Liposome-Assisted Drug Delivery in the Treatment of Multiple Sclerosis
Abstract
:1. Introduction
2. Multiple Sclerosis
2.1. Epidemiology
2.2. Etiology
2.3. Clinical Course and Symptoms
2.4. Pathogenesis
2.5. Animal Models of Multiple Sclerosis in Research
2.6. Treatment
3. Liposomes
3.1. Main Components of Liposomes
3.2. Classification of Liposomes
3.3. Production of Liposomes
3.3.1. Thin-Film Hydration
3.3.2. Detergent Removal
3.3.3. Injection
3.3.4. Dehydration–Rehydration
3.3.5. pH Jumping
3.3.6. Microfluidics
3.4. Sizing of Lipid Suspension
3.4.1. Sonication
3.4.2. Extrusion
3.5. Targeting Strategies of Liposomes
3.6. Liposome-Based Therapies
4. Liposomes in MS
4.1. Myelin Basic Protein (MBP) Liposomes
4.2. PEGylated Liposome Encapsulating Glucocorticoids
4.3. PEGylated Liposomes Encapsulating Other Molecules
4.4. Diagnostic Role of Liposomes in the MS
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BBB | blood–brain barrier; |
CIS | clinically isolated syndrome; |
CNS | central nervous system; |
DA | dark agouti; |
DMPC | 1,2-dimyristoyl-sn-glycero-3-phosphocholine; |
DMT | disease modifying therapies; |
DOPC | 1,2-dioleoyl-sn glycero-3-phosphocholine; |
DPPC | 1,2-dipalmitoyl-sn glycerol-3-phosphocholine; |
DSPC | 1,2-distearoyl-sn-glycero-3-phosphocholine; |
DSPE | 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; |
DSPE-PEG 2000 | 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]; |
EAE | experimental autoimmune encephalomyelitis; |
EBB | Epstein Barr Virus; |
GCs | glucocorticoids; |
GSH | glutathione; |
GUVs | giant unilamellar vesicles; |
HLA | human leucocyte antigen; |
LUVs | large unilamellar vesicles; |
MBP | myelin basic protein; |
MHC | major histocompatibility complex; |
MLVs | multilamellar vesicles; |
MOG | myelin oligodendrocytes glycoprotein; |
MP | methylprednisolone; |
MPS | methylprednisolone hemisuccinate |
MS | multiple sclerosis; |
OLVs | oligolamellar large vesicles; |
PEG | polyethylene glycol; |
PHCCC | N-Phenyl-7-(hydroxy-imino)cyclopropa[b]chromen-1a-carboxamide; |
PLP | proteolipid protein; |
PPMS | primary progressive multiple sclerosis; |
PRMS | progressive relapsing multiple sclerosis; |
RRMS | relapsing remitting multiple sclerosis; |
SPMS | secondary progressive multiple sclerosis; |
SUVs | small unilamellar vesicles; |
TMEV | Theiler’s murine encephalomyelitis virus; |
TMP | tempamine; |
References
- Dymek, M.; Sikora, E. Liposomes as Biocompatible and Smart Delivery Systems–the Current State. Adv. Colloid Interface Sci. 2022, 309, 102757. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Dhawan, V.; Holm, R.; Nagarsenker, M.S.; Perrie, Y. Liposomes: Advancements and Innovation in the Manufacturing Process. Adv. Drug Deliv. Rev. 2020, 154–155, 102–122. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef]
- Number of People with MS|Atlas of MS. Available online: https://www.atlasofms.org/map/global/epidemiology/number-of-people-with-ms (accessed on 4 July 2024).
