med. Chem. Lett. 2010, 1, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Marcarino, M.O.; Cicetti, S.; Zanardi, M.M.; Sarotti, A.M. A critical review on the use of DP4+ in the structural elucidation of natural products: The good, the bad and the ugly. A practical guide. Nat. Prod. Rep. 2022, 39, 58–76. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.L.P.; De Albuquerque, A.C.F.; Fiorot, R.G.; Lião, L.M.; Martorano, L.H.; Mota, G.V.S.; Valverde, A.L.; Carneiro, J.W.M.; Dos Santos Junior, F.M. Structural characterisation of natural products by means of quantum chemical calculations of NMR parameters: New insights. Org. Chem. Front. 2021, 8, 2019–2058. [Google Scholar] [CrossRef]
- Le Bozec, L.; Moody, C.J. Naturally occurring nitrogen-sulfur compounds. The benzothiazole alkaloids. Aust. J. Chem. 2009, 62, 639–647. [Google Scholar] [CrossRef]
- Muramoto, H.; Fukuda, K.; Hasegawa, T.; Okamoto, K.; Kotani, T. Preparation of Hypolipemic Aroylbenzothiazoles. European Patent Organization. Patent EP735029, 28 March 1996. [Google Scholar]
- Tonks, N.; Gauss, C.M.; Venkataramani, P.; Joshua-Tor, L.; Elkayam, E.; Abed, Y.A.; Cheng, K.F.; Altiti, A.; Orfi, L.; Szabadkai, I.; et al. Preparation of Substituted Dioxolobenzothiazoles and Benzothiazoles as Inhibitors of DYRK and PIM. World Intellectual Property Organization. Patent WO2022159436, 28 July 2022. [Google Scholar]
- Nakabayashi, R.; Saito, K. Integrated metabolomics for abiotic stress responses in plants. Curr. Opin. Plant Biol. 2015, 24, 10–16. [Google Scholar] [CrossRef]
- Yeshi, K.; Crayn, D.; Ritmejerytė, E.; Wangchuk, P. Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 2022, 27, 313. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B.S. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Li, W.; Dai, X.; Pu, E.; Bian, H.; Chen, Z.; Zhang, X.; Guo, Z.; Li, P.; Li, H.; Yong, Y.; et al. HLB-MCX-based solid-phase extraction combined with liquid chromatography-tandem mass spectrometry for the simultaneous determination of four agricultural antibiotics (Kasugamycin, Validamycin A, Ningnanmycin, and Polyoxin B) residues in plant-origin foods. J. Agric. Food Chem. 2020, 68, 14025–14037. [Google Scholar] [CrossRef]
- Becke, A.D.; Johnson, E.R. A density-functional model of the dispersion interaction. J. Chem. Phys. 2005, 123, 154101. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Ma, R.; Yang, L.; Bai, X.; Li, J.; Yuan, M.; Wang, Y.; Xie, Y.; Hu, J.; Zhou, J. Phenolic constituents with antioxidative, tyrosinase inhibitory and anti-aging activities from Dendrobium loddigesii rolfe. Nat. Prod. Bioprospect. 2019, 9, 329–336. [Google Scholar] [CrossRef]
- Yang, M.L.; Ma, Y.L.; Wang, Z.Y.; Khan, A.; Zhou, W.B.; Zhao, T.R.; Cao, J.X.; Cheng, G.G.; Cai, S.B. Phenolic constituents, antioxidant and cytoprotective activities of crude extract and fractions from cultivated artichoke inflorescence. Ind. Crops Prod. 2020, 143, 111433. [Google Scholar] [CrossRef]
