Chiral Sodium Glycerophosphate Catalyst for Enantioselective Michael Reactions of Chalcones
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Catalyst 2 in Michael Reactions: Typical Procedure and Synthesis of (R)(-)-dimethyl 2-(3-oxo-1,3-diphenylpropyl)malonate (6a)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akiyama, T.; Ojima, I. Catalytic Asymmetric Synthesis, 4th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Aitken, R.A.; Kile, S.N. Asymmetric Synthesis; Springer: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Garg, A.; Rendina, D.; Bendale, H.; Akiyama, T.; Ojima, I. Recent advances in catalytic asymmetric synthesis. Front. Chem. 2024, 12, 1398397. [Google Scholar] [CrossRef] [PubMed]
- Cocco, E.; Antenucci, A.; Carlone, A.; Manini, P.; Pesciaioli, F.; Dughera, S. Stereoselective Reactions Promoted by Alkali Metal Salts of Phosphoric Acid Organocatalysts. ChemCatChem 2024, 16, e202400328. [Google Scholar] [CrossRef]
- Brodt, N.; Niemeyer, J. Chiral organophosphates as ligands in asymmetric metal catalysis. Org. Chem. Front. 2023, 10, 3080–3109. [Google Scholar] [CrossRef]
- Antenucci, A.; Messina, M.; Bertolone, M.; Bella, M.; Carlone, A.; Salvio, R.; Dughera, S. Turning renewable feedstocks into a valuable and efficient chiral phosphate salt catalyst. Asian J. Org. Chem. 2021, 10, 3279–3284. [Google Scholar] [CrossRef]
- Antenucci, A.; Ghigo, G.; Cassetta, D.; Alcibiade, M.; Dughera, S. Design, synthesis and application of C2-symmetric cycloglycerodiphosphate. Adv. Synth. Catal. 2023, 365, 1170–1178. [Google Scholar] [CrossRef]
- Tsogoeva, S.B. Recent Advances in Asymmetric Organocatalytic 1,4-Conjugate Additions. Eur. J. Org. Chem. 2007, 2007, 1701–1716. [Google Scholar] [CrossRef]
- Zheng, K.; Liu, X.; Feng, X. Recent advances in metal-catalyzed asymmetric 1,4-conjugate addition (ACA) of nonorganometallic nucleophiles. Chem. Rev. 2018, 118, 7586–7656. [Google Scholar] [CrossRef]
- Rachwalski, M.; Buchcic-Szychowska, A.; Lesniak, S. Recent advances in selected asymmetric reactions promoted by chiral catalysts: Cyclopropanations, Friedel–Crafts, Mannich, Michael and other zinc-mediated processes. An update. Symmetry 2021, 13, 1762. [Google Scholar] [CrossRef]
- Hayashi, M.; Matsubara, R. Recent topics on catalytic asymmetric 1,4-addition. Tetrahedron Lett. 2017, 58, 1793–1805. [Google Scholar] [CrossRef]
- Yang, J.; Wu, S.; Chen, F.-X. Chiral sodium phosphate catalyzed enantioselective 1,4-addition of TMSCN to aromatic enones. Synlett 2010, 18, 2725–2728. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, Z.; Kaplan, M.J.; Antilla, J.C. Chiral calcium VAPOL phosphate mediated asymmetric chlorination and Michael reactions of 3-Substituted oxindoles. J. Am. Chem. Soc. 2011, 133, 3339–3341. [Google Scholar] [CrossRef] [PubMed]
- Pairault, N.; Zhu, H.; Jansen, D.; Huber, A.; Daniliuc, C.G.; Grimme, S.; Niemeyer, J. Heterobifunctional rotaxanes for asymmetric Catalysis. Angew. Chem. Int. Ed. 2020, 59, 5102–5107. [Google Scholar] [CrossRef] [PubMed]
- Kohler, E.P.; Chadwell, H.M. Benzalacetophenone. Org. Synth. 1922, 2, 1. [Google Scholar] [CrossRef]