- Hassani, A.; Corboy, J.R.; Al-Salam, S.; Khan, G. Epstein-Barr Virus Is Present in the Brain of Most Cases of Multiple Sclerosis and May Engage More than Just B Cells. PLoS ONE 2018, 13, e0192109. [Google Scholar] [CrossRef] [PubMed]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal Analysis Reveals High Prevalence of Epstein-Barr Virus Associated with Multiple Sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Ascherio, A.; Munger, K.L. Epstein-Barr Virus Infection and Multiple Sclerosis: A Review. J. Neuroimmune Pharmacol. 2010, 5, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Giovannoni, G. Multiple Sclerosis—A Review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef]
- Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017, 19, 1–10. [Google Scholar]
- Baranzini, S.E. Revealing the Genetic Basis of Multiple Sclerosis: Are We There Yet? Curr. Opin. Genet. Dev. 2011, 21, 317–324. [Google Scholar] [CrossRef]
- Jakimovski, D.; Bittner, S.; Zivadinov, R.; Morrow, S.A.; Benedict, R.H.B.; Zipp, F.; Weinstock-Guttman, B. Multiple Sclerosis. Lancet 2024, 403, 183–202. [Google Scholar] [CrossRef]
- Patsopoulos, N.A. Genetics of Multiple Sclerosis: An Overview and New Directions. Cold Spring Harb. Perspect. Med. 2018, 8, a028951. [Google Scholar] [CrossRef] [PubMed]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the Clinical Course of Multiple Sclerosis. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.; Barkhof, F.; Montalban, X.; Thompson, A.; Filippi, M. Clinically Isolated Syndromes Suggestive of Multiple Sclerosis, Part I: Natural History, Pathogenesis, Diagnosis, and Prognosis. Lancet Neurol. 2005, 4, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Weiner, H.L. A Shift from Adaptive to Innate Immunity: A Potential Mechanism of Disease Progression in Multiple Sclerosis. J. Neurol. 2008, 255 (Suppl. 1), 3–11. [Google Scholar] [CrossRef] [PubMed]
- Kappos, L.; Wolinsky, J.S.; Giovannoni, G.; Arnold, D.L.; Wang, Q.; Bernasconi, C.; Model, F.; Koendgen, H.; Manfrini, M.; Belachew, S.; et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol. 2020, 77, 1132. [Google Scholar] [CrossRef]
- DeLuca, J.; Nocentini, U. Neuropsychological, Medical and Rehabilitative Management of Persons with Multiple Sclerosis. NeuroRehabilitation 2011, 29, 197–219. [Google Scholar] [CrossRef]
- Lassmann, H. Pathogenic Mechanisms Associated with Different Clinical Courses of Multiple Sclerosis. Front. Immunol. 2018, 9, 3116. [Google Scholar] [CrossRef]
- Katz Sand, I. Classification, Diagnosis, and Differential Diagnosis of Multiple Sclerosis. Curr. Opin. Neurol. 2015, 28, 193–205. [Google Scholar] [CrossRef]
- Krieger, S.C.; Sumowski, J. New Insights into Multiple Sclerosis Clinical Course from the Topographical Model and Functional Reserve. Neurol. Clin. 2018, 36, 13–25. [Google Scholar] [CrossRef]
- Ewing, C.; Bernard, C.C. Insights into the Aetiology and Pathogenesis of Multiple Sclerosis. Immunol. Cell Biol. 1998, 76, 47–54. [Google Scholar] [CrossRef]
- Steinman, L. Multiple Sclerosis: A Coordinated Immunological Attack against Myelin in the Central Nervous System. Cell 1996, 85, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Ifergan, I.; Davidson, T.S.; Kebir, H.; Xu, D.; Palacios-Macapagal, D.; Cann, J.; Rodgers, J.M.; Hunter, Z.N.; Pittet, C.L.; Beddow, S.; et al. Targeting the GM-CSF Receptor for the Treatment of CNS Autoimmunity. J. Autoimmun. 2017, 84, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Attfield, K.E.; Jensen, L.T.; Kaufmann, M.; Friese, M.A.; Fugger, L. The Immunology of Multiple Sclerosis. Nat. Rev. Immunol. 2022, 22, 734–750. [Google Scholar] [CrossRef] [PubMed]
