Removal of Pb(II) and Cd(II) from a Monometallic Contaminated Solution by Modified Biochar-Immobilized Bacterial Microspheres
Abstract
:1. Introduction
2. Results and Discussion
2.1. Comparison of Adsorption Effect of Different Adsorbents
2.2. Effect of Initial pH on Adsorption
2.3. Effect of Additive Amount
2.4. Adsorption Kinetics
2.5. Adsorption Isotherms
2.6. Adsorption Thermodynamics
2.7. Post-Adsorption Characterization Results and Adsorption Mechanism Analysis
3. Materials and Methods
3.1. Experimental Materials
3.2. Preparation of CYB-SA
3.3. Batch Experiments
3.3.1. Adsorption Experiments with Different Adsorbents
3.3.2. Adsorption Experiments at Different CYB-SA Addition Amounts and pH Values
3.3.3. The Adsorption Kinetics Model
3.3.4. Adsorption Isotherms and Thermodynamics Model
3.4. Material Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Amen, R.; Bashir, H.; Bibi, I.; Shaheen, S.M.; Niazi, N.K.; Shahid, M.; Hussain, M.M.; Antoniadis, V.; Shakoor, M.B.; Al-Solaimani, S.G.; et al. A Critical Review on Arsenic Removal from Water Using Biochar-Based Sorbents: The Significance of Modification and Redox Reactions. Chem. Eng. J. 2020, 396, 125195. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Guo, S.; Duan, N.; Dan, Z.; Chen, G.; Shi, F.; Gao, W. G-C3N4 Modified Magnetic Fe3O4 Adsorbent: Preparation, Characterization, and Performance of Zn(II), Pb(II) and Cd(II) Removal from Aqueous Solution. J. Mol. Liq. 2018, 258, 225–234. [Google Scholar] [CrossRef]
- Godiya, C.B.; Cheng, X.; Li, D.; Chen, Z.; Lu, X. Carboxymethyl Cellulose/Polyacrylamide Composite Hydrogel for Cascaded Treatment/Reuse of Heavy Metal Ions in Wastewater. J. Hazard. Mater. 2019, 364, 28–38. [Google Scholar] [CrossRef]
- Mohan, D.; Kumar, H.; Sarswat, A.; Alexandre-Franco, M.; Pittman, C.U. Cadmium and Lead Remediation Using Magnetic Oak Wood and Oak Bark Fast Pyrolysis Bio-Chars. Chem. Eng. J. 2014, 236, 513–528. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, X.; Du, R.; Wen, S.; Du, L.; Tu, Q. Adsorption of Cd2+ by Lactobacillus Plantarum Immobilized on Distiller’s Grains Biochar: Mechanism and Action. Microorganisms 2024, 12, 1406. [Google Scholar] [CrossRef]
- Li, S.; Luo, C.; Yan, F.; Yang, Y.; Guo, B.; Wang, L.; Xu, S.; Wu, F.; Ji, P. Remediation of Pb(II) and Cd(II) in Polluted Waters with Calcium Thioglycolate–Modified Straw Biochar. Environ. Pollut. 2023, 338, 122638. [Google Scholar] [CrossRef]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological Trends in Heavy Metals Removal from Industrial Wastewater: A Review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Zeng, W.; Lu, Y.; Zhou, J.; Zhang, J.; Duan, Y.; Dong, C.; Wu, W. Simultaneous Removal of Cd(II) and As(V) by Ferrihydrite-Biochar Composite: Enhanced Effects of As(V) on Cd(II) Adsorption. J. Environ. Sci. 2024, 139, 267–280. [Google Scholar] [CrossRef]
- Li, Q.; Li, T.; Liu, D.; Fu, Q.; Hou, R.; Cui, S. The Effect of Biochar on the Water-Soil Environmental System in Freezing-Thawing Farmland Soil: The Perspective of Complexity. Sci. Total Environ. 2022, 807, 150746. [Google Scholar] [CrossRef]
- Dong, J.; Shen, L.; Shan, S.; Liu, W.; Qi, Z.; Liu, C.; Gao, X. Optimizing Magnetic Functionalization Conditions for Efficient Preparation of Magnetic Biochar and Adsorption of Pb(II) from Aqueous Solution. Sci. Total Environ. 2022, 806, 151442. [Google Scholar] [CrossRef]
