Ultrasonic-Assisted Marine Antifouling Strategy on Gel-like Epoxy Primer
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Optimization of Ultrasonic Treatment Parameters
2.2. Effect of Ultrasonic Treatment on Pseudoalteromonas Morphology
2.3. Ultrasound Effects on Pseudoalteromonas Relative Surface Hydrophobicity
2.4. Ultrasound Effects on Pseudoalteromonas Particle Size and Zeta Potential
3. Materials and Methods
3.1. Materials
3.2. Culture of Pseudoalteromonas
3.3. Design of Ultrasonic Treatment Experiments
3.4. Microstructure of Pseudoalteromonas
3.5. Measurement of Relative Surface Hydrophobicity (RSH) of Pseudoalteromonas
3.6. Measurement of Particle Size and Zeta Potential of Pseudoalteromonas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amini, S.; Kolle, S.; Petrone, L.; Ahanotu, O.; Sunny, S.; Sutanto, C.N.; Hoon, S.; Cohen, L.; Weaver, J.C.; Aizenberg, J.; et al. Preventing mussel adhesion using lubricant-infused materials. Science 2017, 357, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Murthy, P.S.; Venkatesan, R.; Cooksey, K. Marine and Industrial Biofouling; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Pan, J.; Ai, X.; Ma, C.; Zhang, G. Degradable vinyl polymers for combating marine biofouling. Acc. Chem. Res. 2022, 55, 1586–1598. [Google Scholar] [CrossRef] [PubMed]
- Callow, J.A.; Callow, M.E. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat. Commun. 2011, 2, 244–254. [Google Scholar] [CrossRef]
- Schultz, M.P.; Bendick, J.A.; Holm, E.R.; Hertel, W.M. Economic impact of biofouling on a naval surface ship. Biofouling 2011, 27, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Swain, G.W.; Kovach, B.; Touzot, A.; Casse, F.; Kavanagh, C.J. Measuring the performance of today’s antifouling coatings. J. Ship Prod. 2007, 23, 164–170. [Google Scholar] [CrossRef]
- Eyring, V.; Köhler, H.W.; van Aardenne, J.; Lauer, A. Emissions from international shipping: 1. The last 50 years. J. Geophys. Res. Atmos. 2005, 110, 1–12. [Google Scholar] [CrossRef]
- Yebra, D.M.; Kiil, S.; Dam-Johansen, K. Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 2004, 50, 75–104. [Google Scholar] [CrossRef]
- Bartels, J.W.; Cheng, C.; Powell, K.T.; Xu, J.; Wooley, K.L. Hyperbranched fluoropolymers and their hybridization into complex amphiphilic crosslinked copolymer networks. Macromol. Chem. Phys. 2007, 208, 1676–1687. [Google Scholar] [CrossRef]
- Al-Nahas, M.O.; Darwish, M.M.; Ali, A.E.; Amin, M.A. Characterization of an exopolysaccharide-producing marine bacterium, isolate Pseudoalteromonas sp. Afr. J. Microbiol. Res. 2011, 5, 3823–3831. [Google Scholar] [CrossRef]
- Bernbom, N.; Ng, Y.Y.; Kjelleberg, S.; Harder, T.; Gram, L. Marine bacteria from Danish coastal waters show antifouling activity against the marine fouling bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis independent of bacteriocidal activity. Appl. Environ. Microbiol. 2011, 77, 8557–8567. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Kristalyn, C.B.; Lu, X.; Weinman, C.J.; Ober, C.K.; Kramer, E.J.; Chen, Z. Surface structures of an amphiphilic tri-block copolymer in air and in water probed using sum frequency generation vibrational spectroscopy. Langmuir 2010, 26, 11337–11343. [Google Scholar] [CrossRef]
