Revealing the Intrinsic Correlation between Cu Scales and Free Radical Chain Reactions in the Regulation of Catalytic Behaviour
Abstract
:1. Introduction
2. Result and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Monteiro, C.S.; Rodrigues, A.V.; Viveiros, D.; Linhares, C.; Mendes, H.; Silva, S.O.; Marques, P.V.; Tavares, S.M.; Frazão, O. Optical fiber sensors for structural monitoring in power transformers. Sensors 2021, 21, 6127. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sun, P.; Sima, W.; Shao, Q.; Ye, L.; Li, C. A promising nano-insulating-oil for industrial application: Electrical properties and modification mechanism. Nanomaterials 2019, 9, 788. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Wang, J.; Wang, W.; Li, G.; Zhao, Y.; Wen, Z. Transformer fault diagnosis based on MPA-RF algorithm and LIF technology. Meas. Sci. Technol. 2023, 35, 025504. [Google Scholar] [CrossRef]
- Gao, L.; Chen, Y.; Lv, Z.; Zhou, J.; Wu, K. Probing and Modulation of the Electric Double Layer at the Insulating Oil–Paper Interface. Langmuir 2023, 39, 17921–17928. [Google Scholar] [CrossRef]
- Kaplan, I.R.; Rasco, J.; Lu, S.-T. Chemical characterization of transformer mineral-insulating oils. Environ. Forensics 2010, 11, 117–145. [Google Scholar] [CrossRef]
- Hasan, M.I. Improving the cooling performance of electrical distribution transformer using transformer oil–Based MEPCM suspension. Eng. Sci. Technol. Int. J. 2017, 20, 502–510. [Google Scholar] [CrossRef]
- Zhang, Z.; Zuo, F.; Cai, T.; Gai, X.; Wan, L.; Lin, H.; Wang, B.; Zhang, H. Modification of insulating oils and oil-based titanium dioxide nanofluids for transformers: A review. Phys. Chem. Chem. Phys. 2023, 25, 22565–22582. [Google Scholar] [CrossRef]
- Zeng, Z.; Su, Z.; Wang, Z.; Tan, W.; Tang, C. Ladderlike Polyphenylsesquioxane-Doped Cellulose Insulation Paper with Upgraded Mechanical Strength. Adv. Eng. Mater. 2023, 25, 2300738. [Google Scholar] [CrossRef]
- Yang, H.; Wang, X.; Duan, Y.; Zhang, H.; Chen, M.; Wang, X. Ab initio molecular dynamics of insulating paper: Mechanism of insulating paper cellobiose cracking at transient high temperature. e-Polymers 2023, 23, 20230055. [Google Scholar] [CrossRef]
- Sabau, J.; Fofana, I.; Bouaïcha, A.; Hadjadj, Y.; Farzaneh, M. An environmentally friendly dissolved oxygen and moisture removal system for freely breathing transformers. IEEE Electr. Insul. Mag. 2010, 26, 35–43. [Google Scholar] [CrossRef]
- Liang, K.; Wang, F.; Zhong, L.; Chen, S.; Sun, Q.; Hu, C.; Chang, X. Investigation into the Formation Mechanisms of Soluble Copper Ions in Oil: Reconsidering the Impact of Corrosive Sulfides and Acids. IEEE Trans. Dielectr. Electr. Insul. 2024, 31, 683–693. [Google Scholar] [CrossRef]
- Mihajlovic, D.; Ivancevic, V.; Vasovic, V.; Lukic, J. Cellulose degradation and transformer fault detection by the application of integrated analyses of gases and low molecular weight alcohols dissolved in mineral oil. Energies 2022, 15, 5669. [Google Scholar] [CrossRef]
- Liang, K.; Wang, F.; Zhong, L.; Chen, S.; Sun, Q.; Hu, C.; Duan, X.; Peng, T. Effect of Soluble Copper Ions on Insulating Oil’s Electrical Properties: An Experimental Study. IEEE Trans. Dielectr. Electr. Insul. 2023, 31, 1305–1313. [Google Scholar] [CrossRef]