- Pant, P.; Pant, S. A Review: Advances in Microbial Remediation of Trichloroethylene (TCE). J. Environ. Sci. 2010, 22, 116–126. [Google Scholar] [CrossRef]
- Castro, C.; Urbieta, M.S.; Plaza Cazón, J.; Donati, E.R. Metal Biorecovery and Bioremediation: Whether or Not Thermophilic Are Better than Mesophilic Microorganisms. Bioresour. Technol. 2019, 279, 317–326. [Google Scholar] [CrossRef]
- Pallavi, P.; Manikandan, S.K.; Nair, V. Optimization and Mechanistic Study on Bioremediation of Cr (VI) Using Microbial Cell Immobilized Sugarcane Bagasse Biochar. J. Water Process Eng. 2024, 58, 104859. [Google Scholar] [CrossRef]
- Wu, Y.; Li, T.; Yang, L. Mechanisms of Removing Pollutants from Aqueous Solutions by Microorganisms and Their Aggregates: A Review. Bioresour. Technol. 2012, 107, 10–18. [Google Scholar] [CrossRef]
- Huang, J.; Tan, X.; Ali, I.; Duan, Z.; Naz, I.; Cao, J.; Ruan, Y.; Wang, Y. More Effective Application of Biochar-Based Immobilization Technology in the Environment: Understanding the Role of Biochar. Sci. Total Environ. 2023, 872, 162021. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Chen, C.-Y.; Guo, W.-Q.; Chang, H.-W.; Chen, W.-M.; Lee, D.-J.; Huang, C.-C.; Ren, N.-Q.; Chang, J.-S. Fixed-Bed Biosorption of Cadmium Using Immobilized Scenedesmus Obliquus CNW-N Cells on Loofa (Luffa Cylindrica) Sponge. Bioresour. Technol. 2014, 160, 175–181. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-Chemical Properties and Microbial Responses in Biochar-Amended Soils: Mechanisms and Future Directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Hu, S.; Liu, C.; Bu, H.; Chen, M.; Fei, Y. Efficient Reduction and Adsorption of Cr(VI) Using FeCl3-Modified Biochar: Synergistic Roles of Persistent Free Radicals and Fe(II). J. Environ. Sci. 2024, 137, 626–638. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Niazi, N.K.; Hassan, N.E.E.; Bibi, I.; Wang, H.; Tsang, D.C.W.; Ok, Y.S.; Bolan, N.; Rinklebe, J. Wood-Based Biochar for the Removal of Potentially Toxic Elements in Water and Wastewater: A Critical Review. Int. Mater. Rev. 2019, 64, 216–247. [Google Scholar] [CrossRef]
- Liu, M.; Wang, S.; Yang, M.; Wu, Y.; Nan, Z. Combined Treatment of Heavy Metals in Water and Soil by Biochar and Manganese-Oxidizing Bacteria. J. Soils Sediments 2023, 23, 145–155. [Google Scholar] [CrossRef]
- Huang, F.; Li, K.; Wu, R.-R.; Yan, Y.-J.; Xiao, R.-B. Insight into the Cd2+ Biosorption by Viable Bacillus Cereus RC-1 Immobilized on Different Biochars: Roles of Bacterial Cell and Biochar Matrix. J. Clean. Prod. 2020, 272, 122743. [Google Scholar] [CrossRef]
- Wang, B.; Wan, Y.; Zheng, Y.; Lee, X.; Liu, T.; Yu, Z.; Huang, J.; Ok, Y.S.; Chen, J.; Gao, B. Alginate-Based Composites for Environmental Applications: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 318–356. [Google Scholar] [CrossRef]
- Xue, J.; Wu, Y.; Shi, K.; Xiao, X.; Gao, Y.; Li, L.; Qiao, Y. Study on the Degradation Performance and Kinetics of Immobilized Cells in Straw-Alginate Beads in Marine Environment. Bioresour. Technol. 2019, 280, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dai, L.; Zhang, C.; Zeng, G.; Liu, Y.; Zhou, C.; Xu, W.; Wu, Y.; Tang, X.; Liu, W.; et al. Enhanced Biological Stabilization of Heavy Metals in Sediment Using Immobilized Sulfate Reducing Bacteria Beads with Inner Cohesive Nutrient. J. Hazard. Mater. 2017, 324, 340–347. [Google Scholar] [CrossRef]
