Garlic Peel-Based Biochar Prepared under Weak Carbonation Conditions for Efficient Removal of Methylene Blue from Wastewater
Abstract
:1. Introduction
2. Results and Discussions
2.1. SEM
2.2. FT-IR Spectroscopy
2.3. XPS
2.4. N2 Adsorption/Desorption Isotherms
2.5. Adsorption Performances
2.6. Effect of Adsorption Conditions
2.6.1. Effect of Contact Time and Adsorption Kinetics
2.6.2. Effect of Initial MB Concentration and Contact Temperature
2.6.3. Adsorption Isotherms
2.6.4. Adsorption Thermodynamics
2.7. Effect of pH
2.8. Adsorption of MB in Real Samples
2.9. Reusability of GP150
2.10. Adsorption Mechanisms
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of GP-Based Adsorbents
3.3. Characterization of the Materials
3.4. Adsorption Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.-d.; Lin, Y.C.; Ho, S.H.; Zhou, Y.; Ren, N.Q. Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresour. Technol. 2018, 259, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Xing, Y.; Qin, X.; Li, X.; Liu, S.; Luo, X.; Huang, Q.; Chen, W. A manganese-oxidizing bacterial consortium and its biogenic Mn oxides for dye decolorization and heavy metal adsorption. Chemosphere 2020, 253, 126627. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Ju, B.; Tang, B.; Ma, W.; Niu, W.; Zhang, S. Residue-free and recyclable starch-based flocculants for dye wastewater flocculation. Langmuir 2024, 40, 3231–3240. [Google Scholar] [CrossRef] [PubMed]
- Uddin, J.; Abdur, R.; Hossain, M.R.; Aziz, S.; Jamal, M.S.; Shaikh, M.A.A.; Hossain, M. Phase tunable nickel doped Mn3O4 nanoparticle synthesis by chemical precipitation: Kinetic study on dye degradation. Nanoscale Adv. 2024, 6, 902–909. [Google Scholar] [CrossRef]
- Kokuloku, L.T.; Miensah, E.D.; Gu, A.; Chen, K.; Wang, P.; Gong, C.; Jiao, Y.; Chen, K.; Yang, Y. A comparative adsorption study of activated carbon and Fe-modified activated carbon for trinitrotoluene removal. J. Taiwan Inst. Chem. Eng. 2024, 161, 105519. [Google Scholar] [CrossRef]
- Lonappan, L.; Rouissi, T.; Das, R.K.; Brar, S.K.; Ramirez, A.A.; Verma, M.; Surampalli, R.Y.; Valero, J.R. Adsorption of methylene blue on biochar microparticles derived from different waste materials. Waste Manag. 2016, 49, 537–544. [Google Scholar] [CrossRef]
- Jin, S.-R.; Cho, B.-G.; Mun, S.-B.; Kim, S.-J.; Cho, C.-W. Investigation of the adsorption affinity of organic micropollutants on seaweed and its QSAR study. Environ. Res. 2023, 232, 116349. [Google Scholar] [CrossRef]
- Shanmuganathan, R.; Nguyen, N.D.; Devanesan, S.; AlSalhi, M.S.; Liu, X.; Fathima, H.A. The oils adsorption potential of heat and sulfuric acid treated Chrysopogon zizanioides biomass through in-vitro approach. J. Taiwan Inst. Chem. Eng. 2023, in press. [Google Scholar] [CrossRef]
- Vyavahare, G.; Jadhav, P.; Jadhav, J.; Patil, R.; Aware, C.; Patil, D.; Gophane, A.; Yang, Y.-H.; Gurav, R. Strategies for crystal violet dye sorption on biochar derived from mango leaves and evaluation of residual dye toxicity. J. Clean. Prod. 2019, 207, 296–305. [Google Scholar] [CrossRef]