- Centonze, D.; Muzio, L.; Rossi, S.; Cavasinni, F.; De Chiara, V.; Bergami, A.; Musella, A.; D’Amelio, M.; Cavallucci, V.; Martorana, A.; et al. Inflammation Triggers Synaptic Alteration and Degeneration in Experimental Autoimmune Encephalomyelitis. J. Neurosci. 2009, 29, 3442–3452. [Google Scholar] [CrossRef] [PubMed]
- Prat, A.; Antel, J. Pathogenesis of Multiple Sclerosis. Curr. Opin. Neurol. 2005, 18, 225. [Google Scholar] [CrossRef]
- Comi, G.; Bar-Or, A.; Lassmann, H.; Uccelli, A.; Hartung, H.-P.; Montalban, X.; Sørensen, P.S.; Hohlfeld, R.; Hauser, S.L. The Role of B Cells in Multiple Sclerosis and Related Disorders. Ann. Neurol. 2021, 89, 13–23. [Google Scholar] [CrossRef]
- Procaccini, C.; De Rosa, V.; Pucino, V.; Formisano, L.; Matarese, G. Animal Models of Multiple Sclerosis. Eur. J. Pharmacol. 2015, 759, 182–191. [Google Scholar] [CrossRef]
- Furlan, R.; Cuomo, C.; Martino, G. Animal Models of Multiple Sclerosis. In Neural Cell Transplantation: Methods and Protocols; Gordon, D., Scolding, N.J., Eds.; Humana Press: Totowa, NJ, USA, 2009; pp. 157–173. ISBN 978-1-60327-931-4. [Google Scholar]
- Smith, P. Animal Models of Multiple Sclerosis. Curr. Protoc. 2021, 1, e185. [Google Scholar] [CrossRef]
- Lassmann, H.; Bradl, M. Multiple Sclerosis: Experimental Models and Reality. Acta Neuropathol. 2017, 133, 223–244. [Google Scholar] [CrossRef]
- McGinley, M.P.; Goldschmidt, C.H.; Rae-Grant, A.D. Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA 2021, 325, 765–779. [Google Scholar] [CrossRef]
- Hauser, S.L.; Bar-Or, A.; Cohen, J.A.; Comi, G.; Correale, J.; Coyle, P.K.; Cross, A.H.; De Seze, J.; Leppert, D.; Montalban, X.; et al. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N. Engl. J. Med. 2020, 383, 546–557. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.L.; Bar-Or, A.; Comi, G.; Giovannoni, G.; Hartung, H.-P.; Hemmer, B.; Lublin, F.; Montalban, X.; Rammohan, K.W.; Selmaj, K.; et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N. Engl. J. Med. 2017, 376, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Ojha, S. In Vitro and In Vivo Neuroprotective Study of Solid Lipid Nanoparticles Loaded with Dimethyl Fumarate. Asian J. Pharm. (AJP) 2018, 12. [Google Scholar] [CrossRef]
- Pour, M.; Ghaffari, S.; Khoshayand, M. Fingolimod Slns: Preparation, In Vitro Evaluation and Optimization of Lyophilization Using D-Optimal Experimental Design. J. Pharm. Health Sci. 2018, 6, 119–128. [Google Scholar]
- Gadhave, D.G.; Kokare, C.R. Nanostructured Lipid Carriers Engineered for Intranasal Delivery of Teriflunomide in Multiple Sclerosis: Optimization and in Vivo Studies. Drug Dev. Ind. Pharm. 2019, 45, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Jalkh, G.; Abi Nahed, R.; Macaron, G.; Rensel, M. Safety of Newer Disease Modifying Therapies in Multiple Sclerosis. Vaccines 2020, 9, 12. [Google Scholar] [CrossRef]
- Yamout, B.; Sahraian, M.; Bohlega, S.; Al-Jumah, M.; Goueider, R.; Dahdaleh, M.; Inshasi, J.; Hashem, S.; Alsharoqi, I.; Khoury, S.; et al. Consensus Recommendations for the Diagnosis and Treatment of Multiple Sclerosis: 2019 Revisions to the MENACTRIMS Guidelines. Mult. Scler. Relat. Disord. 2020, 37, 101459. [Google Scholar] [CrossRef] [PubMed]
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of Univalent Ions across the Lamellae of Swollen Phospholipids. J. Mol. Biol. 1965, 13, 238–252, IN26–IN27. [Google Scholar] [CrossRef]
- Papahadjopoulos, D.; Watkins, J.C. Phospholipid Model Membranes. II. Permeability Properties of Hydrated Liquid Crystals. Biochim. Biophys. Acta (BBA)-Biomembr. 1967, 135, 639–652. [Google Scholar] [CrossRef]
