Rational Design of ZnO/Sc2CF2 Heterostructure with Tunable Electronic Structure for Water Splitting: A First-Principles Study
Abstract
:1. Introduction
2. Results and Discussion
3. Computational Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, S.; Osterloh, F.E.; Wang, X.; Mallouk, T.E.; Maeda, K. Photocatalytic Water Splitting. Nat. Rev. Methods Primers 2023, 3, 42. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.S. Elaborately Modified BiVO4 Photoanodes for Solar Water Splitting. Adv. Mater. 2019, 31, 1806938. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Ye, H.; Liang, F.; Wang, Z.; Li, K.; Weng, Y.; Lin, Z.; Fu, W.; Che, C.; Chen, Y. Interstitial P-doped CdS with Long-lived Photogenerated Electrons for Photocatalytic Water Splitting without Sacrificial Agents. Adv. Mater. 2018, 30, 1705941. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, X.; Nguyen, N.T.; Hwang, I.; Schmuki, P. Strongly Enhanced Water Splitting Performance of Ta3N5 Nanotube Photoanodes with Subnitrides. Adv. Mater. 2016, 28, 2432–2438. [Google Scholar] [CrossRef]
- Pan, L.; Kim, J.H.; Mayer, M.T.; Son, M.-K.; Ummadisingu, A.; Lee, J.S.; Hagfeldt, A.; Luo, J.; Grätzel, M. Boosting the Performance of Cu2O Photocathodes for Unassisted Solar Water Splitting Devices. Nat. Catal. 2018, 1, 412–420. [Google Scholar] [CrossRef]
- Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A.S.; Su, H.; Castro Neto, A.H. Phosphorene: From Theory to Applications. Nat. Rev. Mater. 2016, 1, 16061. [Google Scholar] [CrossRef]
- Lu, A.-Y.; Zhu, H.; Xiao, J.; Chuu, C.-P.; Han, Y.; Chiu, M.-H.; Cheng, C.-C.; Yang, C.-W.; Wei, K.-H.; Yang, Y.; et al. Janus Monolayers of Transition Metal Dichalcogenides. Nat. Nanotechnol. 2017, 12, 744–749. [Google Scholar] [CrossRef]
- Barraza-Lopez, S.; Fregoso, B.M.; Villanova, J.W.; Parkin, S.S.P.; Chang, K. Colloquium: Physical Properties of Group-IV Monochalcogenide Monolayers. Rev. Mod. Phys. 2021, 93, 011001. [Google Scholar] [CrossRef]
- Tusche, C.; Meyerheim, H.L.; Kirschner, J. Observation of Depolarized ZnO(0001) Monolayers: Formation of Unreconstructed Planar Sheets. Phys. Rev. Lett. 2007, 99, 026102. [Google Scholar] [CrossRef]
- Chen, H.; Tan, C.; Zhang, K.; Zhao, W.; Tian, X.; Huang, Y. Enhanced Photocatalytic Performance of ZnO Monolayer for Water Splitting via Biaxial Strain and External Electric Field. Appl. Surf. Sci. 2019, 481, 1064–1071. [Google Scholar] [CrossRef]
- Peng, J.; Chen, X.; Ong, W.-J.; Zhao, X.; Li, N. Surface and Heterointerface Engineering of 2D MXenes and Their Nanocomposites: Insights into Electro- and Photocatalysis. Chem 2019, 5, 18–50. [Google Scholar] [CrossRef]
- Balcı, E.; Akkuş, Ü.Ö.; Berber, S. Band Gap Modification in Doped MXene: Sc2CF2. J. Mater. Chem. C 2017, 5, 5956–5961. [Google Scholar] [CrossRef]