- Sewu, D.D.; Boakye, P.; Woo, S.H. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste. Bioresour. Technol. 2017, 224, 206–213. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Huo, T.-R.; Wang, Y.; Bai, J.-W.; Huang, P.-P.; Li, C.; Deng, S.-Y.; Mei, H.; Qian, J.; Zhang, X.-C.; et al. Constructing mesoporous biochar derived from waste carton: Improving multi-site adsorption of dye wastewater and investigating mechanism. Environ. Res. 2024, 242, 117775. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhu, W.; Chen, F.; Song, Y.; Yu, Y.; Zhuang, H. Modified biochar prepared from retinervus luffae fructus for dyes adsorption and aerobic sludge granulation. Chemosphere 2023, 322, 138088. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Weng, Y.; Zhuang, J.; Pei, H.; Wu, B.; Wu, W.; Yang, J.; Wang, B.; Huang, T. Enhanced adsorption capacity of antibiotics by calamus-biochar with phosphoric acid modification: Performance assessment and mechanism analysis. J. Taiwan Inst. Chem. Eng. 2024, 161, 105541. [Google Scholar] [CrossRef]
- Pulikkal, A.K.; Laskar, N.; Anjudikkal, J. Effective adsorption of polycyclic aromatic congo red dye by modified garlic peel. J. Dispers. Sci. Technol. 2024, 45, 799–809. [Google Scholar] [CrossRef]
- Hameed, B.H.; Ahmad, A.A. Batch adsorption of methylene blue from aqueous solution by garlic peel. an agricultural waste biomass. J. Hazard. Mater. 2009, 164, 870–875. [Google Scholar] [CrossRef]
- Asfaram, A.; Fathi, M.R.; Khodadoust, S.; Naraki, M. Removal of direct red 12B by garlic peel as a cheap adsorbent: Kinetics, thermodynamic and equilibrium isotherms study of removal. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 127, 415–421. [Google Scholar] [CrossRef]
- Meng, F.; Yu, J.; Tahmasebi, A.; Han, Y.; Zhao, H.; Lucas, J.; Wall, T. Characteristics of chars from low-temperature pyrolysis of lignite. Energy Fuels 2014, 28, 275–284. [Google Scholar] [CrossRef]
- Chiappero, M.; Berruti, F.; Masek, O.; Fiore, S. Analysis of the influence of activated biochar properties on methane production from anaerobic digestion of waste activated sludge. Biomass Bioenergy 2021, 150, 106129. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, J.; Ruan, J. A novel technology of vacuum low-temperature pyrolysis with NVZI for the high-efficiency debromination of resin particles from waste printed circuit boards. Resour. Conserv. Recycl. 2023, 188, 106711. [Google Scholar] [CrossRef]
- Li, J.; Duan, H.; Yu, K.; Liu, L.; Wang, S. Characteristic of low-temperature pyrolysis of printed circuit boards subjected to various atmosphere. Resour. Conserv. Recycl. 2010, 54, 810–815. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, X.; Zhou, Y.; Li, F.; Liu, W.; Huang, Y.; Zhang, H.; Ma, J.; Hu, G. Tri-functional lanthanum-based biochar for efficient phosphorus recovery, bacterial inhibition, and soil fertility enhancement. Biochar 2023, 5, 16. [Google Scholar] [CrossRef]
- Raaj, E.P.; Bhuvaneshwari, K.; Lakshmipathy, R.; Devi, V.V.; Rico, I.L.R. Garlic peel surface modification and fixed-bed column investigations towards crystal violet dye. Adsorpt. Sci. Technol. 2022, 2022, 6904842. [Google Scholar] [CrossRef]
- Kushwaha, R.; Singh, R.S.; Mohan, D. Comparative study for sorption of arsenic on peanut shell biochar and modified peanut shell biochar. Bioresour. Technol. 2023, 375, 128831. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, H.; Zhang, Y.; Lichtfouse, E. Efficient phosphate recycling by adsorption on alkaline sludge biochar. Environ. Chem. Lett. 2023, 21, 21–30. [Google Scholar] [CrossRef]