- Hellio, C.; Yebra, D. Advances in Marine Antifouling Coatings and Technologies; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Omae, I. General aspects of tin-free antifouling primers. Chem. Rev. 2003, 103, 3431–3448. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, S.; Ma, C.; Wu, J.; Zhang, G. Development of Novel Environment-friendly Antifouling Materials. Surf. Technol. 2017, 46, 62–70. [Google Scholar]
- Bressy, C.; Lejars, M. Marine fouling: An overview. J. Ocean Technol. 2014, 9, 19–28. [Google Scholar]
- Selim, M.S.; Shenashen, M.A.; El-Safty, S.A.; Higazy, S.A.; Selim, M.M.; Isago, H.; Elmarakbi, A. Recent progress in marine foul-release polymeric nanocomposite coatings. Prog. Mater. Sci. 2017, 87, 1–32. [Google Scholar] [CrossRef]
- Lejars, M.; Margaillan, A.; Bressy, C. Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 2012, 112, 4347–4390. [Google Scholar] [CrossRef]
- Legg, M.; Yücel, M.; de Carellan, I.G.; Kappatos, V.; Selcuk, C.; Gan, T. Acoustic methods for biofouling control: A review. Ocean Eng. 2015, 103, 237–247. [Google Scholar] [CrossRef]
- Park, J.-S.; Lee, J.-H. Sea-trial verification of ultrasonic antifouling control. Biofouling 2018, 34, 98–110. [Google Scholar] [CrossRef]
- Nakonechny, F.; Nisnevitch, M. Different aspects of using ultrasound to combat microorganisms. Adv. Funct. Mater. 2021, 31, 2011042–2011066. [Google Scholar] [CrossRef]
- Guo, S.; Khoo, B.C.; Teo, S.L.M.; Lee, H.P. The effect of cavitation bubbles on the removal of juvenile barnacles. Colloids Surf. B Biointerfaces 2013, 109, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Tremarin, A.; Brandão, T.R.; Silva, C.L. Application of ultraviolet radiation and ultrasound treatments for Alicyclobacillus acidoterrestris spores inactivation in apple juice. Lwt 2017, 78, 138–142. [Google Scholar] [CrossRef]
- Reineke, K.; Ellinger, N.; Berger, D.; Baier, D.; Mathys, A.; Setlow, P.; Knorr, D. Structural analysis of high pressure treated Bacillus subtilis spores. Innov. Food Sci. Emerg. Technol. 2013, 17, 43–53. [Google Scholar] [CrossRef]
- Lemos, M.; Gomes, I.; Mergulhão, F.; Melo, L.; Simões, M. The effects of surface type on the removal of Bacillus cereus and Pseudomonas fluorescens single and dual species biofilms. Food Bioprod. Process. 2015, 93, 234–241. [Google Scholar] [CrossRef]
- Furukawa, S.; Watanabe, T.; Koyama, T.; Hirata, J.; Narisawa, N.; Ogihara, H.; Yamasaki, M. Effect of high pressure carbon dioxide on the clumping of the bacterial spores. Int. J. Food Microbiol. 2006, 106, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Noma, S.; Kiyohara, K.; Hirokado, R.; Yamashita, N.; Migita, Y.; Tanaka, M.; Furukawa, S.; Ogihara, H.; Morinaga, Y.; Igura, N.; et al. Increase in hydrophobicity of Bacillus subtilis spores by heat, hydrostatic pressure, and pressurized carbon dioxide treatments. J. Biosci. Bioeng. 2018, 125, 327–332. [Google Scholar] [CrossRef]
