Active Polysaccharide-Based Films Incorporated with Essential Oils for Extending the Shelf Life of Sliced Soft Bread
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of Ginger and Cinnamon Essential Oils
2.2. Elaboration and Characterization of CMC-Chitosan-Oleic Acid-Essential Oil (CMC-CH-OL-EO) Films
2.2.1. Preparation of Film-Forming Dispersions (FFDs)
2.2.2. ATR-FTIR Spectra of Films
2.2.3. Microstructures of the Films
2.2.4. Thermal Properties
Differential Scanning Calorimetry (DSC)
Thermogravimetric Analysis (TGA) of Essential Oils
2.2.5. Total Phenolic Content and Antioxidant Activity of Films
2.3. In Vitro Antifungal Activities of Essential Oils and Films
2.3.1. Minimum Inhibitory Concentration (MIC) and Preliminary Antifungal Assays
2.3.2. Antifungal Properties of Active Materials on Sliced Soft Bread
Antifungal Properties of FFD Coatings on Bread Slices
Evaluation of Fungal Growth in Bread Slices Sandwiched between Active Films
3. Materials and Methods
3.1. Materials
3.2. Analysis of Commercial Essential Oils
3.3. Preparation of Film-Forming Dispersions (FFDs)
3.4. Characterization of Films
3.4.1. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy
3.4.2. Scanning Electron Microscopy (SEM)
3.4.3. Differential Scanning Calorimetry (DSC)
3.4.4. Antioxidant Activity of Films
Total Phenolic Content (TPC)
DPPH Radical Scavenging Activity
3.4.5. In Vitro Antifungal Activity of Essential Oils and Films
Determination of the MIC of Essential Oils
Determination of the Antifungal Activity of Films
3.4.6. Antifungal Properties of Active Materials on Bread Slices
Numeration after Bread Slice Coating with FFDs
Visual Observation of Packaged Bread Slices during Storage
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cauvain, S.P. Technology of Breadmaking, 3rd ed.; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-14686-7. [Google Scholar]
- Gutierrez, L.; Sancheza, C.; Battle, R.; Nerin, C. New antimicrobial active package for bakery products. Trends Food Sci Technol. 2009, 20, 92–99. [Google Scholar] [CrossRef]
- Alhendi, A.; Choudhary, R. Current practices in bread packaging and possibility of improving bread shelf life by nanotechnology. Int. J. Food Sci. Nutr. Eng. 2013, 3, 55–60. [Google Scholar] [CrossRef]
- Dal Bello, F.; Clarke, C.I.; Ryan, L.A.M.; Ulmer, H.; Schober, T.J.; Strom, K.; Sjogren, J.; Sinderen, D.; Schnurer, J.; Arendt, E.K. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J. Cereal Sci. 2007, 45, 309–318. [Google Scholar] [CrossRef]
- Hossain, F.; Follett, P.; Vu, K.D.; Harich, M.; Salmieri, S.; Lacroix, M. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiol. 2016, 53, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Legan, J.D. Mould spoilage of bread: The problem and some solutions. Int. Biodeterior. Biodegrad. 1993, 32, 33–53. [Google Scholar] [CrossRef]
- Garcia, M.V.; Bernardi, A.O.; Copetti, M.V. The fungal problem in bread production: Insights of causes, consequences, and control methods. Curr. Opin. Food Sci. 2019, 29, 1–6. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, R.; Hasan, S.; Zzaman, W.; Rana, M.R.; Ahmed, S.; Roy, M.; Sayem, A.; Matin, A.; Raposo, A.; et al. A comprehensive review on bio-preservation of bread: An approach to adopt wholesome strategies. Foods 2022, 11, 319. [Google Scholar] [CrossRef]
- Vargas, M.; Simsek, S. Clean label in bread. Foods 2021, 10, 2054. [Google Scholar] [CrossRef]