- Deamer, D.W. From “Banghasomes” to Liposomes: A Memoir of Alec Bangham, 1921–2010. FASEB J. 2010, 24, 1308–1310. [Google Scholar] [CrossRef]
- Gregoriadis, G. Drug Entrapment in Liposomes. FEBS Lett. 1973, 36, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Bozzuto, G.; Molinari, A. Liposomes as Nanomedical Devices. Int. J. Nanomed. 2015, 10, 975–999. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of Liposomes as Drug Delivery System for Therapeutic Applications. Int. J. Pharm. 2021, 601, 120571. [Google Scholar] [CrossRef]
- Luiz, H.; Oliveira Pinho, J.; Gaspar, M.M. Advancing Medicine with Lipid-Based Nanosystems—The Successful Case of Liposomes. Biomedicines 2023, 11, 435. [Google Scholar] [CrossRef]
- Has, C.; Sunthar, P. A Comprehensive Review on Recent Preparation Techniques of Liposomes. J. Liposome Res. 2020, 30, 336–365. [Google Scholar] [CrossRef]
- Schubert, R. Liposome Preparation by Detergent Removal. Methods Enzymol. 2003, 367, 46–70. [Google Scholar] [PubMed]
- Allen, T.M.; Romans, A.Y.; Kercret, H.; Segrest, J.P. Detergent Removal during Membrane Reconstitution. Biochim. Et Biophys. Acta (BBA)-Biomembr. 1980, 601, 328–342. [Google Scholar] [CrossRef]
- Lombardo, D.; Kiselev, M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022, 14, 543. [Google Scholar] [CrossRef]
- Large, D.E.; Abdelmessih, R.G.; Fink, E.A.; Auguste, D.T. Liposome Composition in Drug Delivery Design, Synthesis, Characterization, and Clinical Application. Adv. Drug Deliv. Rev. 2021, 176, 113851. [Google Scholar] [CrossRef]
- Shew, R.L.; Deamer, D.W. A Novel Method for Encapsulation of Macromolecules in Liposomes. Biochim. Biophys. Acta (BBA)-Biomembr. 1985, 816, 1–8. [Google Scholar] [CrossRef]
- Hauser, H.; Gains, N. Spontaneous Vesiculation of Phospholipids: A Simple and Quick Method of Forming Unilamellar Vesicles. Proc. Natl. Acad. Sci. USA 1982, 79, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- Carugo, D.; Bottaro, E.; Owen, J.; Stride, E.; Nastruzzi, C. Liposome Production by Microfluidics: Potential and Limiting Factors. Sci. Rep. 2016, 6, 25876. [Google Scholar] [CrossRef] [PubMed]
- Hadian, Z.; Sahari, M.A.; Moghimi, H.R.; Barzegar, M. Formulation, Characterization and Optimization of Liposomes Containing Eicosapentaenoic and Docosahexaenoic Acids; A Methodology Approach. Iran. J. Pharm. Res. 2014, 13, 393–404. [Google Scholar] [PubMed]
- Sivadasan, D. An updated review of stealth liposomes and its ability to evade the immune system: A new frontier in cancer chemotherapy. Int. J. Appl. Pharm. 2024, 16, 22–36. [Google Scholar] [CrossRef]
- Kluzek, M.; Oppenheimer-Shaanan, Y.; Dadosh, T.; Morandi, M.I.; Avinoam, O.; Raanan, C.; Goldsmith, M.; Goldberg, R.; Klein, J. Designer Liposomic Nanocarriers Are Effective Biofilm Eradicators. ACS Nano 2022, 16, 15792–15804. [Google Scholar] [CrossRef]
- Eroğlu, İ.; İbrahim, M. Liposome–Ligand Conjugates: A Review on the Current State of Art. J. Drug Target. 2020, 28, 225–244. [Google Scholar] [CrossRef]
- Lee, Y.; Thompson, D.H. Stimuli-Responsive Liposomes for Drug Delivery. WIREs Nanomed. Nanobiotechnol. 2017, 9, e1450. [Google Scholar] [CrossRef]
- Barenholz, Y. (Chezy) Doxil®—The First FDA-Approved Nano-Drug: Lessons Learned. J. Control Release 2012, 160, 117–134. [Google Scholar] [CrossRef]
- Allen, T.M.; Cullis, P.R. Liposomal Drug Delivery Systems: From Concept to Clinical Applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef]
- Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef]