- Liu, W.; Ren, D.; Wu, J.; Wang, Z.; Zhang, S.; Zhang, X.; Gong, X. Adsorption behavior of 2,4-DCP by rice straw biochar modified with CTAB. Environ. Technol. 2021, 42, 3797–3806. [Google Scholar] [CrossRef] [PubMed]
- Gurav, R.; Bhatia, S.K.; Choi, T.-R.; Choi, Y.-K.; Kim, H.J.; Song, H.-S.; Lee, S.M.; Park, S.L.; Lee, H.S.; Koh, J.; et al. Application of macroalgal biomass derived biochar and bioelectrochemical system with shewanella for the adsorptive removal and biodegradation of toxic azo dye. Chemosphere 2021, 264, 128539. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Jiang, H.; Lin, T.; Chang, X.; Jiang, B. Fabrication of MIL-53(Al) based composites from biomass activated carbon (AC) for efficient p-nitrophenol adsorption from aqueous solution. J. Taiwan Inst. Chem. Eng. 2021, 127, 220–227. [Google Scholar] [CrossRef]
- Yang, L.; Bao, L.; Dong, T.; Xie, H.; Wang, X.; Wang, H.; Wu, J.; Hao, C. Adsorption properties of cellulose/guar gum/biochar composite hydrogel for Cu2+, Co2+ and methylene blue. Int. J. Biol. Macromol. 2023, 242, 125021. [Google Scholar] [CrossRef]
- Chellappan, S.; Kallingal, A.; Vandana, S.; Nair, V.; Chinglenthoiba, C. Methyl orange dye adsorbed biochar as a potential Brønsted acid catalyst for microwave-assisted biodiesel production. Environ. Sci. Pollut. Res. 2023, 30, 125158–125164. [Google Scholar] [CrossRef]
- Li, H.; Kong, J.; Zhang, H.; Gao, J.; Fang, Y.; Shi, J.; Ge, T.; Fang, T.; Shi, Y.; Zhang, R.; et al. Mechanisms and adsorption capacities of ball milled biomass fly ash/biochar composites for the adsorption of methylene blue dye from aqueous solution. J. Water Process Eng. 2023, 53, 103713. [Google Scholar] [CrossRef]
- Zeng, H.; Qi, W.; Zhai, L.; Wang, F.; Zhang, J.; Li, D. Magnetic biochar synthesized with waterworks sludge and sewage sludge and its potential for methylene blue removal. J. Environ. Chem. Eng. 2021, 9, 105951. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, B.; Liu, Q.; Wu, C.; Li, Z. Preparation of porous biochar from heavy bio-oil for adsorption of methylene blue in wastewater. Fuel Process. Technol. 2022, 238, 107485. [Google Scholar] [CrossRef]
- Wu, T.; Yang, G.; Cao, J.; Xu, Z.; Jiang, X. Activation and adsorption mechanisms of methylene blue removal by porous biochar adsorbent derived from eggshell membrane. Chem. Eng. Res. Des. 2022, 188, 330–341. [Google Scholar] [CrossRef]
- Choi, Y.-K.; Kan, E. Effects of pyrolysis temperature on the physicochemical properties of alfalfa-derived biochar for the adsorption of bisphenol A and sulfamethoxazole in water. Chemosphere 2019, 218, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, X.; Zhou, J.; Peng, Z.; Shen, L.; Li, W. Insights of the adsorption mechanism of methylene blue on biochar from phytoextraction residues of Citrus aurantium L.: Adsorption model and DFT calculations. J. Environ. Chem. Eng. 2023, 11, 110496. [Google Scholar] [CrossRef]
- Saeed, A.A.H.; Harun, N.Y.; Sufian, S.; Siyal, A.A.; Zulfiqar, M.; Bilad, M.R.; Vagananthan, A.; Al-Fakih, A.; Ghaleb, A.A.S.; Almahbashi, N. Eucheuma cottonii seaweed-based biochar for adsorption of methylene blue dye. Sustainability 2020, 12, 10318. [Google Scholar] [CrossRef]
- Yeo, S.H.; Zaini, M.A.A.; Yunus, M.A.C. Banana pseudo stem- and palm kernel shell-based biochars by microwave for methylene blue adsorption. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 11853–11865. [Google Scholar] [CrossRef]