- Sripahco, T.; Khruengsai, S.; Pripdeevech, P. Biodegradable antifungal films from nanocellulose-gellan gum incorporated with Anethum graveolens essential oil for bread packaging. Int. J. Biol. Macromol. 2023, 243, 125244. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Sulaiman, G.A.; Khan, R.A.; Al-Saffar, A.Z.; Mohsin, M.H.; Albukhaty, S.; Ismail, S. Essential oils pharmacological activity: Chemical markers, biogenesis, plant sources, and commercial products. Process Biochem. 2024, 144, 112–132. [Google Scholar] [CrossRef]
- Nabavi, S.F.; Di Lorenzo, A.; Izadi, M.; Sobarzo-Sanchez, E.; Daglia, M.; Nabavi, S.M. Antibacterial effects of cinnamon: From farm to food, cosmetic and pharmaceutical industries. Nutrients 2015, 7, 7729–7748. [Google Scholar] [CrossRef]
- Norani, F.; Yeganehzad, S.; Arianfar, A.; Sardarodiyan, M.; Mahdian, E. Investigation on antioxidant effect of ginger (Zingiber officinale) essence oil on oily cake. Nat. Prod. Indian J. 2016, 12, 1–9. [Google Scholar]
- Stefanowska, K.; Woz’niak, M.; Dobrucka, R.; Ratajczak, I. Chitosan with natural additives as a potential food packaging. Materials 2023, 16, 1579. [Google Scholar] [CrossRef]
- Noshirvani, N.; Ghanbarzadeh, B.; Mokarram, R.R.; Hashemi, M.; Coma, V. Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nano particles. Int. J. Biol. Macromol. 2017, 99, 530–538. [Google Scholar] [CrossRef]
- Devi, L.S.; Jaiswal, A.K.; Jaiswal, S. Lipid incorporated biopolymer based edible films and coatings in food packaging: A review. Curr. Res. Food Sci. 2024, 8, 100720. [Google Scholar] [CrossRef]
- Vargas, M.; Albors, A.; Chiralt, A. Application of chitosan-sunflower oil edible films to pork meat hamburgers. Procedia Food Sci. 2011, 1, 39–43. [Google Scholar] [CrossRef]
- Pereda, M.; Amica, G.; Marcovich, N.E. Development and characterization of edible chitosan/olive oil emulsion films. Carbohydr. Polym. 2012, 87, 1318–1325. [Google Scholar] [CrossRef]
- Vargas, M.; Albors, A.; Chiralt, A.; Gonzalez-Martinez, C. Characterization of chitosan–oleic acid composite films. Food Hydrocoll. 2009, 23, 536–547. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Almasi, H. Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. Int. J. Biol. Macromol. 2011, 48, 44–49. [Google Scholar] [CrossRef]
- Barden, D.; McGregor, L.; Smith, S. Comprehensive fragrance profiling of ginger, wintergreen and rosemary essential oils by GC-TOF-MS with soft electron ionization. Curr. Trends Mass Spectrom. 2016, 14, 18–26. [Google Scholar]
- Qiu, Q.; Liu, T.; Cui, Z.; Shen, Y.; Zhao, Y. Study on chemical components of essential oil in Cinnamomum cassia Presl. by GC-MS. Yaowu Fenxi Zazhi 2000, 20, 248–251. [Google Scholar]
- Trinh, N.; Dumas, E.; Le Thanh, M.; Degraeve, P.; Ben Amara, C.; Gharsallaoui, A.; Oulahal, N. Effect of a Vietnamese Cinnamomum cassia essential oil and its major component trans-cinnamaldehyde on the cell viability, membrane integrity, membrane fluidity, and proton motive force of Listeria innocua. Can. J. Microbiol. 2015, 61, 263–271. [Google Scholar] [CrossRef]
- Wang, R.; Wang, R.; Yang, B. Extraction of essential oils from five cinnamon leaves and identification of their volatile compound compositions. Innov. Food Sci. Emerg. Technol. 2009, 10, 289–292. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, H.; Liu, S.; Li, S. Cinnamom cassia oil emulsions stabilized by chitin nanofibrils: Physicochemical properties and antibacterial activities. J. Agric. Food Chem. 2020, 68, 14620–14631. [Google Scholar] [CrossRef]
- Wenninger, J.A.; Yates, R.L.; Dolinsky, M. High resolution infrared spectra of some naturally occurring sesquiterpene hydrocarbons. J. AOAC Int. 1967, 50, 1313–1335. [Google Scholar] [CrossRef]