- Burns, J.; Rosenzweig, A.; Zweiman, B.; Lisak, R.P. Isolation of Myelin Basic Protein-Reactive T-Cell Lines from Normal Human Blood. Cell Immunol. 1983, 81, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Egg, R.; Reindl, M.; Deisenhammer, F.; Linington, C.; Berger, T. Anti-MOG and Anti-MBP Antibody Subclasses in Multiple Sclerosis. Mult. Scler. J. 2001, 7, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Raine, C.S. The Neuropathology of Myelin Diseases. In Myelin; Morell, P., Ed.; Springer: Boston, MA, USA, 1984; pp. 259–310. ISBN 978-1-4757-1830-0. [Google Scholar]
- Zhang, H.; Podojil, J.R.; Chang, J.; Luo, X.; Miller, S.D. TGF-β-Induced Myelin Peptide-Specific Regulatory T Cells Mediate Antigen-Specific Suppression of Induction of Experimental Autoimmune Encephalomyelitis. J. Immunol. 2010, 184, 6629–6636. [Google Scholar] [CrossRef]
- Belogurov, A.A.; Zargarova, T.A.; Turobov, V.I.; Novikova, N.I.; Favorova, O.O.; Ponomarenko, N.A.; Gabibov, A.G. Suppression of Ongoing Experimental Allergic Encephalomyelitis in DA Rats by Novel Peptide Drug, Structural Part of Human Myelin Basic Protein 46-62. Autoimmunity 2009, 42, 362–364. [Google Scholar] [CrossRef] [PubMed]
- Strejan, G.H.; Gilbert, J.J.; Louis, J.S. Suppression of Chronic-Relapsing Experimental Allergic Encephalomyelitis in Strain-13 Guinea Pigs by Administration of Liposome-Associated Myelin Basic Protein. J. Neuroimmunol. 1984, 7, 27–41. [Google Scholar] [CrossRef]
- Strejan, G.H.; Percy, D.H.; St Louis, J.; Surlan, D.; Paty, D.W. Suppression of Experimental Allergic Encephalomyelitis in Guinea/Pigs by Liposome-Associated Human Myelin Basic Protein. J. Immunol. 1981, 127, 2064–2069. [Google Scholar] [CrossRef]
- Avrilionis, K.; Boggs, J.M. Suppression of Experimental Allergic Encephalomyelitis by the Encephalitogenic Peptide, in Solution or Bound to Liposomes. J. Neuroimmunol. 1991, 35, 201–210. [Google Scholar] [CrossRef]
- Pradhan, B.; Kumar, N.; Saha, S.; Roy, A. Liposome: Method of Preparation, Advantages, Evaluation and Its Application. J. Appl. Pharm. Res. 2015, 3, 1–8. [Google Scholar]
- Ying, X.; Wen, H.; Lu, W.-L.; Du, J.; Guo, J.; Tian, W.; Men, Y.; Zhang, Y.; Li, R.-J.; Yang, T.-Y.; et al. Dual-Targeting Daunorubicin Liposomes Improve the Therapeutic Efficacy of Brain Glioma in Animals. J. Control Release 2010, 141, 183–192. [Google Scholar] [CrossRef]
- Belogurov, A.A., Jr.; Stepanov, A.V.; Smirnov, I.V.; Melamed, D.; Bacon, A.; Mamedov, A.E.; Boitsov, V.M.; Sashchenko, L.P.; Ponomarenko, N.A.; Sharanova, S.N.; et al. Liposome-Encapsulated Peptides Protect against Experimental Allergic Encephalitis. FASEB J. 2013, 27, 222–231. [Google Scholar] [CrossRef]
- Lomakin, Y.; Belogurov, A.; Glagoleva, I.; Stepanov, A.; Zakharov, K.; Okunola, J.; Smirnov, I.; Genkin, D.; Gabibov, A. Administration of Myelin Basic Protein Peptides Encapsulated in Mannosylated Liposomes Normalizes Level of Serum TNF-α and IL-2 and Chemoattractants CCL2 and CCL4 in Multiple Sclerosis Patients. Mediat. Inflamm. 2016, 2016, 2847232. [Google Scholar] [CrossRef] [PubMed]
- Belogurov, A.; Zakharov, K.; Lomakin, Y.; Surkov, K.; Avtushenko, S.; Kruglyakov, P.; Smirnov, I.; Makshakov, G.; Lockshin, C.; Gregoriadis, G.; et al. CD206-Targeted Liposomal Myelin Basic Protein Peptides in Patients with Multiple Sclerosis Resistant to First-Line Disease-Modifying Therapies: A First-in-Human, Proof-of-Concept Dose-Escalation Study. Neurotherapeutics 2016, 13, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Agata, K.; Takasugi, S.; Goto, S.; Narita, Y.; Asai, T.; Magata, Y.; Oku, N. New Strategy for MS Treatment with Autoantigen-Modified Liposomes and Their Therapeutic Effect. J. Control Release 2021, 335, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Metselaar, J.M.; Gold, R. Intravenous Liposomal Prednisolone Downregulates In Situ TNF-α Production by T-Cells in Experimental Autoimmune Encephalomyelitis. J. Histochem. Cytochem. 2003, 51, 1241–1244. [Google Scholar] [CrossRef] [PubMed]