Position | δH (J in Hz) a | δC | 1H-1H COSY b | HMBC | ROESY |
---|---|---|---|---|---|
2 | |||||
3 | 165.1 | ||||
4 | 187.6 | ||||
5 | 108.0 | ||||
6 | 157.1 | ||||
7 | 6.12, br s | 94.0 | 5, 6, 8, 9 | 1‴, 8-OH | |
8 | 160.5 | ||||
8-OH | 9.79, s | 7, 8, 9 | 7, 9 | ||
9 | 6.05, br s | 96.5 | 5, 7, 8, 10 | 8-OH, 10-OH | |
10 | 157.3 | ||||
10-OH | 9.71, br s | 5, 9, 10 | 9 | ||
1′ | 146.1 | ||||
2′ | 122.7 | ||||
3′ | 137.7 | ||||
4′ | 139.7 | ||||
4′-OH | 9.38, s | 3′, 4′, 5′ | 5′-OH, 1″ | ||
5′ | 147.9 | ||||
5′-OH | 9.77, s | 4′, 5′, 6′ | 4′-OH, 6′ | ||
6′ | 7.25, s | 106.1 | 1′, 2′, 4′, 5′ | 5′-OH | |
1″ | 4.80, d (7.8) | 105.4 | 2″ | 3′, 3″, 5″ | 3″, 5″, 4′-OH |
2″ | 3.35, t (7.9) | 73.6 | 1″, 3″ | 1″, 3″ | 4″ |
3″ | 3.27, t (7.6) | 75.9 | 2″, 4″ | 2″, 4″ | 1″ |
4″ | 3.26 | 69.3 | 3″, 5″ | 3″, 6″ | 2″, 6″ |
5″ | 3.24 | 77.3 | 4″, 6″ | 1″ | 1″ |
6″ | 3.68, br d (10.7) | 60.5 | 5″ | 4″, 5″ | 4″ |
3.55, dd (11.6, 4.3) | 4″, 5″ | 4″ | |||
1‴ | 4.75, d (7.8) | 100.5 | 2‴ | 6, 3‴, 5‴ | 7, 3‴, 5‴ |
2‴ | 2.93, t (8.2) | 73.1 | 1‴, 3‴ | 1‴, 3‴ | 4‴ |
3‴ | 3.17, t (8.9) | 76.5 | 2‴, 4‴ | 2‴, 4‴ | 1‴ |
4‴ | 3.06, t (9.2) | 69.4 | 3‴, 5‴ | 3‴, 6‴ | 2‴, 6‴ |
5‴ | 3.22 | 77.0 | 4‴, 6‴ | 1‴ | 1‴ |
6‴ | 3.64, br d (10.4) 3.43, dd (11.7, 5.3) | 60.6 | 5‴ | 4‴, 5‴ 4‴, 5‴ | 4‴ 4‴ |
Compounds | DPPH (IC50 μM) a | ABTS+ (IC50 μM) a | FRAP a,b |
---|---|---|---|
ABS | 10.28 ± 0.15 | 38.88 ± 0.39 | 314.61 ± 4.88 |
ABS-D | 28.30 ± 0.34 | 19.63 ± 0.09 | 218.36 ± 1.96 |
Ascorbic acid c | 34.64 ± 0.21 | 46.26 ± 0.20 | 91.18 ± 2.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Yu, C.; Li, Q.; Peng, L.; Chun, C.; Tang, X.; Liu, S.; Hu, C.; Ling, L. A Rare Benzothiazole Glucoside as a Derivative of ‘Albedo Bluing’ Substance in Citrus Fruit and Its Antioxidant Activity. Molecules 2024, 29, 302. https://doi.org/10.3390/molecules29020302
Yang C, Yu C, Li Q, Peng L, Chun C, Tang X, Liu S, Hu C, Ling L. A Rare Benzothiazole Glucoside as a Derivative of ‘Albedo Bluing’ Substance in Citrus Fruit and Its Antioxidant Activity. Molecules. 2024; 29(2):302. https://doi.org/10.3390/molecules29020302
Chicago/Turabian StyleYang, Chao, Chuanxiu Yu, Qiang Li, Liangzhi Peng, Changpin Chun, Xiaolong Tang, Song Liu, Chengbo Hu, and Lili Ling. 2024. "A Rare Benzothiazole Glucoside as a Derivative of ‘Albedo Bluing’ Substance in Citrus Fruit and Its Antioxidant Activity" Molecules 29, no. 2: 302. https://doi.org/10.3390/molecules29020302
APA StyleYang, C., Yu, C., Li, Q., Peng, L., Chun, C., Tang, X., Liu, S., Hu, C., & Ling, L. (2024). A Rare Benzothiazole Glucoside as a Derivative of ‘Albedo Bluing’ Substance in Citrus Fruit and Its Antioxidant Activity. Molecules, 29(2), 302. https://doi.org/10.3390/molecules29020302