- Capreti, N.M.R.; Jurberg, I.D. Michael addition of soft carbon nucleophiles to alkylidene isoxazol-5-ones: A divergent entry to β-branched carbonyl compounds. Org. Lett. 2015, 17, 2490–2493. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, M.; Blay, G.; Cardona, L.; Pedro, J.R. Asymmetric conjugate addition of malonate esters to α,β-unsaturated N-sulfonyl imines: An expeditious route to chiral δ-aminoesters and piperidones. Chem. Eur. J. 2013, 19, 14861–14866. [Google Scholar] [CrossRef]
- Cao, D.; Fang, G.; Zhang, J.; Wang, H.; Zheng, C.; Zhao, G. Enantioselective Michael addition of malonates to chalcone derivatives catalyzed by dipeptide-derived multifunctional phosphonium salts. J. Org. Chem. 2016, 81, 9973–9982. [Google Scholar] [CrossRef]
- Mao, Z.; Jia, Y.; Li, W.; Wang, R. Water-compatible iminium activation: Highly enantioselective organocatalytic Michael addition of malonates to α,β-unsaturated enones. J. Org. Chem. 2010, 75, 7428–7430. [Google Scholar] [CrossRef]
- Kohler, E.P.; Hill, G.A.; Bigelow, L.A. Studies in the cyclopropane series. Third paper. J. Am. Chem. Soc. 1917, 39, 2405–2418. [Google Scholar] [CrossRef]
- De Simone, N.A.; Meninno, S.; Talotta, C.; Gaeta, C.; Neri, P.; Lattanzi, A. Solvent-free enantioselective Michael reactions catalyzed by a calixarene-based primary amine thiourea. J. Org. Chem. 2018, 83, 10318–10325. [Google Scholar] [CrossRef]
- Ueda, A.; Umeno, T.; Doi, M.; Agakawa, K.; Kudo, K.; Tanaka, M. Helical-peptide-catalyzed enantioselective Michael addition reactions and their mechanistic insights. J. Org. Chem. 2016, 81, 6343–6356. [Google Scholar] [CrossRef]
- Dudzinski, K.; Pakulska, A.M.; Kwiatkowski, P. An efficient organocatalytic method for highly enantioselective Michael addition of malonates to enones catalyzed by readily accessible primary amine-thiourea. Org. Lett. 2012, 14, 4222–4225. [Google Scholar] [CrossRef]
- Jiricek, J.; Blechert, S. Enantioselective synthesis of (−)-gilbertine via a cationic cascade cyclization. J. Am. Chem. Soc. 2004, 126, 3534–3538. [Google Scholar] [CrossRef]
- Parr, R.G. Density Functional Theory of Atoms and Molecules. In Horizons Quantum Chem; Springer: Amsterdam, The Netherlands, 1980; pp. 5–15. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 2008, 41, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef]
- Foresman, J.; Frisch, A. Exploring Chemistry with Electronic Structure Methods; Gaussian Inc.: Pittsburgh, PA, USA, 1996; Available online: https://gaussian.com/expchem3/ (accessed on 4 June 2021).
- Ribeiro, R.F.; Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. J. Phys. Chem. B 2011, 115, 14556–14562. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Truhlar, D.G.; Garrett, B.C.; Klippenstein, S.J. Current status of transition-state theory. J. Phys. Chem. 1996, 100, 12771. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Schaftenaar, G.; Noordik, J.H. Molden: A pre- and post-processing program for molecular and electronic structures. J. Comput. Aided. Mol. Des. 2000, 14, 123–134. [Google Scholar] [CrossRef]