- Teshima, M.; Kawakami, S.; Fumoto, S.; Nishida, K.; Nakamura, J.; Nakashima, M.; Nakagawa, H.; Ichikawa, N.; Sasaki, H. PEGylated Liposomes Loading Palmitoyl Prednisolone for Prolonged Blood Concentration of Prednisolone. Biol. Pharm. Bull. 2006, 29, 1436–1440. [Google Scholar] [CrossRef] [PubMed]
- Linker, R.A.; Weller, C.; Lühder, F.; Mohr, A.; Schmidt, J.; Knauth, M.; Metselaar, J.M.; Gold, R. Liposomal Glucocorticosteroids in Treatment of Chronic Autoimmune Demyelination: Long-Term Protective Effects and Enhanced Efficacy of Methylprednisolone Formulations. Exp. Neurol. 2008, 211, 397–406. [Google Scholar] [CrossRef]
- Schweingruber, N.; Haine, A.; Tiede, K.; Karabinskaya, A.; van den Brandt, J.; Wüst, S.; Metselaar, J.M.; Gold, R.; Tuckermann, J.P.; Reichardt, H.M.; et al. Liposomal Encapsulation of Glucocorticoids Alters Their Mode of Action in the Treatment of Experimental Autoimmune Encephalomyelitis. J. Immunol. 2011, 187, 4310–4318. [Google Scholar] [CrossRef]
- Gaillard, P.J.; Appeldoorn, C.C.M.; Rip, J.; Dorland, R.; van der Pol, S.M.A.; Kooij, G.; de Vries, H.E.; Reijerkerk, A. Enhanced Brain Delivery of Liposomal Methylprednisolone Improved Therapeutic Efficacy in a Model of Neuroinflammation. J. Control Release 2012, 164, 364–369. [Google Scholar] [CrossRef]
- Lee, D.-H.; Rötger, C.; Appeldoorn, C.C.M.; Reijerkerk, A.; Gladdines, W.; Gaillard, P.J.; Linker, R.A. Glutathione PEGylated Liposomal Methylprednisolone (2B3-201) Attenuates CNS Inflammation and Degeneration in Murine Myelin Oligodendrocyte Glycoprotein Induced Experimental Autoimmune Encephalomyelitis. J. Neuroimmunol. 2014, 274, 96–101. [Google Scholar] [CrossRef]
- Kanhai, K.M.S.; Zuiker, R.G.J.A.; Stavrakaki, I.; Gladdines, W.; Gaillard, P.J.; Klaassen, E.S.; Groeneveld, G.J. Glutathione-PEGylated Liposomal Methylprednisolone in Comparison to Free Methylprednisolone: Slow Release Characteristics and Prolonged Lymphocyte Depression in a First-in-Human Study. Br. J. Clin. Pharmacol. 2018, 84, 1020–1028. [Google Scholar] [CrossRef]
- Avnir, Y.; Turjeman, K.; Tulchinsky, D.; Sigal, A.; Kizelsztein, P.; Tzemach, D.; Gabizon, A.; Barenholz, Y. Fabrication Principles and Their Contribution to the Superior In Vivo Therapeutic Efficacy of Nano-Liposomes Remote Loaded with Glucocorticoids. PLoS ONE 2011, 6, e25721. [Google Scholar] [CrossRef]
- Crielaard, B.J.; Lammers, T.; Morgan, M.E.; Chaabane, L.; Carboni, S.; Greco, B.; Zaratin, P.; Kraneveld, A.D.; Storm, G. Macrophages and Liposomes in Inflammatory Disease: Friends or Foes? Int. J. Pharm. 2011, 416, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Kizelsztein, P.; Ovadia, H.; Garbuzenko, O.; Sigal, A.; Barenholz, Y. Pegylated Nanoliposomes Remote-Loaded with the Antioxidant Tempamine Ameliorate Experimental Autoimmune Encephalomyelitis. J. Neuroimmunol. 2009, 213, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Turjeman, K.; Bavli, Y.; Kizelsztein, P.; Schilt, Y.; Allon, N.; Katzir, T.B.; Sasson, E.; Raviv, U.; Ovadia, H.; Barenholz, Y. Nano-Drugs Based on Nano Sterically Stabilized Liposomes for the Treatment of Inflammatory Neurodegenerative Diseases. PLoS ONE 2015, 10, e0130442. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Metselaar, J.; Ben, L.-H.; Cravens, P.D.; Singh, M.P.; Frohman, E.M.; Eagar, T.N.; Racke, M.K.; Kieseier, B.C.; Stüve, O. PEG Minocycline-Liposomes Ameliorate CNS Autoimmune Disease. PLoS ONE 2009, 4, e4151. [Google Scholar] [CrossRef]