- Le Goué, E.; Gardrat, C.; Romain, M.; Rollini, M.; Moresoli, C.; Coma, V. Effect of oleic acid on the release of tetrahydrocurcumin in chitosan-based films. Food Hydrocoll. 2022, 124 Pt A, 107292. [Google Scholar] [CrossRef]
- Zinn, S.; Betz, T.; Medcaft, C.; Schnell, M. Structure determination of trans-cinnamaldehyde by broadband microwave spectroscopy. Phys. Chem. Chem. Phys. 2015, 17, 16080–16085. [Google Scholar] [CrossRef]
- Noshirvani, N.; Ghanbarzadeh, B.; Gardrat, C.; Mokarram, R.R.; Hashemi, M.; Le Coz, C.; Coma, V. Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocoll. 2017, 70, 36–45. [Google Scholar] [CrossRef]
- Iturriaga, L.; Olabarrieta, I.; Castellan, A.; Gardrat, C.; Coma, V. Active naringin-chitosan films: Impact of UV irradiation. Carbohydr. Polym. 2014, 110, 374–381. [Google Scholar] [CrossRef]
- Avila-Sosa, R.; Palou, E.; Jimenez Munguia, M.T.; Nevarez-Moorillon, G.V.; Navarro Cruz, A.R.; Lopez-Malo, A. Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. Int. J. Food Microbiol. 2012, 153, 66–72. [Google Scholar] [CrossRef]
- Chen, W.T.; Chen, W.C.; Ma, C.M.; Laiwang, B.; Shen, S.J.; You, M.L.; Shu, C.M. Structural characteristics and decomposition analyses of four commercial essential oils by thermal approaches and GC/MS. J. Therm. Anal. Calorim. 2018, 131, 1709–1719. [Google Scholar] [CrossRef]
- Chambre, D.R.; Moisa, C.; Lupitu, A.; Copolovici, L.; Pop, G.; Copolovici, D.N. Chemical composition, antioxidant capacity, and thermal behavior of Satureja hortensis essential oil. Sci. Rep. 2020, 20, 21322. [Google Scholar] [CrossRef]
- Hazra, A.; Alexander, K.; Dollimore, D.; Riga, A. Characterization of some essential oils and their key components—Thermoanalytical techniques. J. Therm. Anal. Calorim. 2004, 75, 317–330. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Y.; Men, H.; Tong, J.; Zhou, J. Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocoll. 2013, 32, 35–41. [Google Scholar] [CrossRef]
- Ruiz-Navajas, Y.; Viuda-Martos, M.; Sendra, E.; Perez-Alvarez, J.A.; Fernandez-Lopez, J. In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 2013, 30, 386–392. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Ravantos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Nayak, S.; Jena, A.K.; Patra, J.K.; Sucharita, S. Chemical composition and bioactive potential of essentials of rhizomes of Zingiber capitatum Roxb. World J. Pharm. Pharm. Sci. 2013, 2, 4997–5010. [Google Scholar]
- Yen, M.T.; Yang, J.H.; Mau, J.L. Antioxidant properties of chitosan from crab shells. Carbohydr. Polym. 2008, 74, 840–844. [Google Scholar] [CrossRef]
- Huet, G.; Wang, Y.; Gardrat, C.; Brulé, D.; Vax, A.; Le Coz, C.; Pichavant, F.; Bonnet, S.; Poinssot, B.; Coma, V. Deep Chemical and Physico-Chemical Characterization of Antifungal Industrial Chitosans—Biocontrol Applications. Molecules 2023, 28, 966. [Google Scholar] [CrossRef]
- Atares, L.; Bonilla, J.; Chiralt, A. Characterization of sodium caseinate-based edible films incorporated with cinnamon or ginger essential oils. J. Food Eng. 2010, 100, 678–687. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Noshirvani, N.; Fakhri, L.A. Advances in extending the microbial shelf life of bread and bakery products using different technologies: A review. Food Rev. Int. 2024, 1–26. [Google Scholar] [CrossRef]
- Foti, M. Antioxidant properties of phenols. J. Pharm. Pharmacol. 2007, 59, 1673–1685. [Google Scholar] [CrossRef]