- Wu, C.; Zhi, D.; Yao, B.; Zhou, Y.; Yang, Y.; Zhou, Y. Immobilization of Microbes on Biochar for Water and Soil Remediation: A Review. Environ. Res. 2022, 212, 113226. [Google Scholar] [CrossRef]
- Schommer, V.A.; Vanin, A.P.; Nazari, M.T.; Ferrari, V.; Dettmer, A.; Colla, L.M.; Piccin, J.S. Biochar-Immobilized Bacillus spp. for Heavy Metals Bioremediation: A Review on Immobilization Techniques, Bioremediation Mechanisms and Effects on Soil. Sci. Total Environ. 2023, 881, 163385. [Google Scholar] [CrossRef]
- Deng, M.; Li, K.; Yan, Y.-J.; Huang, F.; Peng, D. Enhanced Cadmium Removal by Growing Bacillus Cereus RC-1 Immobilized on Different Magnetic Biochars through Simultaneous Adsorption and Bioaccumulation. Environ. Sci. Pollut. Res. 2022, 29, 18495. [Google Scholar] [CrossRef]
- Huang, S.-W.; Chen, X.; Wang, D.-D.; Jia, H.-L.; Wu, L. Bio-Reduction and Synchronous Removal of Hexavalent Chromium from Aqueous Solutions Using Novel Microbial Cell/Algal-Derived Biochar Particles: Turning an Environmental Problem into an Opportunity. Bioresour. Technol. 2020, 309, 123304. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, X.; Jiang, Y.; Ding, C.; Liu, J.; Zhu, C. Synergistic Remediation of Lead Pollution by Biochar Combined with Phosphate Solubilizing Bacteria. Sci. Total Environ. 2023, 861, 160649. [Google Scholar] [CrossRef]
- Teng, Z.; Shao, W.; Zhang, K.; Yu, F.; Huo, Y.; Li, M. Enhanced Passivation of Lead with Immobilized Phosphate Solubilizing Bacteria Beads Loaded with Biochar/ Nanoscale Zero Valent Iron Composite. J. Hazard. Mater. 2020, 384, 121505. [Google Scholar] [CrossRef] [PubMed]
- Rajput, S.; Pittman, C.U.; Mohan, D. Magnetic Magnetite (Fe3O4) Nanoparticle Synthesis and Applications for Lead (Pb2+) and Chromium (Cr6+) Removal from Water. J. Colloid Interface Sci. 2016, 468, 334–346. [Google Scholar] [CrossRef]
- Wu, Z.; Firmin, K.A.; Cheng, M.; Wu, H.; Si, Y. Biochar Enhanced Cd and Pb Immobilization by Sulfate-Reducing Bacterium Isolated from Acid Mine Drainage Environment. J. Clean. Prod. 2022, 366, 132823. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, Q.; Yan, T.; Jia, X.; Lu, D.; Ren, Y.; He, J. Enhanced Removal Efficiency of Cd2+ and Pb2+ from Aqueous Solution by H3PO4–Modified Tea Branch Biochar: Characterization, Adsorption Performance and Mechanism. J. Environ. Chem. Eng. 2024, 12, 112183. [Google Scholar] [CrossRef]
- Feng, Z.; Chen, N.; Liu, T.; Feng, C. KHCO3 Activated Biochar Supporting MgO for Pb(II) and Cd(II) Adsorption from Water: Experimental Study and DFT Calculation Analysis. J. Hazard. Mater. 2022, 426, 128059. [Google Scholar] [CrossRef]
- Wang, R.-Z.; Huang, D.-L.; Liu, Y.-G.; Zhang, C.; Lai, C.; Zeng, G.-M.; Cheng, M.; Gong, X.-M.; Wan, J.; Luo, H. Investigating the Adsorption Behavior and the Relative Distribution of Cd2+ Sorption Mechanisms on Biochars by Different Feedstock. Bioresour. Technol. 2018, 261, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Zhang, H.; Li, Y.; Zhang, Z.; Zhang, W. Recycling Spent Lithium-Ion Battery as Adsorbents to Remove Aqueous Heavy Metals: Adsorption Kinetics, Isotherms, and Regeneration Assessment. Resour. Conserv. Recycl. 2020, 156, 104688. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H. Pb(II) Sorption from Aqueous Solution by Novel Biochar Loaded with Nano-Particles. Chemosphere 2018, 192, 1–4. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, C.; Feng, Q.; Lee, X.; Zhang, X.; Wang, S.; Chen, M. Biochar Supported Nanoscale Zerovalent Iron-Calcium Alginate Composite for Simultaneous Removal of Mn(II) and Cr(VI) from Wastewater: Sorption Performance and Mechanisms. Environ. Pollut. 2024, 343, 123148. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, R.; Liu, H.; Li, M.; Chen, T.; Chen, D.; Zou, X.; Frost, R.L. Green Preparation of Magnetic Biochar for the Effective Accumulation of Pb(II): Performance and Mechanism. Chem. Eng. J. 2019, 375, 122011. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Wang, Y.; Brookes, P.C.; Wang, F.; Zhang, Q.; Xu, J.; Liu, X. Performance and Mechanisms for Remediation of Cd(II) and As(III) Co-Contamination by Magnetic Biochar-Microbe Biochemical Composite: Competition and Synergy Effects. Sci. Total Environ. 2021, 750, 141672. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, J.; Yuan, Y.; Song, H.; Liu, Y.; Wang, S.; Tao, Y.; Zhao, Y.; Li, Z. Simultaneous Scavenging of Cd(II) and Pb(II) from Water by Sulfide-Modified Magnetic Pinecone-Derived Hydrochar. J. Clean. Prod. 2022, 341, 130758. [Google Scholar] [CrossRef]
- Ji, Y.; Zheng, N.; An, Q.; Sun, S.; Wang, S.; Li, X.; Li, P.; Hua, X.; Dong, D.; Zhao, C.; et al. The Effect of Carbonization Temperature on the Capacity and Mechanisms of Cd(II)-Pb(II) Mix-Ions Adsorption by Wood Ear Mushroom Sticks Derived Biochar. Ecotoxicol. Environ. Saf. 2022, 239, 113646. [Google Scholar] [CrossRef]
- Liu, X.; Li, D.; Li, J.; Wang, J.; Liang, S.; Deng, H. A Novel MnOx-Impregnated on Peanut Shells Derived Biochar for High Adsorption Performance of Pb(II) and Cd(II): Behavior and Mechanism. Surf. Interfaces 2022, 34, 102323. [Google Scholar] [CrossRef]
- Zhang, N.; Reguyal, F.; Praneeth, S.; Sarmah, A.K. A Novel Green Synthesized Magnetic Biochar from White Tea Residue for the Removal of Pb(II) and Cd(II) from Aqueous Solution: Regeneration and Sorption Mechanism. Environ. Pollut. 2023, 330, 121806. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, B.; Wu, P.; Feng, Q.; Chen, M.; Zhang, X.; Wang, S. Calcium Alginate-nZVI-Biochar for Removal of Pb/Zn/Cd in Water: Insights into Governing Mechanisms and Performance. Sci. Total Environ. 2023, 894, 164810. [Google Scholar] [CrossRef]
- Wang, D.; Chen, H.; Xin, C.; Yuan, Y.; Sun, Q.; Cao, C.; Chao, H.; Wu, T.; Zheng, S. Insight into Adsorption of Pb(II) with Wild Resistant Bacteria TJ6 Immobilized on Biochar Composite: Roles of Bacterial Cell and Biochar. Sep. Purif. Technol. 2024, 331, 125660. [Google Scholar] [CrossRef]
- Liu, X.-J.; Li, M.-F.; Ma, J.-F.; Bian, J.; Peng, F. Chitosan Crosslinked Composite Based on Corncob Lignin Biochar to Adsorb Methylene Blue: Kinetics, Isotherm, and Thermodynamics. Colloids Surf. Physicochem. Eng. Asp. 2022, 642, 128621. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Wang, S.; Guo, S. Different Biochars as Microbial Immobilization Substrates for Efficient Copper II Removal. Spectrosc. Lett. 2020, 53, 712–725. [Google Scholar] [CrossRef]