- Gammon, J.M.; Adapa, A.R.; Jewell, C.M. Control of Autoimmune Inflammation Using Liposomes to Deliver Positive Allosteric Modulators of Metabotropic Glutamate Receptors. J. Biomed. Mater. Res. A 2017, 105, 2977–2985. [Google Scholar] [CrossRef]
- Arnon, R.; Crisp, E.; Kelley, R.; Ellison, G.W.; Myers, L.W.; Tourtellotte, W.W. Anti-Ganglioside Antibodies in Multiple Sclerosis. J. Neurol. Sci. 1980, 46, 179–186. [Google Scholar] [CrossRef]
- Feix, J.B.; Khatri, B.; McQuillen, M.P.; Koethe, S.M. Immune Reactivity against Membranes Containing Ganglioside GM1 in Chronic-Progressive Multiple Sclerosis: Observation by Spin-Membrane Immunoassay. Immunol. Commun. 1984, 13, 465–474. [Google Scholar] [CrossRef]
- Mullin, B.R.; Montanaro, A.J.; Reid, J.D.; Nishimura, R.N. Interaction of Multiple Sclerosis Serum with Liposomes Containing Ganglioside GM1. Ann. Neurol. 1980, 7, 587–590. [Google Scholar] [CrossRef]
- Endo, T.; Scott, D.D.; Stewart, S.S.; Kundu, S.K.; Marcus, D.M. Antibodies to Glycosphingolipids in Patients with Multiple Sclerosis and SLE. J. Immunol. 1984, 132, 1793–1797. [Google Scholar] [CrossRef]
- Slovick, D.I.; Saida, T.; Lisak, R.P.; Schreiber, A. A New Assay for Lytic Anti-Galactocerebroside (GC) Antibodies Employing 56rubidium Release from GC-Labelled Liposomes. J. Immunol. Methods 1980, 39, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.; Abu Lila, A.S.; Shimizu, T.; Alaaeldin, E.; Hussein, A.; Sarhan, H.A.; Szebeni, J.; Ishida, T. PEGylated Liposomes: Immunological Responses. Sci. Technol. Adv. Mater. 2019, 20, 710–724. [Google Scholar] [CrossRef] [PubMed]
- Metselaar, J.M.; Storm, G. Liposomes in the Treatment of Inflammatory Disorders. Expert. Opin. Drug Deliv. 2005, 2, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Friden, P.M. Receptor-Mediated Transport of Therapeutics across the Blood-Brain Barrier. Neurosurgery 1994, 35, 294. [Google Scholar] [CrossRef] [PubMed]
- Study Details|Nanocort in Acute Exacerbation of Relapsing-Remitting Multiple Sclerosis (MS)|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT01039103?cond=Multiple%20Sclerosis&term=liposome&rank=3 (accessed on 12 September 2024).
- Hassanshahi, G.; Noroozi Karimabad, M.; Jebali, A. The Therapeutic Effect of PEGlated Nanoliposome of Pistachio Unsaturated Oils and Its Efficacy to Attenuate Inflammation in Multiple Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial Phase I. J. Neuroimmunol. 2022, 362, 577768. [Google Scholar] [CrossRef]
- Cunnane, S.C.; Ho, S.Y.; Dore-Duffy, P.; Ells, K.R.; Horrobin, D.F. Essential Fatty Acid and Lipid Profiles in Plasma and Erythrocytes in Patients with Multiple Sclerosis. Am. J. Clin. Nutr. 1989, 50, 801–806. [Google Scholar] [CrossRef]
- Cherayil, G.D. Sialic Acid and Fatty Acid Concentrations in Lymphocytes, Red Blood Cells and Plasma from Patients with Multiple Sclerosis. J. Neurol. Sci. 1984, 63, 1–10. [Google Scholar] [CrossRef]
- Jebali, A.; Noroozi Karimabad, M.; Ahmadi, Z.; Khorramdel, H.; Kaeidi, A.; Mirzaei, M.; Zare-Bidaki, M.; Ahmadinia, H.; Vakilian, A.; Darekordi, A.; et al. Attenuation of Inflammatory Response in the EAE Model by PEGlated Nanoliposome of Pistachio Oils. J. Neuroimmunol. 2020, 347, 577352. [Google Scholar] [CrossRef]
- Zaprianova, E.; Deleva, D.; Ilinov, P.; Sultanov, E.; Filchev, A.; Christova, L.; Sultanov, B. Serum Ganglioside Patterns in Multiple Sclerosis. Neurochem. Res. 2001, 26, 95–100. [Google Scholar] [CrossRef]
Drug | Liposome Composition | Administration Route | Reference | |
---|---|---|---|---|
TREATMENT | prednisolone phosphate | DPPC, DSPE-PEG 2000, cholesterol | injection into a tail vein (female Lewis rats) | [77] |