- Nizam, N.U.M.; Hanafiah, M.M.; Mahmoudi, E.; Mohammad, A.W.; Oyekanmi, A.A. Effective adsorptive removal of dyes and heavy metal using graphene oxide based pre-treated with NaOH/H2SO4 rubber seed shells synthetic graphite precursor: Equilibrium isotherm, kinetics and thermodynamic studies. Sep. Purif. Technol. 2022, 289, 120730. [Google Scholar] [CrossRef]
- Jain, M.; Khan, S.A.; Sahoo, A.; Dubey, P.; Pant, K.K.; Ziora, Z.M.; Blaskovich, M.A.T. Statistical evaluation of cow-dung derived activated biochar for phenol adsorption: Adsorption isotherms, kinetics, and thermodynamic studies. Bioresour. Technol. 2022, 352, 127030. [Google Scholar] [CrossRef]
- Mohammed, N.A.S.; Abu-Zurayk, R.A.; Hamadneh, I.; Al-Dujaili, A.H. Phenol adsorption on biochar prepared from the pine fruit shells: Equilibrium, kinetic and thermodynamics studies. J. Environ. Manag. 2018, 226, 377–385. [Google Scholar] [CrossRef]
- Ho, Y.-S.; Chiu, W.-T.; Wang, C.-C. Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresour. Technol. 2005, 96, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Konicki, W.; Aleksandrzak, M.; Moszyński, D.; Mijowska, E. Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: Equilibrium, kinetic and thermodynamic studies. J. Colloid Interf. Sci. 2017, 496, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.H.; Le, A.H.; Pham, T.H.; Nguyen, D.T.; Chang, S.W.; Chung, W.J.; Nguyen, D.D. Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Sci. Total Environ. 2020, 725, 138325. [Google Scholar] [CrossRef] [PubMed]
- Yahya, C.J.F.B.; Choong, T.S.Y.; Li, F.; Ghani, W.A.W.A.K.; Aziz, F.N.A.A.; Jamil, S.N.A.M. Tailing ssh for the removal of methylene blue from aqueous solutions by batch adsorption. Processes 2023, 11, 2282. [Google Scholar] [CrossRef]
- Santos, K.J.L.D.; de Souza dos Santos, G.E.; de Sá, Í.M.G.L.; de Carvalho, S.H.V.; Soletti, J.I.; Meili, L.; da Silva Duarte, J.L.; Bispo, M.D.; Dotto, G.L. Syagrus oleracea–activated carbon prepared by vacuum pyrolysis for methylene blue adsorption. Environ. Sci. Pollut. Res. 2019, 26, 16470–16481. [Google Scholar] [CrossRef]
- Güleç, F.; Williams, O.; Kostas, E.T.; Samson, A.; Stevens, L.A.; Lester, E. A comprehensive comparative study on methylene blue removal from aqueous solution using biochars produced from rapeseed, whitewood, and seaweed via different thermal conversion technologies. Fuel 2022, 330, 125428. [Google Scholar] [CrossRef]
- Supelano, G.I.; Cuaspud, J.A.G.; Moreno-Aldana, L.C.; Ortiz, C.J.L.; Trujillo, C.A.; Gómez, C.A.P.; Vargas, C.A.P.; Gómez, J.A.M. Synthesis of magnetic zeolites from recycled fly ash for adsorption of methylene blue. Fuel 2020, 263, 116800. [Google Scholar] [CrossRef]
- Işık, B.; Uğraşkan, V. Adsorption of methylene blue on sodium alginate–flax seed ash beads: Isotherm, kinetic and thermodynamic studies. Int. J. Biol. Macromol. 2021, 167, 1156–1167. [Google Scholar] [CrossRef]
- Bentahar, S.; Dbik, A.; Khomri, M.E.; Messaoudi, N.E.; Lacherai, A. Adsorption of methylene blue, crystal violet and congo red from binary and ternary systems with natural clay: Kinetic, isotherm, and thermodynamic. J. Environ. Chem. Eng. 2017, 5, 5921–5932. [Google Scholar] [CrossRef]