- Zha, X.-H.; Zhou, J.; Zhou, Y.; Huang, Q.; He, J.; Francisco, J.S.; Luo, K.; Du, S. Promising Electron Mobility and High Thermal Conductivity in Sc2CT2 (T = F., OH) MXenes. Nanoscale 2016, 8, 6110–6117. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Schwingenschlögl, U. Thermoelectric Performance of Functionalized Sc2C MXenes. Phys. Rev. B 2016, 94, 035405. [Google Scholar] [CrossRef]
- Xiong, K.; Wang, P.; Yang, G.; Liu, Z.; Zhang, H.; Jin, S.; Xu, X. Functional Group Effects on the Photoelectronic Properties of MXene (Sc2CT2, T = O, F, OH) and Their Possible Photocatalytic Activities. Sci. Rep. 2017, 7, 15095. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Zeng, X.; Zhang, X. 2D/2D Heterostructured Photocatalyst: Rational Design for Energy and Environmental Applications. Sci. China Mater. 2020, 63, 2119–2152. [Google Scholar] [CrossRef]
- Su, Q.; Li, Y.; Hu, R.; Song, F.; Liu, S.; Guo, C.; Zhu, S.; Liu, W.; Pan, J. Heterojunction Photocatalysts Based on 2D Materials: The Role of Configuration. Adv. Sustain. Syst. 2020, 4, 2000130. [Google Scholar] [CrossRef]
- Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J.S.; Bechtel, H.A.; Desai, S.B.; Kronast, F.; Unal, A.A.; et al. Strong Interlayer Coupling in van Der Waals Heterostructures Built from Single-Layer Chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198–6202. [Google Scholar] [CrossRef] [PubMed]
- Dastgeer, G.; Shahzad, Z.M.; Chae, H.; Kim, Y.H.; Ko, B.M.; Eom, J. Bipolar Junction Transistor Exhibiting Excellent Output Characteristics with a Prompt Response against the Selective Protein. Adv. Funct. Mater. 2022, 32, 2204781. [Google Scholar] [CrossRef]
- Dastgeer, G.; Afzal, A.M.; Nazir, G.; Sarwar, N. p--GeSe/n--ReS2 Heterojunction Rectifier Exhibiting a Fast Photoresponse with Ultra--high Frequency--switching Applications. Adv. Mater. Interfaces 2021, 8, 2100705. [Google Scholar] [CrossRef]
- Shen, R.; Liang, G.; Hao, L.; Zhang, P.; Li, X. In Situ Synthesis of Chemically Bonded 2D/2D Covalent Organic Frameworks/O--vacancy WO3 Z-scheme Heterostructure for Photocatalytic Overall Water Splitting. Adv. Mater. 2023, 35, 2303649. [Google Scholar] [CrossRef]
- Tho, C.C.; Yu, C.; Tang, Q.; Wang, Q.; Su, T.; Feng, Z.; Wu, Q.; Nguyen, C.V.; Ong, W.; Liang, S.; et al. Cataloguing MoSi2N4 and WSi2N4 van Der Waals Heterostructures: An Exceptional Material Platform for Excitonic Solar Cell Applications. Adv. Mater. Interfaces 2023, 10, 2201856. [Google Scholar] [CrossRef]
- Hezam, A.; Namratha, K.; Drmosh, Q.A.; Ponnamma, D.; Nagi Saeed, A.M.; Ganesh, V.; Neppolian, B.; Byrappa, K. Direct Z-Scheme Cs2O–Bi2O3–ZnO Heterostructures for Photocatalytic Overall Water Splitting. J. Mater. Chem. A 2018, 6, 21379–21388. [Google Scholar] [CrossRef]
- Riffat, M.; Ali, H.; Qayyum, H.A.; Bilal, M.; Hussain, T. Enhanced Solar-Driven Water Splitting by ZnO/CdTe Heterostructure Thin Films-Based Photocatalysts. Int. J. Hydrogen Energy 2023, 48, 22069–22078. [Google Scholar] [CrossRef]