- Lo, B.; Gorczyca, E.; Kasapis, S.; Zisu, B. Effect of low-frequency ultrasound on the particle size, solubility and surface charge of reconstituted sodium caseinate. Ultrason. Sonochem. 2019, 58, 104525–104532. [Google Scholar] [CrossRef]
- Ralston, E.; Gardner, H.; Hunsucker, K.Z.; Swain, G. The effect of grooming on five commercial antifouling coatings. Front. Mar. Sci. 2022, 9, 836555–836563. [Google Scholar] [CrossRef]
- Hearin, J.; Hunsucker, K.Z.; Swain, G.; Stephens, A.; Gardner, H.; Lieberman, K.; Harper, M. Analysis of long-term mechanical grooming on large-scale test panels coated with an antifouling and a fouling-release coating. Biofouling 2015, 31, 625–638. [Google Scholar] [CrossRef]
- Kim, D.-H.; Alayande, A.B.; Lee, J.-M.; Jang, J.-H.; Jo, S.-M.; Jae, M.-R.; Yang, E.; Chae, K.-J. Emerging marine environmental pollution and ecosystem disturbance in ship hull cleaning for biofouling removal. Sci. Total Environ. 2023, 906, 167459–167475. [Google Scholar] [CrossRef]
- Guo, S.; Lee, H.P.; Teo, S.L.M.; Khoo, B.C. Inhibition of barnacle cyprid settlement using low frequency and intensity ultrasound. Biofouling 2012, 28, 131–141. [Google Scholar] [CrossRef]
- Guo, S.; Lee, H.P.; Khoo, B.C. Inhibitory effect of ultrasound on barnacle (Amphibalanus amphitrite) cyprid settlement. J. Exp. Mar. Biol. Ecol. 2011, 409, 253–258. [Google Scholar] [CrossRef]
- Erriu, M.; Blus, C.; Szmukler-Moncler, S.; Buogo, S.; Levi, R.; Barbato, G.; Madonnaripa, D.; Denotti, G.; Piras, V.; Orrù, G. Microbial biofilm modulation by ultrasound: Current concepts and controversies. Ultrason. Sonochem. 2014, 21, 15–22. [Google Scholar] [CrossRef]
- Seth, N.; Chakravarty, P.; Khandeparker, L.; Anil, A.C.; Pandit, A.B. Quantification of the energy required for the destruction of Balanus amphitrite larva by ultrasonic treatment. J. Mar. Biol. Assoc. United Kingd. 2010, 90, 1475–1482. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, R.-J.; Liu, B.-D.; Cui, B.; Du, Z.-L.; Chen, P.-F.; Zhu, B.-F.; Lin, C.; Dong, H.-T.; Zhou, W.-Y.; et al. Effects of ultrasound on invasive golden mussel Limnoperna fortunei mortality and tissue lesions. Sci. Total Environ. 2021, 761, 144134–144141. [Google Scholar] [CrossRef] [PubMed]
- Athanassiadis, A.G.; Ma, Z.; Moreno-Gomez, N.; Melde, K.; Choi, E.; Goyal, R.; Fischer, P. Ultrasound-responsive systems as components for smart materials. Chem. Rev. 2021, 122, 5165–5208. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.; Wilson, K.B. On the experimental attainment of optimum conditions. In Breakthroughs in Statistics: Methodology and Distribution; Springer: New York, NY, USA, 1992. [Google Scholar]
- Reji, M.; Kumar, R. Response surface methodology (RSM): An overview to analyze multivariate data. Indian J. Microbiol. Res. 2022, 9, 241–248. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Gewerbestrasse, Switzerland, 2017. [Google Scholar]
- Knobloch, S.; Philip, J.; Ferrari, S.; Benhaïm, D.; Bertrand, M.; Poirier, I. The effect of ultrasonic antifouling control on the growth and microbiota of farmed European sea bass (Dicentrarchus labrax). Mar. Pollut. Bull. 2021, 164, 112072. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.; Li, G. Methods for preventing biological attachment in mariculture facilities. Aquaculture 2018, 39, 33–34,36. [Google Scholar]