- Raj, R.A.; Samikannu, R.; Yahya, A.; Mosalaosi, M. Comparison of ageing characteristics of superior insulating fluids with mineral oil for power transformer application. IEEE Access 2020, 8, 141111–141122. [Google Scholar] [CrossRef]
- He, J.; Zhang, E.; Zhang, H. Comparative analysis of methanol generation mechanism in different oil-cellulose insulation based on ReaxFF MD. J. Mol. Liq. 2023, 382, 121872. [Google Scholar] [CrossRef]
- Hu, X.; Cong, H.; Wang, Y.; Zhang, X.; Du, Y.; Li, Q.; Yu, Z. Experimental Research on Deterioration Effect of Transition Metals on Natural Ester. IEEE Trans. Dielectr. Electr. Insul. 2023, 31, 477–484. [Google Scholar] [CrossRef]
- Cong, H.; Hu, X.; Du, Y.; Shao, H.; Li, Q. Micro-mechanism influence of copper on thermal decomposition of vegetable oil-paper insulation based on ReaxFF-MD. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 906–914. [Google Scholar] [CrossRef]
- Pillai, A.S.; Linsely, A. Effect of copper as a catalyst on the dielectric properties of insulating oils used in transformers. Int. J. Adv. Manuf. Technol. 2024, 130, 147–162. [Google Scholar] [CrossRef]
- Fazal, M.; Jakeria, M.; Haseeb, A. Effect of copper and mild steel on the stability of palm biodiesel properties: A comparative study. Ind. Crops Prod. 2014, 58, 8–14. [Google Scholar] [CrossRef]
- Wada, J.; Ueta, G.; Okabe, S.; Amimoto, T. Inhibition technique of transformer insulating oil degradation-evaluation of the effectiveness of oxidation degradation inhibitors. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 1641–1648. [Google Scholar] [CrossRef]
- Wang, K.; Wang, F.; Li, J.; Zhao, Q.; Wen, G.; Zhang, T. Effect of metal particles on the electrical properties of mineral and natural ester oils. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1621–1627. [Google Scholar] [CrossRef]
- Singh, M.; Jindal, V.; Singh, J. Effects of Thermal Aging on Blended Oil Characteristics in Comparison to Mineral Oil and Synthetic Esters. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 1540–1547. [Google Scholar] [CrossRef]
- Ye, W.; Hao, J.; Gao, C.; Zhang, J.; Yang, L.; Liao, R. Natural Ester Replacement Effect on Thermal Degradation of Cellulose Insulation from Macroscopic Behavior to Atomic-Scale Mechanism. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 1582–1589. [Google Scholar] [CrossRef]
- Oria, C.; Méndez, C.; Carrascal, I.; Ferreño, D.; Ortiz, A. Degradation of the compression strength of spacers made of high-density pressboard used in power transformers under the influence of thermal ageing. Cellulose 2023, 30, 6539–6558. [Google Scholar] [CrossRef]
- Dai, X.; Yuan, Y.; Zhou, J.; Liu, G.; Zhu, T.; Xiang, H.; Yu, Q.; Gao, X.; Liao, R. Effect of the grain boundary character distribution on the sulfur corrosion behaviour and mechanisms of copper windings under different high temperatures. High Volt. 2024, 9, 566–580. [Google Scholar] [CrossRef]
- Mansour, M.; Missouni, H.; Makhlouf, Y.; Hadjarab, B.; Haine, N.; Saidi-Amroun, N. On the Effect of Copper on Characteristics of the Insulating Extra Virgin Olive Oil Under Thermal Aging. IEEE Trans. Dielectr. Electr. Insul. 2024, 31, 1471–1479. [Google Scholar] [CrossRef]