- Nayak, D.; Thangavel, R. Theoretical Investigation of Electronic and Photocatalytic Properties of a Trilayer vdW MoS2/ZnO/WS2 Heterojunction for Overall Water-Splitting Applications. ACS Appl. Energy Mater. 2024, 7, 2642–2652. [Google Scholar] [CrossRef]
- Zhang, W.X.; Hou, J.T.; Bai, M.; He, C.; Wen, J.R. Construction of Novel ZnO/Ga2SSe (GaSe) vdW Heterostructures as Efficient Catalysts for Water Splitting. Appl. Surf. Sci. 2023, 634, 157648. [Google Scholar] [CrossRef]
- Bao, J.; Zhu, B.; Zhang, F.; Chen, X.; Guo, H.; Qiu, J.; Liu, X.; Yu, J. Sc2CF2/Janus MoSSe Heterostructure: A Potential Z-Scheme Photocatalyst with Ultra-High Solar-to-Hydrogen Efficiency. Int. J. Hydrogen Energy 2021, 46, 39830–39843. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, M.; Zhong, X.; Qiu, K.; Bai, L.; Ma, B.; Wang, J.; Chen, Y. Theoretical Design of Sc2CF2/Ti2CO2 Heterostructure as a Promising Direct Z-Scheme Photocatalyst towards Efficient Water Splitting. Results Phys. 2024, 60, 107706. [Google Scholar] [CrossRef]
- Bayode, A.A.; Vieira, E.M.; Moodley, R.; Akpotu, S.; De Camargo, A.S.S.; Fatta-Kassinos, D.; Unuabonah, E.I. Tuning ZnO/GO p-n Heterostructure with Carbon Interlayer Supported on Clay for Visible-Light Catalysis: Removal of Steroid Estrogens from Water. Chem. Eng. J. 2021, 420, 127668. [Google Scholar] [CrossRef]
- Hu, F.; Tao, L.; Ye, H.; Li, X.; Chen, X. ZnO/WSe2 vdW Heterostructure for Photocatalytic Water Splitting. J. Mater. Chem. C 2019, 7, 7104–7113. [Google Scholar] [CrossRef]
- Khang, N.D.; Nguyen, C.Q.; Duc, L.M.; Nguyen, C.V. First-Principles Investigation of a Type-II BP/Sc2CF2 van Der Waals Heterostructure for Photovoltaic Solar Cells. Nanoscale Adv. 2023, 5, 2583–2589. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-H.; Wang, B.-J.; Wang, G.-D.; Ke, S.-H. Blue Phosphorene/Sc2CX2 (X = O, F) van Der Waals Heterostructures as Suitable Candidates for Water-Splitting Photocatalysts and Solar Cells. Sustain. Energy Fuels 2020, 4, 5277–5283. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, Y.; Lu, N.; Kan, E.; Zeng, X.C.; Wu, X.; Yang, J. Tunable Magnetism in a Nonmetal-Substituted ZnO Monolayer: A First-Principles Study. J. Phys. Chem. C 2012, 116, 11336–11342. [Google Scholar] [CrossRef]
- Björkman, T.; Gulans, A.; Krasheninnikov, A.V.; Nieminen, R.M. Van Der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations. Phys. Rev. Lett. 2012, 108, 235502. [Google Scholar] [CrossRef] [PubMed]
- Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Phys. Rev. Lett. 2009, 102, 236804. [Google Scholar] [CrossRef]
- Mannix, A.J.; Zhou, X.-F.; Kiraly, B.; Wood, J.D.; Alducin, D.; Myers, B.D.; Liu, X.; Fisher, B.L.; Santiago, U.; Guest, J.R.; et al. Synthesis of Borophenes: Anisotropic, Two-Dimensional Boron Polymorphs. Science 2015, 350, 1513–1516. [Google Scholar] [CrossRef]
- Zólyomi, V.; Drummond, N.D.; Fal’ko, V.I. Electrons and Phonons in Single Layers of Hexagonal Indium Chalcogenides from Ab Initio Calculations. Phys. Rev. B 2014, 89, 205416. [Google Scholar] [CrossRef]