Level | Frequency/kHz | Power/W | Time/min |
---|---|---|---|
−1 | 20 | 40 | 4 |
0 | 28 | 60 | 8 |
1 | 40 | 80 | 12 |
Trial | Frequency/kHz | Power/W | Time/min | Efficiency/% |
---|---|---|---|---|
1 | 20 | 40 | 8 | 64.2 |
2 | 20 | 80 | 8 | 87.1 |
3 | 20 | 60 | 4 | 46.3 |
4 | 20 | 60 | 12 | 78.5 |
5 | 28 | 80 | 4 | 36.3 |
6 | 28 | 40 | 4 | 18.8 |
7 | 28 | 60 | 8 | 57.4 |
8 | 28 | 60 | 8 | 61.2 |
9 | 28 | 40 | 12 | 53.5 |
10 | 28 | 80 | 12 | 70.9 |
11 | 28 | 60 | 8 | 63.3 |
12 | 28 | 60 | 8 | 65.6 |
13 | 28 | 60 | 8 | 58.7 |
14 | 40 | 40 | 8 | 43.2 |
15 | 40 | 60 | 12 | 62.6 |
16 | 40 | 80 | 8 | 67.3 |
17 | 40 | 60 | 4 | 35.7 |
Factor | Sum of Square | Freedom | Mean Square | F-Value | p-Value | Significance Level |
---|---|---|---|---|---|---|
Model | 4446.06 | 9 | 494.01 | 35.47 | <0.0001 | Significant |
A | 566.16 | 1 | 566.16 | 40.65 | 0.0004 | |
B | 831.84 | 1 | 831.84 | 59.73 | <0.0001 | |
C | 1982.36 | 1 | 1982.36 | 142.34 | <0.0001 | |
AB | 1.42 | 1 | 1.42 | 0.1022 | 0.7585 | |
AC | 9.79 | 1 | 9.79 | 0.7029 | 0.4295 | |
BC | 0.0025 | 1 | 0.0025 | 0.0002 | 0.9897 | |
A2 | 351.88 | 1 | 351.88 | 25.27 | 0.0015 | |
B2 | 47.11 | 1 | 47.11 | 3.38 | 0.1085 | |
C2 | 713.77 | 1 | 713.77 | 51.25 | 0.0002 | |
Residual | 97.49 | 7 | 13.93 | |||
Lack of fit | 53.04 | 3 | 17.68 | 1.59 | 0.3243 | Not significant |
Time/min | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
A0 | 0.535 | 0.532 | 0.534 | 0.533 | 0.535 | 0.534 | 0.534 | 0.531 |
Af | 0.496 | 0.392 | 0.376 | 0.371 | 0.359 | 0.347 | 0.343 | 0.343 |
RSH (%) | 7.2 | 26.3 | 29.5 | 30.4 | 32.9 | 35.0 | 35.8 | 35.4 |
Number | Frequency/kHz | Power/W | Time/min |
---|---|---|---|
1 | 20 | 80 | 8 |
2 | 28 | 80 | 8 |
3 | 40 | 80 | 8 |
4 | 28 | 20 | 12 |
5 | 28 | 40 | 12 |
6 | 28 | 60 | 12 |
7 | 28 | 80 | 12 |
8 | 28 | 120 | 12 |
9 | 28 | 150 | 12 |
10 | 28 | 80 | 4 |
11 | 28 | 80 | 8 |
12 | 28 | 80 | 12 |
13 | 28 | 80 | 16 |
14 | 28 | 80 | 20 |
15 | 28 | 80 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Zu, P.; Chen, B.; Zhang, X.; Lan, J.; Zhang, J.; Zhang, H.; Wang, B.; Ma, L.; Wu, J. Ultrasonic-Assisted Marine Antifouling Strategy on Gel-like Epoxy Primer. Molecules 2024, 29, 4735. https://doi.org/10.3390/molecules29194735
Tang Z, Zu P, Chen B, Zhang X, Lan J, Zhang J, Zhang H, Wang B, Ma L, Wu J. Ultrasonic-Assisted Marine Antifouling Strategy on Gel-like Epoxy Primer. Molecules. 2024; 29(19):4735. https://doi.org/10.3390/molecules29194735
Chicago/Turabian StyleTang, Zhen, Pengjiao Zu, Baiyi Chen, Xianhui Zhang, Jianfeng Lan, Jiaxun Zhang, Hao Zhang, Baoxin Wang, Li Ma, and Jianhua Wu. 2024. "Ultrasonic-Assisted Marine Antifouling Strategy on Gel-like Epoxy Primer" Molecules 29, no. 19: 4735. https://doi.org/10.3390/molecules29194735
APA StyleTang, Z., Zu, P., Chen, B., Zhang, X., Lan, J., Zhang, J., Zhang, H., Wang, B., Ma, L., & Wu, J. (2024). Ultrasonic-Assisted Marine Antifouling Strategy on Gel-like Epoxy Primer. Molecules, 29(19), 4735. https://doi.org/10.3390/molecules29194735