- Tong, Z.; Wang, W.; Zeng, S.; Sun, Y.; Meng, J.; Liu, Y.; Xia, Q.; Yu, H. Hydrogen bond reconstruction strategy for eutectic solvents that realizes room-temperature dissolution of cellulose. Green Chem. 2022, 24, 8760–8769. [Google Scholar] [CrossRef]
- Taslak, E.; Arikan, O.; Kumru, C.F.; Kalenderli, O. Analyses of the insulating characteristics of mineral oil at operating conditions. Electr. Eng. 2018, 100, 321–331. [Google Scholar] [CrossRef]
- Kalathiripi, H.; Karmakar, S. Analysis of transformer oil degradation due to thermal stress using optical spectroscopic techniques. Int. Trans. Electr. Energy Syst. 2017, 27, e2346. [Google Scholar] [CrossRef]
- Hao, J.; Liao, R.; Yang, L.; Gao, S.; Liao, Q.; Gao, J. Copper catalytic effect on the thermal deterioration and surface morphology performance of transformer oil–paper insulation. IEEJ Trans. Electr. Electron. Eng. 2018, 13, 373–381. [Google Scholar] [CrossRef]
- Rao, U.M.; Sood, Y.R.; Jarial, R.K. Performance analysis of alternate liquid dielectrics for power transformers. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2475–2484. [Google Scholar] [CrossRef]
- Castillo, I.; Torres-Flores, A.P.; Abad-Aguilar, D.F.; Berlanga-Vázquez, A.; Orio, M.; Martínez-Otero, D. Cellulose Depolymerization with LPMO-inspired Cu Complexes. ChemCatChem 2021, 13, 4700–4704. [Google Scholar] [CrossRef]
- Wiklund, P.; Levin, M.; Pahlavanpour, B. Copper dissolution and metal passivators in insulating oil. IEEE Electr. Insul. Mag. 2007, 23, 6–14. [Google Scholar] [CrossRef]
- Diaz Leon, J.J.; Fryauf, D.M.; Cormia, R.D.; Zhang, M.-X.M.; Samuels, K.; Williams, R.S.; Kobayashi, N.P. Reflectometry–ellipsometry reveals thickness, growth rate, and phase composition in oxidation of copper. ACS Appl. Mater. Interfaces 2016, 8, 22337–22344. [Google Scholar] [CrossRef] [PubMed]
- Stiedl, J.; Green, S.; Chassé, T.; Rebner, K. Auger electron spectroscopy and UV–Vis spectroscopy in combination with multivariate curve resolution analysis to determine the Cu2O/CuO ratios in oxide layers on technical copper surfaces. Appl. Surf. Sci. 2019, 486, 354–361. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Y.; Dong, L.; Zhou, Z.; Liu, R. Enhancement of mechanical and electrical performances of insulating presspaper by introduction of nanocellulose. Compos. Sci. Technol. 2017, 138, 40–48. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, H.; Wang, X.; Liu, H.; Zhou, K.; Ning, X. Dielectric properties of epoxy resin impregnated nano-SiO2 modified insulating paper. Polymers 2019, 11, 393. [Google Scholar] [CrossRef]
- Cui, R.; Jin, D.; Jiao, G.; Liu, Z.; Ma, J.; Sun, R. Cuprous oxide/copper oxide interpenetrated into ordered mesoporous cellulose-based carbon aerogels for efficient photocatalytic degradation of methylene blue. Front. Chem. Sci. Eng. 2023, 17, 918–929. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, Y.; Chen, K.; Wang, T.; Sun, P.; Wang, C.; Chuai, X.; Zhang, S.; Liu, X.; Lu, G. Double shell Cu2O hollow microspheres as sensing material for high performance n-propanol sensor. Sens. Actuators B Chem. 2021, 333, 129540. [Google Scholar] [CrossRef]
- Akgul, F.A.; Akgul, G.; Yildirim, N.; Unalan, H.E.; Turan, R. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater. Chem. Phys. 2014, 147, 987–995. [Google Scholar] [CrossRef]