- Mouhat, F.; Coudert, F.-X. Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
- Sanville, E.; Kenny, S.D.; Smith, R.; Henkelman, G. Improved Grid--based Algorithm for Bader Charge Allocation. J. Comput. Chem. 2007, 28, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Linear Optical Properties in the Projector-Augmented Wave Methodology. Phys. Rev. B 2006, 73, 045112. [Google Scholar] [CrossRef]
- Hong, X.; Kim, J.; Shi, S.-F.; Zhang, Y.; Jin, C.; Sun, Y.; Tongay, S.; Wu, J.; Zhang, Y.; Wang, F. Ultrafast Charge Transfer in Atomically Thin MoS2/WS2 Heterostructures. Nat. Nanotechnol. 2014, 9, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, G.; Huang, M.; Zhang, Z.; Wang, J.; Zhao, D.; Guo, X.; Liu, X. First-Principles Study on the Electronic Structure and Catalytic Properties of Two-Dimensional MX2N4 Systems (M = Ti, Zr; X = Si, Ge). Results Phys. 2023, 52, 106820. [Google Scholar] [CrossRef]
- Liu, M.; Tang, Y.; Yao, H.; Bai, L.; Song, J.; Ma, B. Theoretical Study on Photocatalytic Performance of ZnO/C2N Heterostructure towards High Efficiency Water Splitting. Front. Chem. 2022, 10, 1048437. [Google Scholar] [CrossRef]
- Liu, M.; Lu, Y.; Song, J.; Ma, B.; Qiu, K.; Bai, L.; Wang, Y.; Chen, Y.; Tang, Y. First-Principles Investigation on the Tunable Electronic Structures and Photocatalytic Properties of AlN/Sc2CF2 and GaN/Sc2CF2 Heterostructures. Molecules 2024, 29, 3303. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, T.; Zhang, M.; Tong, Y.; Zhong, C.; Zhang, N.; Zhang, L.; Wu, C.; Xie, Y. 3D Nitrogen-anion-decorated Nickel Sulfides for Highly Efficient Overall Water Splitting. Adv. Mater. 2017, 29, 1701584. [Google Scholar] [CrossRef]
- Shen, Y.; Yuan, Z.; Cui, Z.; Ma, D.; Yuan, P.; Cheng, F.; Yang, K.; Dong, Y.; Li, E. The G-ZnO/PtSe2 S-Scheme Heterojunction with Controllable Band Structure for Catalytic Hydrogen Production. Int. J. Hydrogen Energy 2024, 56, 807–816. [Google Scholar] [CrossRef]
- Khamdang, C.; Singsen, S.; Ngoipala, A.; Fongkaew, I.; Junkaew, A.; Suthirakun, S. Computational Design of a Strain-Induced 2D/2D g-C3N4/ZnO S-Scheme Heterostructured Photocatalyst for Water Splitting. ACS Appl. Energy Mater. 2022, 5, 13997–14007. [Google Scholar] [CrossRef]
- Sun, S.; Zhou, X.; Cong, B.; Hong, W.; Chen, G. Tailoring the D-Band Centers Endows (NixFe1-x)2 P Nanosheets with Efficient Oxygen Evolution Catalysis. ACS Catal. 2020, 10, 9086–9097. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, X.; Qin, J.; Liu, R. Constructing MoS2/g-C3N4 Heterojunction with Enhanced Oxygen Evolution Reaction Activity: A Theoretical Insight. Appl. Surf. Sci. 2020, 510, 145489. [Google Scholar] [CrossRef]