- Baschieri, A.; Ajvazi, M.D.; Folifack Tonfack, J.L.; Valgimigli, L.; Amorati, R. Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chem. 2017, 232, 656–663. [Google Scholar] [CrossRef]
- Foti, M.; Ingold, K.U. Mechanism of inhibition of lipid peroxidation by γ-terpinene, an unusual and potentially useful hydrocarbon antioxidant. J. Agric. Food Chem. 2003, 51, 2758–2765. [Google Scholar] [CrossRef]
- Bansod, S.; Rai, M. Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World J. Med. Sci. 2008, 3, 81–88. [Google Scholar]
- Guynot, M.E.; Ramos, A.J.; Seto, L.; Purroy, P.; Sanchis, V.; Marin, S. Antifungal activity of volatile compounds generated by essential oils against fungi commonly causing deterioration of bakery products. J. Appl. Microbiol. 2003, 94, 893–899. [Google Scholar] [CrossRef]
- Mourey, A.; Canillac, N. Anti-Listeria monocytogenes activity of essential oils components of conifers. Food Control 2002, 13, 289–292. [Google Scholar] [CrossRef]
- Ojagh, S.M.; Rezaei, M.; Razavi, S.H.; Hosseini, S.M.H. Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem. 2010, 122, 161–166. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Malik, A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem. 2011, 126, 228–235. [Google Scholar] [CrossRef]
- Van Long, N.N.; Joly, C.; Dantigny, P. Active packaging with antifungal activities. Int. J. Food Microbiol. 2016, 220, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Shreaz, S.; Wani, W.A.; Behbehani, J.M.; Raja, V.; Irshad, M.; Karched, M.; Ali, I.; Siddiqi, W.A.; Hun, L.T. Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 2016, 112, 116–131. [Google Scholar] [CrossRef]
- Yamamoto-Ribeiro, M.M.G.; Grespan, R.; Kohiyama, C.Y.; Ferreira, F.D.; Galerani Mossini, S.A.; Silva, E.L.; Filho, B.A.D.A.; Mikcha, J.M.G.; Machinski, M., Jr. Effect of Zingiber officinale essential oil on Fusarium verticillioides and fumonisin production. Food Chem. 2013, 141, 3147–3152. [Google Scholar] [CrossRef]
- Otoni, C.G.; Pontes, S.F.O.; Medeiros, E.A.A.; Soares, N.D.F.F. Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread. J. Agric. Food Chem. 2014, 62, 5214–5219. [Google Scholar] [CrossRef]
- Kechichian, V.; Ditchfield, C.; Veiga-Santos, P.; Tadini, C.C. Natural antimicrobial ingredients incorporated in biodegradable films based on cassava starch. LWT—Food Sci. Technol. 2010, 43, 1088–1094. [Google Scholar] [CrossRef]
- Balaguer, M.P.; Lopez-Carballo, G.; Catala, R.; Gavara, R.; Hernandez-Munoz, P. Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. Int. J. Food Microbiol. 2013, 166, 369–377. [Google Scholar] [CrossRef]
- Sangsuwan, J.; Srikok, K.; Duangsawat, J.; Rachtanpum, P. Development of chitosan film incorporating garlic oil or potassium sorbate as an antifungal agent for garlic bread. J. Agric. Sci. Technol. B 2012, 2, 128–136. Available online: https://www.proquest.com/openview/c9e13782cd99c79155879eb72d8f6870/1.pdf?pq-origsite=gscholar&cbl=2029907 (accessed on 4 July 2024).
- Ramos, M.; Beltran, A.; Valdes, A.; Peltzer, M.; Jimenez, A.; Garrigos, M.; Zaikov, G. Active packaging for fresh food based on the release of carvacrol and thymol. Chem. Chem. Technol. 2013, 7, 295–301. [Google Scholar] [CrossRef]
- Simon, P. Isoconversional methods. J. Therm. Anal. Calorim. 2004, 76, 123–132. [Google Scholar] [CrossRef]
- ASTM E698-18; Standard Test Method for Kinetic Parameters for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM E2890-12; Test Method for Kinetic Parameters for Thermally Unstable Materials by Differential Scanning Calorimetry Using the Kissinger and Farjas Methods. ASTM International: West Conshohocken, PA, USA, 2015.