Entry | Catalyst 2 (mmol%) | Base | Solvent | T (°C) | Time (h) | Yield (%) 1,2 | Ee (%) 3 |
---|---|---|---|---|---|---|---|
1 | - | - | MeOH | rt | 24 | traces | - |
2 | 5 | - | MeOH | rt | 24 | traces | - |
3 | 10 | - | MeOH | rt | 24 | traces | - |
4 | 10 | MeOH | 60 | 24 | traces | - | |
5 | 5 | - | 2-MeTHF | rt | 24 | traces | - |
6 | 10 | - | 2-MeTHF | rt | 24 | traces | - |
7 | 10 | - | 2-MeTHF | 60 | 24 | traces | - |
8 | 5 | - | Toluene | rt | 24 | - | - |
9 | 5 | - | DCM | rt | 24 | - | - |
10 | 5 | - | DMSO | rt | 24 | - | - |
11 | 5 | - | MeCN | rt | 24 | - | - |
12 | 5 | CH3ONa | MeOH | rt | 8 | 52 | 34.3 |
13 | 10 | CH3ONa | MeOH | rt | 6 | 51 | 32.8 |
14 | 5 | CH3ONa | Toluene | rt | 24 | - | - |
15 | 5 | NaH | MeOH | rt | 6 | 55 | 33.1 |
16 | 5 | CH3ONa | 2-MeTHF | rt | 8 | 45 | 34.5 |
17 | 5 | NaH | 2-MeTHF | rt | 3 | 92 | 37.5 |
18 | 5 | NaH | 2-MeTHF | 0 | 5 | 90 | 57.2 |
19 | 5 | NaH | 2-MeTHF | −20 | 8 | 90 | 91.5 |
20 | 5 | NaH | 2-MeTHF | −45 | 8 | 21 | 90.8 |
21 | - | NaH | 2-MeTHF | rt | 3 | 91 | - |
22 | - | NaH | 2-MeTHF | −20 | 8 | 90 | - |
Entry | R in 5,6 | R’ in 5,6 | Time (h) | Yield (%) of 6 1,2 | Ee (%) 3 |
---|---|---|---|---|---|
1 | C6H5 | C6H5 | 8 | 6a; 90 | 91.5 |
2 | C6H5 | 4-NO2C6H4 | 10 | 6b; 87 | 88.9 |
3 | C6H5 | 4-ClC6H4 | 6 | 6c; 89 | 92.9 |
4 | C6H5 | 4-MeC6H4 | 4 | 6d; 92 | 90.0 |
5 | C6H5 | 4-CNC6H4 | 10 | 6e; 92 | 90.3 |
6 | C6H5 | 2-NO2C6H4 | 12 | 6f; 77 | 90.5 |
7 | C6H5 | 3-NO2C6H4 | 8 | 6g; 90 | 89.9 |
8 | C6H5 | Thiophen-2-yl | 6 | 6h; 82 | 89.6 |
9 | C6H5 | Furan-2-yl | 6 | 6i; 77 | 89.3 |
10 | Me | C6H5 | 6 | 6j; 82 | 92.5 |
11 | Me | 2-MeC6H4 | 8 | 6k; 90 | 94.4 |
12 | Me | 3-MeOC6H4 | 6 | 6l; 85 | 88.8 |
13 | C6H5 | Me | 4 | 6m; 87 | 89.5 |
14 | 4-CF3C6H4 | C6H5 | 6 | 6n; 92 | 89.7 |
15 | 2-MeOC6H4 | C6H5 | 6 | 6o; 79 | 87.0 |
16 | 3-MeC6H4 | 4-ClC6H4 | 8 | 6p; 82 | 89.9 |
17 | 3-MeC6H4 | 4-NO2C6H4 | 10 | 6q; 91 | 87.0 |
18 | 4-CF3C6H4 | 4-MeC6H4 | 6 | 6r; 90 | 92.4 |
19 | 4-ClC6H4 | C6H5 | 6 | 6s; 85 | 89.0 |
20 | 4-NO2C6H4 | C6H5 | 6 | 6t; 85 | 90.5 |
21 | Et | Me | 4 | 6u; 85 | 81.8 |
22 | 6 | 6v; 83 | 87.5 | ||
23 | 6 | 6w; 91 | 70.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghigo, G.; Rivella, J.; Robiolio Bose, A.; Dughera, S. Chiral Sodium Glycerophosphate Catalyst for Enantioselective Michael Reactions of Chalcones. Molecules 2024, 29, 4763. https://doi.org/10.3390/molecules29194763
Ghigo G, Rivella J, Robiolio Bose A, Dughera S. Chiral Sodium Glycerophosphate Catalyst for Enantioselective Michael Reactions of Chalcones. Molecules. 2024; 29(19):4763. https://doi.org/10.3390/molecules29194763
Chicago/Turabian StyleGhigo, Giovanni, Julia Rivella, Alessio Robiolio Bose, and Stefano Dughera. 2024. "Chiral Sodium Glycerophosphate Catalyst for Enantioselective Michael Reactions of Chalcones" Molecules 29, no. 19: 4763. https://doi.org/10.3390/molecules29194763
APA StyleGhigo, G., Rivella, J., Robiolio Bose, A., & Dughera, S. (2024). Chiral Sodium Glycerophosphate Catalyst for Enantioselective Michael Reactions of Chalcones. Molecules, 29(19), 4763. https://doi.org/10.3390/molecules29194763