- He, C.; Zhang, J.H.; Zhang, W.X.; Li, T.T. Type-II InSe/g-C3N4 Heterostructure as a High-Efficiency Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting. J. Phys. Chem. Lett. 2019, 10, 3122–3128. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.-Q.; Yang, C.-L.; Li, X.-H.; Wang, M.-S.; Ma, X.-G. Insights into Photogenerated Carrier Dynamics and Overall Water Splitting of the CrS3/GeSe Heterostructure. J. Phys. Chem. Lett. 2023, 14, 9126–9135. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, S.; Shu, H.; Chou, J.-P.; Ren, K.; Yu, J.; Sun, M. A MoSSe/Blue Phosphorene Vdw Heterostructure with Energy Conversion Efficiency of 19.9% for Photocatalytic Water Splitting. Semicond. Sci. Technol. 2020, 35, 125008. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, C.; Zhou, M.; He, C.; Li, J.; Ouyang, T.; Tang, C.; Zhong, J. Highly Efficient Water Splitting in Step-Scheme PtS2/GaSe van Der Waals Heterojunction. J. Appl. Phys. 2022, 132, 055001. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Baroni, S.; De Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and Related Crystal Properties from Density-Functional Perturbation Theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef]
- Toroker, M.C.; Kanan, D.K.; Alidoust, N.; Isseroff, L.Y.; Liao, P.; Carter, E.A. First Principles Scheme to Evaluate Band Edge Positions in Potential Transition Metal Oxide Photocatalysts and Photoelectrodes. Phys. Chem. Chem. Phys. 2011, 13, 16644. [Google Scholar] [CrossRef] [PubMed]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
Items | a | lZn-O | lSc-C | lSc-F | Eg | VBM | CBM | Wf |
---|---|---|---|---|---|---|---|---|
ZnO | 3.29 | 2.0 | - | - | 3.28 | −5.79 | −2.51 | 4.82 |
Sc2CF2 | 3.22 | - | 2.27 | 2.21 | 2.09 | −5.56 | −3.47 | 5.02 |
SC | SC-I | SC-II | SC-III | SC-IV | SC-V | SC-VI |
---|---|---|---|---|---|---|
a | 3.27 | 3.26 | 3.27 | 3.27 | 3.27 | 3.26 |
d | 2.93 | 3.42 | 3.12 | 3.32 | 3.01 | 3.24 |
Eb | −34.59 | −19.14 | −31.19 | −19.89 | −28.28 | −26.22 |
Eg | 1.93 | 1.90 | 1.92 | 1.90 | 1.92 | 1.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Lu, Y.; Ma, B.; Song, J.; Bai, L.; Wang, Y.; Chen, Y.; Liu, M. Rational Design of ZnO/Sc2CF2 Heterostructure with Tunable Electronic Structure for Water Splitting: A First-Principles Study. Molecules 2024, 29, 4638. https://doi.org/10.3390/molecules29194638
Tang Y, Lu Y, Ma B, Song J, Bai L, Wang Y, Chen Y, Liu M. Rational Design of ZnO/Sc2CF2 Heterostructure with Tunable Electronic Structure for Water Splitting: A First-Principles Study. Molecules. 2024; 29(19):4638. https://doi.org/10.3390/molecules29194638
Chicago/Turabian StyleTang, Yong, Yidan Lu, Benyuan Ma, Jun Song, Liuyang Bai, Yinling Wang, Yuanyuan Chen, and Meiping Liu. 2024. "Rational Design of ZnO/Sc2CF2 Heterostructure with Tunable Electronic Structure for Water Splitting: A First-Principles Study" Molecules 29, no. 19: 4638. https://doi.org/10.3390/molecules29194638
APA StyleTang, Y., Lu, Y., Ma, B., Song, J., Bai, L., Wang, Y., Chen, Y., & Liu, M. (2024). Rational Design of ZnO/Sc2CF2 Heterostructure with Tunable Electronic Structure for Water Splitting: A First-Principles Study. Molecules, 29(19), 4638. https://doi.org/10.3390/molecules29194638