- Shu, J.; Cheng, S.; Xia, H.; Zhang, L.; Peng, J.; Li, C.; Zhang, S. Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Adv. 2017, 7, 14395–14405. [Google Scholar] [CrossRef]
- Allaf, H.N.; Mirzaei, H. Investigations on reclaimed oil performance through measurement of the relative free radical content. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3481–3489. [Google Scholar] [CrossRef]
- Butcher, M.; Neuber, A.A.; Cevallos, M.D.; Dickens, J.C.; Krompholz, H. Conduction and breakdown mechanismsin transformer oil. IEEE Trans. Plasma Sci. 2006, 34, 467–475. [Google Scholar] [CrossRef]
- Sevastyanova, O.; Pasalskiy, B.; Zhmud, B. Copper release kinetics and ageing of insulation paper in oil-immersed transformers. Engineering 2015, 7, 514–529. [Google Scholar] [CrossRef]
- Kouassi, K.D.; Fofana, I.; Cissé, L.; Hadjadj, Y.; Yapi, K.M.L.; Diby, K.A. Impact of low molecular weight acids on oil impregnated paper insulation degradation. Energies 2018, 11, 1465. [Google Scholar] [CrossRef]
- Lundgaard, L.E.; Hansen, W.; Linhjell, D.; Painter, T.J. Aging of oil-impregnated paper in power transformers. IEEE Trans. Power Deliv. 2004, 19, 230–239. [Google Scholar] [CrossRef]
- Brook, J.; Matthews, J. Iron and copper as catalysts in the oxidation of hydrocarbon lubricating oils. Discuss. Faraday Soc. 1951, 10, 298–307. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Zhang, S.; Jin, J.; Song, X.; Wang, X.; Tratnyek, P.G. Overlooked role of peroxides as free radical precursors in advanced oxidation processes. Environ. Sci. Technol. 2019, 53, 2054–2062. [Google Scholar] [CrossRef]
- Yao, T.; Zhang, N.; Zhang, M.; She, X.; Liao, X.; Shen, Y.; Gan, Z. Effect of iron and copper on the thermal oxidation stability of synthetic hydrocarbon aviation lubricating oil. Catal. Commun. 2021, 161, 106363. [Google Scholar] [CrossRef]
- Lamarre, C.; Gendron, A. An analysis of 2,6-di-tert-butyl-p-cresol in insulating oils by high-performance liquid chromatography. IEEE Trans. Dielectr. Electr. Insul. 1995, 2, 413–417. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, Z.; Yan, J.; Wang, S.; Huang, X.; Zuo, F.; Li, A.; Gao, F.; Lin, H.; Wang, B. Revealing the Intrinsic Correlation between Cu Scales and Free Radical Chain Reactions in the Regulation of Catalytic Behaviour. Molecules 2024, 29, 4690. https://doi.org/10.3390/molecules29194690
Zhang H, Zhang Z, Yan J, Wang S, Huang X, Zuo F, Li A, Gao F, Lin H, Wang B. Revealing the Intrinsic Correlation between Cu Scales and Free Radical Chain Reactions in the Regulation of Catalytic Behaviour. Molecules. 2024; 29(19):4690. https://doi.org/10.3390/molecules29194690
Chicago/Turabian StyleZhang, Haifeng, Zilong Zhang, Jingyi Yan, Siyang Wang, Xubin Huang, Fangmin Zuo, Ao Li, Fengkai Gao, Haidan Lin, and Bolin Wang. 2024. "Revealing the Intrinsic Correlation between Cu Scales and Free Radical Chain Reactions in the Regulation of Catalytic Behaviour" Molecules 29, no. 19: 4690. https://doi.org/10.3390/molecules29194690
APA StyleZhang, H., Zhang, Z., Yan, J., Wang, S., Huang, X., Zuo, F., Li, A., Gao, F., Lin, H., & Wang, B. (2024). Revealing the Intrinsic Correlation between Cu Scales and Free Radical Chain Reactions in the Regulation of Catalytic Behaviour. Molecules, 29(19), 4690. https://doi.org/10.3390/molecules29194690