Films | CEO 1 | CEO 2 | CEO 3 | CEO 4 | GEO 1 | GEO 2 | GEO 3 | GEO 4 |
---|---|---|---|---|---|---|---|---|
Inhibition zone diameter (mm) | 11.5 ± 0.4 d | 17.9 ± 1.3 c | 20.9 ± 1.8 b | 69.7 ± 2.3 a | 2.9 ± 0.5 f | 3.7 ± 0.3 f | 7.3 ± 0.4 e | 22.8 ± 0.3 b |
Inhibition (%) | 13 | 20 | 23 | 83 | 4 | 5 | 10 | 26 |
MIC value (mL/mL) | 0.03 ± 0.02 | 4.00 ± 1.03 |
Storage Days | Control | CMC-CH | CMC-CH-OL | CEO 1 | CEO 4 | GEO 1 | GEO 4 |
---|---|---|---|---|---|---|---|
0 | 2.35 ± 0.02 d | 2.22 ± 0.02 d | 1.92 ± 0.02 c | 0.0 ± 0.0 d | 0.0 ± 0.0 a | 2.03 ± 0.01 d | 1.39 ± 0.02 d |
3 | 5.00 ± 0.03 c | 4.57 ± 0.03 c | 4.33 ± 0.03 b | 0.5 ± 0.01 c | 0.0 ± 0.0 a | 4.08 ± 0.02 c | 2.00 ± 0.02 c |
7 | 6.26 ± 0.03 b | 5.56 ± 0.03 b | 6.11 ± 0.03 a | 2.25 ± 0.02 b | 0.0 ± 0.0 a | 5.36 ± 0.03 b | 3.39 ± 0.03 b |
15 | 7.46 ± 0.04 a | 7.05 ± 0.04 a | 6.71 ± 0.04 a | 4.45 ± 0.04 a | 0.0 ± 0.0 a | 6.53 ± 0.03 a | 6.00 ± 0.04 a |
Type of Packaging | Growth Delay (Days) | Intensity of Fungal Growth * | |||
---|---|---|---|---|---|
Day 7 | Day 15 | Day 28 | Day 35 | ||
CMC-CH-OL | 7.0 e | + | ++ | +++ | +++ |
CMC-CH-OL-CEO 1 | 14.5 d | - | + | + | ++ |
CMC-CH-OL-CEO 2 | 20.5 b | - | - | + | + |
CMC-CH-OL-CEO 3 | NG **f | - | - | - | - |
CMC-CH-OL-CEO 4 | NG **f | - | - | - | - |
CMC-CH-OL-GEO 1 | 14.5 d | - | + | + | ++ |
CMC-CH-OL-GEO 2 | 14.0 d | - | + | + | ++ |
CMC-CH-OL-GEO 3 | 18.0 c | - | - | + | ++ |
CMC-CH-OL-GEO 4 | 28.0 a | - | - | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noshirvani, N.; Le Coz, C.; Gardrat, C.; Ghanbarzadeh, B.; Coma, V. Active Polysaccharide-Based Films Incorporated with Essential Oils for Extending the Shelf Life of Sliced Soft Bread. Molecules 2024, 29, 4664. https://doi.org/10.3390/molecules29194664
Noshirvani N, Le Coz C, Gardrat C, Ghanbarzadeh B, Coma V. Active Polysaccharide-Based Films Incorporated with Essential Oils for Extending the Shelf Life of Sliced Soft Bread. Molecules. 2024; 29(19):4664. https://doi.org/10.3390/molecules29194664
Chicago/Turabian StyleNoshirvani, Nooshin, Cédric Le Coz, Christian Gardrat, Babak Ghanbarzadeh, and Véronique Coma. 2024. "Active Polysaccharide-Based Films Incorporated with Essential Oils for Extending the Shelf Life of Sliced Soft Bread" Molecules 29, no. 19: 4664. https://doi.org/10.3390/molecules29194664
APA StyleNoshirvani, N., Le Coz, C., Gardrat, C., Ghanbarzadeh, B., & Coma, V. (2024). Active Polysaccharide-Based Films Incorporated with Essential Oils for Extending the Shelf Life of Sliced Soft Bread. Molecules, 29(19), 4664. https://doi.org/10.3390/molecules29194664