- Özçimen, D.; Ersoy-Meriçboyu, A. Characterization of Biochar and Bio-Oil Samples Obtained from Carbonization of Various Biomass Materials. Renew. Energy 2010, 35, 1319–1324. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, D.; Zhu, L. Transitional Adsorption and Partition of Nonpolar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures. Environ. Sci. Technol. 2008, 42, 5137–5143. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Chen, B.; Zhu, L. Transformation, Morphology, and Dissolution of Silicon and Carbon in Rice Straw-Derived Biochars under Different Pyrolytic Temperatures. Environ. Sci. Technol. 2014, 48, 3411–3419. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative Distribution of Pb2+ Sorption Mechanisms by Sludge-Derived Biochar. Water Res. 2012, 46, 854–862. [Google Scholar] [CrossRef]
- Yang, H.; Irudayaraj, J. Comparison of Near-infrared, Fourier Transform-infrared, and Fourier Transform-raman Methods for Determining Olive Pomace Oil Adulteration in Extra Virgin Olive Oil. J. Am. Oil Chem. Soc. 2001, 78, 889. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Zhang, H.; Liu, Y.; Xing, B. Adsorption of Pb(II) and Cd(II) by Magnetic Activated Carbon and Its Mechanism. Sci. Total Environ. 2021, 757, 143910. [Google Scholar] [CrossRef]
- Tran, H.N.; Chao, H.-P. Adsorption and Desorption of Potentially Toxic Metals on Modified Biosorbents through New Green Grafting Process. Environ. Sci. Pollut. Res. 2018, 25, 12808–12820. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, G.; Calvo, M.; Sonia Freire, M.; González-Alvarez, J.; Antorrena, G. Chestnut Shell as Heavy Metal Adsorbent: Optimization Study of Lead, Copper and Zinc Cations Removal. J. Hazard. Mater. 2009, 172, 1402–1414. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, J.; Yang, Y.; Yu, Y.; Wu, D. Experimental and Theoretical Studies on the Adsorption Performance of Lead by Thermal Pre-Activation and Phosphate Modified Kaolin Sorbent. Chem. Eng. J. 2023, 451, 138762. [Google Scholar] [CrossRef]
- Fan, J.; Cai, C.; Chi, H.; Reid, B.J.; Coulon, F.; Zhang, Y.; Hou, Y. Remediation of Cadmium and Lead Polluted Soil Using Thiol-Modified Biochar. J. Hazard. Mater. 2020, 388, 122037. [Google Scholar] [CrossRef]
- Sun, D.; Li, F.; Jin, J.; Khan, S.; Eltohamy, K.M.; He, M.; Liang, X. Qualitative and Quantitative Investigation on Adsorption Mechanisms of Cd(II) on Modified Biochar Derived from Co-Pyrolysis of Straw and Sodium Phytate. Sci. Total Environ. 2022, 829, 154599. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Wnętrzak, R.; Leahy, J.J.; Hayes, M.H.B.; Kwapiński, W.; Hubicki, Z. Kinetic and Adsorptive Characterization of Biochar in Metal Ions Removal. Chem. Eng. J. 2012, 197, 295–305. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Chao, H.-P. Thermodynamic Parameters of Cadmium Adsorption onto Orange Peel Calculated from Various Methods: A Comparison Study. J. Environ. Chem. Eng. 2016, 4, 2671–2682. [Google Scholar] [CrossRef]
- Milonjic, S. A Consideration of the Correct Calculation of Thermodynamic Parameters of Adsorption. J. Serbian Chem. Soc. 2007, 72, 1363–1367. [Google Scholar] [CrossRef]
- Salvestrini, S.; Leone, V.; Iovino, P.; Canzano, S.; Capasso, S. Considerations about the Correct Evaluation of Sorption Thermodynamic Parameters from Equilibrium Isotherms. J. Chem. Thermodyn. 2014, 68, 310–316. [Google Scholar] [CrossRef]