- de Araújo, L.F.B.; Mazzetto, S.E.; Lomonaco, D.; Avelino, F. Unraveling the adsorption mechanism of methylene blue onto selective pH precipitated kraft lignins: Kinetic, equilibrium and thermodynamic aspects. Int. J. Biol. Macromol. 2022, 220, 1267–1276. [Google Scholar] [CrossRef]
Kind of Vibrations | Wavenumber (cm−1) | |||||
---|---|---|---|---|---|---|
GP150 | GP200 | GP250 | GP300 | GP350 | GP400 | |
ν (O-H) | 3339.11 | 3339.93 | 3341.32 | 3420.98 | 3421.34 | 3342.41 |
ν(C-H) | 2916.85 | 2896.30 | 2920.12 | 2923.02 | 2923.63 | 2910.37 |
ν (C=O) | 1727.89 | − | − | − | − | − |
ν (C=C) | 1601.21 | 1627.20 | 1624.28 | 1616.50 | 1619.12 | 1619.38 |
Skeletal vibration | − | − | − | 1573.91 | 1560.44 | 1549.27 |
ν (C-O) | 1011.58 | 1026.69 | 1022.45 | 1020.76 | 1010.95 | 1004.06 |
Sample | GP150 | GP150-MB | |||
---|---|---|---|---|---|
Binding Energy (eV) | Binding Energy (eV) | ||||
Element (wt.%) | C | 56.2 | − | 58.4 | − |
N | 0.8 | − | 1.1 | − | |
O | 42.9 | − | 40.3 | − | |
S | 0.2 | − | 0.3 | − | |
C | C=O | 20.62 | 298.81 | 14.86 | 288.10 |
C-O/C-N | 15.71 | 288.18 | 55.55 | 286.63 | |
C-C | 51.06 | 286.60 | 17.72 | 285.11 | |
C=C | 12.61 | 285.09 | 11.88 | 284.47 | |
O | C-O | 31.94 | 535.85 | 27.95 | 533.61 |
O=C | 36.06 | 533.37 | 40.95 | 532.94 | |
H-O | 32.00 | 532.52 | 31.46 | 532.22 |
Adsorbent | Activated Method/Activator | Adsorbent Dosage | C0 (mg L−1) | qmax (mg g−1) | Ref. |
---|---|---|---|---|---|
Heavy bio-oil | Furnace (800 °C, N2) | 0.1 g/0.05 L | 1000 | 411 | [32] |
Eggshell membranes | KOH and HNO3/Furnace (200 °C, N2) | 0.025 g/0.02 L | 100 | 110.38 | [33] |
Rice straw | Toxicity characteristic leaching procedure/Furnace (500 °C, N2) | 1.0 g/1.0 L | 1000 | 51.34 | [34] |
Cardboard waste | Pyrolysis technique (INRS—ETE (Quebec (Qc), Canada)) | 0.5 g/0.05 L | 50 | 16.30 | [6] |
Fructus Aurantii Immaturus residues | NaOH/Furnace (750 °C, N2) | 0.02 g/0.025 L | 400 | 298.90 | [35] |
Eucheuma cottonii seaweed | Electric oven/H2SO4 (70 °C 48 h) | 0.3 g/1.0 L | 200 | 133.33 | [36] |
Banana pseudostem | Microwave (0.8 kW 20 min) | 1.0 g/0.03 L | 1000 | 165.5 | [37] |
GP150 | Vacuum tube furnace (150 °C) | 0.005 g/0.02 L | 50 | 167.74 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, T.-T.; Yang, B.; Hu, W.-G.; Gao, G.-J.; Jiang, X.-Y.; Yu, J.-G. Garlic Peel-Based Biochar Prepared under Weak Carbonation Conditions for Efficient Removal of Methylene Blue from Wastewater. Molecules 2024, 29, 4772. https://doi.org/10.3390/molecules29194772
Shi T-T, Yang B, Hu W-G, Gao G-J, Jiang X-Y, Yu J-G. Garlic Peel-Based Biochar Prepared under Weak Carbonation Conditions for Efficient Removal of Methylene Blue from Wastewater. Molecules. 2024; 29(19):4772. https://doi.org/10.3390/molecules29194772
Chicago/Turabian StyleShi, Tao-Tao, Bi Yang, Wei-Guo Hu, Guan-Jin Gao, Xin-Yu Jiang, and Jin-Gang Yu. 2024. "Garlic Peel-Based Biochar Prepared under Weak Carbonation Conditions for Efficient Removal of Methylene Blue from Wastewater" Molecules 29, no. 19: 4772. https://doi.org/10.3390/molecules29194772
APA StyleShi, T. -T., Yang, B., Hu, W. -G., Gao, G. -J., Jiang, X. -Y., & Yu, J. -G. (2024). Garlic Peel-Based Biochar Prepared under Weak Carbonation Conditions for Efficient Removal of Methylene Blue from Wastewater. Molecules, 29(19), 4772. https://doi.org/10.3390/molecules29194772