palmitoyl prednisolone | DSPC, Cholesterol, DSPE-PEG 2000 | injection into the jugular vein (male Wistar rats) | [78] | |
methylprednisolone | DPPC, DSPE-PEG 2000, cholesterol | injection in the tail vein (Lewis rats) | [79] | |
methylprednisolone-21-hydrogensuccinat, prednisolone-21-hydrogensuccinat, triamcinolone-acetonyd-21-hydrogen-phosphate, dexamethasone-dihydrogen-phosphate | DPPC, DSPE-PEG 2000, cholesterol | i.v. or i.p. injection (C57BL/6 mice) | [80] | |
methylprednisolone | l-α-phosphatidylcholine, hydrogenated (Soy), cholesterol, mPEG-DSPE, reduced GSH | i.v. injection (male Lewis rats) | [81] | |
MPS | l-α-phosphatidylcholine, hydrogenated (Soy), cholesterol, mPEG-DSPE, reduced GSH | i.v. injection (female C57BL6/J mice) | [82] | |
MPS | l-α-phosphatidylcholine, hydrogenated (Soy), cholesterol, mPEG-DSPE, reduced GSH | infusion (first in-human study) | [83] | |
methylprednisolone succinate sodium salt, | Hydrogenated soybean phosphatidylcholine, POPC, DSPC, cholesterol, DSPE-PEG 2000 | injection (female SJL/J, C57Bl/6 and BALB/c mice) | [84] | |
dexamethasone phosphate | DSPE-PEG 2000, DPPC, cholesterol | i.v. (female SJL mice) | [85] | |
TMP | Egg phosphatidylcholine, Hydrogenated soybean phosphatidylcholine, DSPE-PEG 2000, cholesterol | i.v. (C57Bl/6J female mice) | [86] | |
TMP, methylprednisolone | Egg phosphatidylcholine, hydrogenated soybean phosphatidylcholine, DMPC, DPPC, cholesterol, DSPE-PEG 2000 | i.v. (SJL/J mice) | [87] | |
minocycline | DPPC, DSPE-PEG 2000, cholesterol | i.v. (Female C57BL/6 mice) | [88] | |
PHCCC | cholesterol, DOPC, DSPE-PEG 2000 | in vitro study (primary Dendritic cells isolated from the spleens of female C57BL/6 J mice) | [89] | |
Molecule | ||||
DIAGNOSIS | GM1, GM 2, GM 4, galactocerebroside | phosphatidyl choline, cholesterol, dicetyl phosphate, α-tocoperol, 1-aminonapththalene-3,6,8-trisulfonic acid (fluorphore), bispyridinium xylene (quencher) | human serum, cerebrospinal fluid (from MS patients) | [90] |
GM1 | DMPC, cholesterol, dicetyl phosphate | human serum (from MS patients) | [91] | |
GM1 | DMPC, cholesterol, dicetyl phosphate, [14C]glucose | human serum (from MS patients) | [92] | |
GM1, GM4, GD1A, GD1B | sphingomyelin, dicetylphosphate, cholesterol, glycolipids | human serum (from MS patients) | [93] | |
bovine brain galactocerebroside | dipalmitoyl lecithin, dicetyl phosphate, Cholesterol, [3H]cholesterol, 86Rb | blood (from human donor) | [94] |
Drug/Name | Conditions | Phase | Reference/NCT Number |
---|---|---|---|
MBP46–62, MBP124–139, MBP147–170/Xemys | RRMS, SPMS | I | [74] |
MBP46–62, MBP124–139, MBP147–170/Xemys | RRMS, SPMS | I | [75] |
MPS/2B3-201 | MS | I | NCT02048358 |
Pistachio oil | MS | I | [99] |
prednisolone sodium phosphate/Nanocort® | Acute exacerbation of RRMS, CIS | II | NCT01039103 |
mitoxantrone hydrochloride | RMS | II | NCT05496894 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, G.; Sarpietro, M.G. Liposome-Assisted Drug Delivery in the Treatment of Multiple Sclerosis. Molecules 2024, 29, 4689. https://doi.org/10.3390/molecules29194689
Greco G, Sarpietro MG. Liposome-Assisted Drug Delivery in the Treatment of Multiple Sclerosis. Molecules. 2024; 29(19):4689. https://doi.org/10.3390/molecules29194689
Chicago/Turabian StyleGreco, Giuliana, and Maria Grazia Sarpietro. 2024. "Liposome-Assisted Drug Delivery in the Treatment of Multiple Sclerosis" Molecules 29, no. 19: 4689. https://doi.org/10.3390/molecules29194689
APA StyleGreco, G., & Sarpietro, M. G. (2024). Liposome-Assisted Drug Delivery in the Treatment of Multiple Sclerosis. Molecules, 29(19), 4689. https://doi.org/10.3390/molecules29194689