HMs | Experimental Value | Pseudo-First-Order Model | Pseudo-Second-Order Model | ||||
---|---|---|---|---|---|---|---|
Qmax (mg/g) | Qe (mg/g) | K1 | R2 | Qe (mg/g) | K2 | R2 | |
Pb | 162.13 | 161.60 | 0.0252 | 0.8786 | 163.77 | 4.7968 | 0.9851 |
Cd | 4.39 | 4.26 | 0.0236 | 0.7345 | 4.38 | 0.0150 | 0.9529 |
HMs | Kp1 (g/(mg·h−0.5)) | C1 (mg/g) | R12 | Kp2 (g/(mg·h−0.5)) | C2 (mg/g) | R22 | Kp3 (g/(mg·h−0.5)) | C3 (mg/g) | R32 |
---|---|---|---|---|---|---|---|---|---|
Pb | 8.80 | 59.71 | 0.9854 | 1.75 | 126.50 | 0.9967 | 0.13 | 157.24 | 0.9889 |
Cd | 0.26 | 1.66 | 0.9731 | 0.03 | 3.42 | 0.9963 | 0.01 | 4.13 | 1.0000 |
HMs | T | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|---|
Qm (mg/g) | KL | RL | R2 | KF | 1/n | R2 | ||
Pb | 20 °C | 252.17 | 0.2286 | 0.0044—0.0214 | 0.9584 | 114.9827 | 0.1466 | 0.7554 |
30 °C | 269.56 | 0.2311 | 0.0043—0.0212 | 0.9341 | 126.9482 | 0.1365 | 0.8211 | |
40 °C | 278.69 | 0.2351 | 0.0042—0.0208 | 0.9129 | 128.0765 | 0.1439 | 0.7859 | |
Cd | 20 °C | 68.18 | 0.0258 | 0.1625—0.8661 | 0.9945 | 3.8819 | 0.5619 | 0.9711 |
30 °C | 69.59 | 0.0335 | 0.1299—0.8327 | 0.9860 | 5.8029 | 0.4890 | 0.9753 | |
40 °C | 71.75 | 0.0462 | 0.0977—0.7830 | 0.9986 | 6.7549 | 0.4860 | 0.9668 |
Adsorbents | Contaminants | Qm (mg/g) | References |
---|---|---|---|
Wheat heat straw and natural hematite-magnetic biochar | Pb(II) | 196.91 | [40] |
Magnetic biochar-microbe biochemical composite | Cd(II) | 25.04 | [41] |
Sulfide-modified magnetic pinecone-derived hydrochar | Pb(II), Cd(II) | 49.33, 62.49 | [42] |
Wood ear mushroom sticks biochar | Pb(II), Cd(II) | 234.20, 46.16 | [43] |
MnOx-impregnated on peanut shells derived biochar | Pb(II), Cd(II) | 164.59, 36.77 | [44] |
White tea residue-magnetic biochar | Pb(II), Cd(II) | 81.60, 38.60 | [45] |
Calcium alginate-nZVI-biochar | Pb(II), Cd(II) | 247.99, 47.27 | [46] |
Enterobacter bugandensis immobilized by rice straw biochar | Pb(II) | 250.10 | [47] |
Modified corn stalk biochar-supported bacterial microspheres | Pb(II), Cd(II) | 278.69, 71.75 | This study |
HMs | ΔHθ (kJ/mol) | ΔSθ (J/mol) | ΔGθ (kJ/mol) | ||
---|---|---|---|---|---|
20 °C | 30 °C | 40 °C | |||
Pb | 1.07 | 121.44 | −34.52 | −35.72 | −36.95 |
Cd | 22.18 | 175.26 | −29.20 | −30.86 | −32.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Xiao, X.; Xu, T.; Chu, S.; Wang, H.; Jiang, K. Removal of Pb(II) and Cd(II) from a Monometallic Contaminated Solution by Modified Biochar-Immobilized Bacterial Microspheres. Molecules 2024, 29, 4757. https://doi.org/10.3390/molecules29194757
Li Z, Xiao X, Xu T, Chu S, Wang H, Jiang K. Removal of Pb(II) and Cd(II) from a Monometallic Contaminated Solution by Modified Biochar-Immobilized Bacterial Microspheres. Molecules. 2024; 29(19):4757. https://doi.org/10.3390/molecules29194757
Chicago/Turabian StyleLi, Zaiquan, Xu Xiao, Tao Xu, Shiyu Chu, Hui Wang, and Ke Jiang. 2024. "Removal of Pb(II) and Cd(II) from a Monometallic Contaminated Solution by Modified Biochar-Immobilized Bacterial Microspheres" Molecules 29, no. 19: 4757. https://doi.org/10.3390/molecules29194757
APA StyleLi, Z., Xiao, X., Xu, T., Chu, S., Wang, H., & Jiang, K. (2024). Removal of Pb(II) and Cd(II) from a Monometallic Contaminated Solution by Modified Biochar-Immobilized Bacterial Microspheres. Molecules, 29(19), 4757. https://doi.org/10.3390/molecules29194757